用户名: 密码: 验证码:
酶生物燃料电池的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酶生物燃料电池利用生物催化剂酶直接把化学能转化为电能,是一种清洁、高效、安静运行的电化学发动机,具有燃料来源广泛、反应条件温和、生物相容性好等优点,是一种可再生的绿色能源。酶生物燃料电池的研究主要集中在寻找固定酶的新方法上及对电池放电性能的测试上。本文详述了酶电极的制备方法,研究了单极室和“三合一”酶生物燃料电池的制备及其性能测试方面的内容。
     聚合物修饰电极由于具有三维空间结构,薄膜内有大量的电活性中心,十分有利于电催化。同时制备方法简单,电极使用寿命长,从而得以广泛使用。本文制备聚合物膜修饰电极,将此化学修饰电极应用于酶生物燃料电池中的阳极,充当固定化酶电极的电子介体作用。
     本文主要研究工作如下:
     1.用循环伏安法制备了聚亚甲基绿修饰电极(PMG/CME),探讨了该修饰电极的电化学聚合过程、表征、循环伏安性质及修饰电极对NADH的电催化特作用,实验发现PMG/CME对NADH有明显的电催化作用,结果满意。
     2.制备了单极室酶生物燃料电池。阳极采用电化学沉积法固定化ADH-NAD~+,阴极仍采用传统方法,Pt/C催化剂的碳纸,阴极和质子交换膜热压在一起,组装单极室酶生物燃料电池。利用乙醇和纯氧分别作为阳极和阴极的燃料,ADH-NAD~+酶作为催化剂,用于催化燃料乙醇的氧化脱氢。实验结果表明,该电化学沉积法单极室酶燃料电池的开路最高电压达到735mV。在外阻负载为3kΩ时,电池的稳定输出电压为395 mV,电池的稳定输出功率密度达到62.4μW/cm~2。酶在间歇使用过程中的工作寿命为两个月之多。
     3.新设计了一个具有三层结构的酶电极:第一层为聚亚甲基绿(PMG)膜和NAD~+的混合溶液;第二层为PMG膜;第三层是含有离子吸附型的固定化酶(固定化ADH),它们一起组装成“三合一”膜电极。用乙醇和氧气分别做为阳极和阴极的燃料,对“三合一”酶生物燃料电池一系列电化学性能进行检测,在外加负载为300Ω,电池的最大电流密度为170±4.3μA/cm~2,稳定输出电压为425 mV左右,电池的稳定输出功率密度达到72.3μW/cm~2,开路电压最大可达到630 mV。结果表明这种固定化酶的方法有利于酶生物燃料电池的电子传递。
Enzymatic biofuel cell is a device converting chemical energy directly with the biocatalysts, which has the advantage of abundant fuel resource, mild reaction condition and good biology consistency. In enzymatic biofuel cell aspect, more attention is concentrated on new method to immobilized enzyme. The details of preparation methods of enzymatic electrodes are especially described. This paper researched into the preparation and performance of single-compartmentalized and membrane electrode assembly enzymatic biofuel cells.
     The polymer films have three dimension configurations, which supply much available energy field. There are a lot of active groups in the polymer films. The polymer films have electrochemical catalyze characteristics. Because of its easy preparation and strong attachment to the electrode surface, the polymer modified electrode has distinguished itself as one of the most widely used chemically modified electrodes. This work prepared polymer chemically modified electrode, which acted as electron medium of immobilized enzyme electrode.
     The main research work is as follows:
     1. First of all, we prepared poly-(methylene green) chemically modified electrode by cyclic voltammetric method. We studied the PMG/CME of electropolymerization process, characterization, electrochemical behavior and electrocatalyzing NADH. The experiment result is PMG/CME has obvious electrocatalysis to NADH.
     2. We report the assembly of single-compartmentalized enzymatic biofuel cell. The alcohol dehydrogenase (ADH) and NAD~+ was immobilized in the PMG/CME by co-electrodepositing method as bioanode for the oxidation of alcohol. We used tradition method Pt/C catalyzer as cathode, oxygeon as cathodic fuel. Experiment indicated that the maximum open circuit voltage could reach 735 mV. The maximum output power density was 62.4μW/cm~2, output potential was about 395 mV at an external optimal load of 3 kΩand enzyme lifetime was two months.
     3. We designed a three-layer structural enzymatic electrode. The first layer is PMG and NAD~+, the second layer is PMG, the third layer is ion adsorption ADH. Then we fabricated membrane electrode assembly enzymatic biofuel cell. We also used tradition method Pt/C catalyzer as cathode, oxygeon as cathodic fuel. Also we measured the performance of membrane electrode assembly enzymatic biofuel cell. Experiment indicated that the maximum current density was 170±4.3μA/cm~2 and the maximum output power density was 72.3μW/cm~2 and the output potential was about 425 mV at an external optimal load of 300Ω. The maximum open circuit voltage could reach 630 mV. Dehydrogenase enzymes immobilized in the poly-methylene green membrane have shown high catalytic activity and can promote the direct bioelectrocatalysis for alcohol's oxidation.
引文
[1].宝玥,吴霞琴.生物燃料电池的研究进展[J].电化学,2004,10(1):1-6.
    [2].Kreysa G;Schenck K,K.Vuorilehto,et al.Bioeleetroehemical hydrogen production Int[J].Hydrogen Energy,1994,19(8):673-676.
    [3].G Milazzo,B.Martin·生物电化学-生物氧化还原反应[M]肖科译·天津:天津科学技术出版社,1990:335.
    [4]E.Katz,I.Willner,A.B.Kotlyar.A non-compartmentalized glucose/O_2 biofuel cell by bioengineered electrode surfaces[J].Electroanal Chem.,1999,479:64.
    [5].Y.V.Pardo,E.Katz,I.Willner,et al.Biomaterial engineered electrodes for bioelectronicsJ.Faraday Discussions,2000,116:119.
    [6].C.B.Scott,H.H.Kim,B.Gary,et al.Electroreduction of O_2 to Water on the "Wired" Laccase CathodeJ.J.Phys.Chem.,B,2001,105:11 917.
    [7].C.B.Scott,H.H.Kim,B.Gary,et al.The "Wired" laccase cathode:high current density electroreduction of O_2 to water at +0.7 V(NHE) at pH 5.J.Am.Chem.Soc.,2001,123:5 802.
    [8].C.B.Scott,P.Michael,V.D.Rafael,et al.Electroreduction of O_2 to water at 0.6V(SHE) at pH 7 on the'wired' pleurotuso streatus laccase cathode.[J]Biosensors and Bioelectronics,2002,17:1 071.
    [9].I.Willner.Biomaterials for sensors.[J]Science,2002,298:2 047.
    [10].康峰,伍艳辉,李佟茗.生物燃料电池研究进展[J].电源技术,2004,28(11):723-726.
    [11].A.A.Karyakin,S.V.Morozov,E.E.Karyakina,et al.Hydrogenfuel electrode basedon bioelectrocatalysis by the enzyme hydrogenaseJ.Electrochemistry Communications,2002,4:417.
    [12].S.Evelyne,M.H.Catherine,S.T.Chee,et al.Immobilisation of enzymes on poly(aniline)-poly(anion) composite films.Preparation of bioanodes for biofuel cell applications.[J]Bioelectrochemistry,2002,55:13.
    [13].T.Ruzgas,E.Csoregi,J.Emneus,et al.Peroxidase-modified electrodes:Fundamentals and application.[J]Anal.Chem.Acta,1996,330:123.
    [14].E.V.Plotin,I.J.Higgins,H.A.O.Hill.Biotechnol Lett,1981,3:187.
    [15].P.L.Yue,K.Lowther.Enzymatic oxidation of C_1 compounds in a biochemical fuel cell[J].J Chem Eng,1986,33B:69-77.
    [16].B.Persson,L.Gorton,G.Jahansson,et al.Biofuel anode based on D-glucose dehydrogenase,nicotinamide adenine dinuclecotide and a modified electrode[J].Enzyme Microb Technol, 1985,7(11):549-552.
    [17].C.Laane,W.Pronk,M.Franssen,et al.Use of a bioelectrochemical cell for the synthesis of (bio) chemicals[J].Enzyme Microb Technol,1984,6(4):165-168.
    [18].C.M.Halliwell,E.Simone,C.S.Toh,et al.Immobilization of lactate dehydrogenase on poly(aniline)-poly(acrylate) and poly(aniline)-poly(vinyl sulphonate) films for use in a lactate biosensor[J].Analytica Aeta.,2002,453:191-200.
    [19].C.M.Halliwell,E.Simone,C.S.Toh,et al.The design of dehydrogenase enzymes for use in a biofuel cell:the role of genetically introduced peptide tags in enzyme immobilization on electrodes[J],Bioelectrochem 2002,55:21-23.
    [20].E.Simone,C.M.Halliwell,C.S.Toh,et al.Immobilization ofenzymes on poly(aniline)-poly(anion) composite films.Preparations of bioanodes for biofuel cell applications[J],B ioelectrochem 2002,55:13-15.
    [21].L.Garza,G.Jeong,P.A.Liddell,et al.Enzyme-based photoelectrochemical biofuel cell[J].J Am Chem Soc,2002,124(10):2 120-2 121.
    [22].郑重德,王丰,胡涛,等.质子交换膜燃料电池研究进展[J],电源技术,1998,22(3):133-135.
    [23].G.C.Gil,I.S.Chang,B.H.Kim,et al.Operational paratmeters affecting the performance of a mediator-less microbial fuel cell[J].Biosens Bioelectron,2003,18:327-334.
    [24].I.Willner,E.Katz.Integrationof layered redoxproteinsand conductive supportsfor bioelectronic applications.J.Angew.Chem.Int.Ed.,2000,39:1 180.
    [25].D.El,S.Mohamed,T.Ohsaka.An extraordinary electrocatalytic reduction of oxygen on gold nanoparticles-electrode posited gold electrodes.J.Electrochemistry Communications,2002,(4)4:288.
    [26].D.H.Park,J.G.Zeikus.Electricity generation in microbial fuel cell using neutral red as an electronophore[J].Appl Environ Microbiol,2000,66(4):1 292-1 297.
    [27].F.W.Bruce,R.B.James,K.Esther,L.M.Larry.Chemical electrode.J.Am.Chem.Sot.,1975,97(12):3549-3550.
    [28].P.R.Moses,L.Wier,R.W.Murray.Chemically modified tin oxide electrode.Anal.Chem.1975,47(12):1882-1886.
    [29].林昌健.现代电化学与材料科学进展,电化学,1998,4(1),5-8.
    [30].0.E.Mouahid,A.Rakotondrainibe,P.Crouigneau,et al.A UV-visible study of the Eleetropolymerization of CoTAPP at Vitreous Carbon and Investigation of Its Catalytic Activity Towards the Electroreduction of Dioxygen.J.Electroanal.Chem.,1998,455: 209-222.
    [31].B.Persson.Achemically modified graphite electrode for electrocatalytic oxidation of reduced nieotinamide ademine dirudeotide based on aphenothiwine derivative,3-β-naphthoyl-toluidine blue 0.J.Electroanal.Chem.,1990,287:61.
    [32].陈廷,谢远武,董绍俊.染料修饰电极加速氧化还原蛋白质的电化学反应电化学,1995,1(2),125-135.
    [33].L.L.Miller,D.M.Van De.J Am.Chem.Soc.,1978,100:639;100:3223.
    [34].马伟,孙登明.聚合物薄膜修饰电极的制备及应用.淮北煤炭师范学院学报,2005,26(4):26-37.
    [35].彭图治,杨丽菊,李惠萍等.复合高分子膜修饰电极直接测定大脑内源性神经递质.高等学校化学学报,1995,16(12):1547-1551.
    [36].郑东红,郑军伟,陆天虹.N,N一双水杨醛合钻一全氟磺酸膜修饰电极的电化学催化研究.高等学校化学学报,1997,18(3):360-363.
    [37].杨庆华,叶宪曾,陶家询等.二茂铁单梭基衍生物/Nation修饰电极对多巴胺的电化学催化研究.北京大学学报(自然科学版),1999,35(6):738-744.
    [38].A.H.Schroeder,E B.Kaulhian,V.Patel,et al.Comparative behavior of electrodes coated with thin fihas of structurally related electro-active polymers.J Electroanal Chem.,1980,113(2):193-208.
    [39].A.S.Sarac,Y.Bardavit.Electro-grafting of copolylmer of poly[N-vinylcarbazole-co-styrene]and poly[N-vinylcarbazole- co- acrylonitrile]onto carbon fiber:cyclovoltammetric(CV),spectroscopic(UV-Vix,FT-IR-ATR),and morphological study(SEM).Progress in Organic Coatings,2004,49(2):85-94.
    [40].孙元喜.聚中性红薄膜修饰电极的研制及应用.武陵学刊,1998,19(6):33-36.
    [41].孙登明,陈宁生,冷艳芳.聚甲基蓝修饰电极的制备及对多巴胺的测定.分析实验室,2004,23(5):41-43.
    [42].杨秋霞,李国宝,王雪琳.聚核黄素膜修饰电极的制备及催化作用.济南大学学报(自然科学版),2002,16(3):222-224.
    [43].H.Wang,D.Li,Z.Y.Wu,et al.A reusable piezo-immunosensor with amplified sensitivity for ceruloPlasmin based on plasma-polymerized films.Talanta 2004,62:201-208.
    [44].Z.Y.Wu,Y.H.Yan,G.L.Shen,et al.Anovel approach of antibody immobilization based on n-butyl amine plasma-polymerized films for immunosensors.Analytiea Chimcal Acta,2000,412(1-2):29-35.
    [45].王美全,方惠群,史坚,陈洪渊.功能聚毗咯膜修饰电极的制备及其应用.分析化学,1993,21(4):474-479.
    [46].傅谊,马建标.聚苯胺膜修饰电极对儿茶酚及对苯二酚的催化氧化.分析测试学报,1998,17(5):43-46.
    [47].辛忠,黄德音.功能型聚合染料的合成及应用进展.现代化工,1994,(3):11-21.
    [48].R.Y.Qian(钱人元),Y.F.Li(李永航).Studies on conducting poly-pyrrole[J].Bull.NSFC,1996,3:212.
    [49].J.C.Liu,S.L.Mu.Synth Met.,1999,107:159
    [50].A.A.Karyakin,E.E.Karyakin,H.L.Sehmidt,Electroanalysis,1999,11:149
    [51].S.Y.Yoon,H.S.Noh,E.H.Kim,et al.The highly stable alcohol dehydrogenase of Thermomicrobium roseum:purification and molecular characterization[J].Comparative Biochemistry and Physiology Part B 2002,132:415-422.
    [52].J.Caballeria.First-pass metabolism of ethanol:Its roLe as a determinant of blood alcohol levels after drinking[J].Hepatogastroenterol.1992(Suppl I).39:62-66.
    [53].彭克勤,夏石头,李阳生.涝害对早中稻生理特性及产量的影响[J].湖南农业大学学报(自然科学版),2001,27(3):173-176.
    [54].姜华武,张祖新.淹水对玉米根系几种酶活性的影响.湖北农学院学[J],1999,19(3):219-211.
    [55].P.Geigenberger.Response of plant metabolism to too little oxygen[J].Current Opinion in Plant Biology 2003,6:247-256.
    [56].J.Speirs,R.Correll,P.Cain.Relationship between ADH activity,ripeness and softness in six tomato eulotivars[J].Seinetia hortieuture 2002,93:137-142.
    [57].R.Iwamoto,H.Kubota,T.Hosoki.CompLete Amino Acid Sequence and Characterization of the Reaction Mechanism of a Glucosamine-Induced Novel Alcohol Dehydrogenase from Agrobacterium radiobacter(tumefaciens)[J].Archives of Biochemistry and Biophysics.2002,398(2):203-212.
    [58].M.T.King.Thermodynamics of the reduction of NADP with 2-propanol catalyzed by an NADP-dependent alcohol dehydrogenase[J].Archives of Biochemistry and Biophysics 2003,410:280-286.
    [59].K.M.Madyastha,T.L.Guntraja.Purification and some of the properties of a novel secondary alcohol dehydrogenase from Alcaigenes eutrophus[J].Biochemical and biophysical research communications.1995,211:540-546.
    [60].千烟一郎[日](著),胡宝华(译),固定化酶(P1)河北人民出版社,1981.
    [61].Y.K.Cho.Biotechnol Bioeng.,1979,21:461-476.
    [62].R.B.Goodman.Analyt Bioehem,1982,120:387-393.
    [63].康杰.福建医学院学报,1996,30:55-57.
    [64].周晓云 主编.酶学原理与酶工程,中国轻工业出版社,2005,93.
    [1]. C. K. Chang, Jr. C. R. Fincher., Y. W. Park, et al. Electrical conductivity in doped polyacetylene [J]. Phys. Rev. Lett., 1977,39: 1 098.
    
    [2]. Q. B. Pei, Y. Yang, Y. F. Li. Conjugated Polymers and Their Electroluminescent Devices, in "Recent Developments of Oversea's Polymer Science", Chapter 9 (T. B. He, H. J. Hu, edited) [M]. Beijing: Chemical Industry Press, 1997, 140~164 (in Chinese).
    [3]. Y. F. Li (李永舫). Conducting Polymers and Their Applications : Topics from the 2000 Nobel Prize of Chemistry , in "Collection of the Speeches of Famous Specialists and Scholars inBeijing Normal University", Edited by L. Jiang, Z. F. Yang [M]. Beijing: People's Press, 2002, 233~244 (in Chinese).
    
    [4]. Y. F. Li (李永舫), Conducting polymers [J]. Progress in Chemistry, 2002,14: 207.
    [5]. Y F. Li and R. Y. Qian, Synth. Met., 1989,28: c127.
    [6]. D. E. Raymond, D. J. Harrison, J. Electroanal. Chem., 1993, 355: 115.
    [7]. A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasiri, W. G. Wu and S. L. Yaniger. Mol. Cryst. Liq. Cryst., 1985, 121: 173.
    [8]. W. S. Huang, B. D. Humphrey, A. G. MacDiarmid, J. Chem. Soc., Faraday Trans., 1986, 82: 2 385.
    
    [9]. G. Tourllion, F. Gamier. J. Phys. Chem., 1983, 87: 2 289.
    
    [10]. K. Yoshikawa, K. Yoshioka, A. Kitani and K.Sasaki. J. Electroanal. Chem., 1988,270:421.
    [11]. R. Y. Qian, J. J. Qiu. Electrochemically prepared polypyrrole from aqueous[J]. Polymer J., 1987, 19: 157.
    [12]. Y. Q. Shen, J. J. Qiu, R. Y. Qian, et al. Structure and amounts of counter ions in polypyrrole films prepared from aqueous solutions of sodium tosylate [J].Makromol.Chem., 1987, 188: 2 041.
    [13]. J. Yang, Y. F. Li. Effect of ultrasonic wave on the electropolymerization of pyrrole [J]. Chin. J. Polym. Sci., 1996, 14: 270.
    [14]. Y. T. Long, H. Y. Chen. Electrochemical regeneration of coenzyme NADH on a histidine modified silver electrode. [J]. Electroanal. Chem., 1997, 440: 239.
    [15]. H. M. Catherine, S. Evelyne, C. S. Toh, et al. Immobilisationof lactate dehydrogenaseon poly (aniline)-poly (acrylate) and poly(aniline) -poly- (vinyl sulphonate) films for use in a lactate biosensor. J. Anal. Chem. Acta 2002,453: 191.
    [16]. S. Evelyne, H. M. Catherine, C. S. Toh, et al. Oxidation of NADHproduced by a lactate dehydrogenase immobilised on poly (aniline)-/poly(anion) composite films. J. Electroanal Chem., 2002,253: 538-539.
    [17]. G. T. R. Palmore, H. Bertschy, S. H. Bergens, et al. A methanol/ dioxygen biofuel cell that uses NAD~+-dependent dehydrogenases as catalysts: application of an electro-enzymatic method to regenerate nicotinamide ade-nine dinucleotide at low overpotentials. J. Electroanal. Chem.,1998,443:155.
    [18]. M. H. Catherine, S. Evelyne, C. S. Toh, et al. The design of dehydrogenase enzymes for use in a biofuel cell: the role of genetically introduced peptide tags in enzyme immobilization on electrodesJ .Bioelectrochemistry 2002, 55: 21.
    [1].I.Willner,E.Katz.Angew.Chem.Int.Ed.,2000,39:1180-1186.
    [2].Y.V.Pardo,E.Katz,I.Willner,et al.Faraday Discuss,2000,356-360.
    [3].P.N.Bartlett,P.Tebbutt,R.G.Whitaker.Prog.React.Kinet.,1991,16:55-61.
    [4].F.A.Armstrong,H.A.O.Hill,N.J.Q.Walton.Rev.Biophys.,1985,18:261-269.
    [5].S.Tsujimura,B.Tatsumi,J.Ogawa,et al.Electroanal Chem.,2001,496:69-75.
    [6].I.Willner,G.Arad,E.Katz.Bioelectrochem,Bioenergy.1998,44:209-216
    [7].M.J.Cooney,E.Roschi,I.W.Marison,et al.Physiologic studies with the sulfate-reducing bacterium desulfovibrio desulfuricans.Evaluations for use in a biofuel cell[J].Enzyme Microb Technol,1996,18:358-365.
    [8].A.A.Karyakin,S.V.Morozov,E.E.Karyakina,et al.Hydrogen fuel electrode based on bioelectrocatalysis by the anzyme hydrogenase[J].Electrochem Commun,2002,4:417-420.
    [9].N.Mano,F.Mao,A.Heller.J.Electroanalytical Chemistry,2005,574(2):347-357.
    [10].F.Barriere,Y.Ferry,D.Rochefort,et al.Electrochemistry Communications,2004,6:237-241.
    [11].D.H.Chen,M.H.Liao.Preparation and Characterization of YADH-bound Magnetic Nanoparticles[J].Journal of Molecular Catalysis B:Enzymatic,2002,16:283-291.
    [12].吕跃刚,王际彰.酵母乙醇脱氢酶电极研究[J].微生物学通报,1997,24(4):218-219.
    [13].M.M.Bradford.Anal Biochem 1976,72:248.
    [14].X.X.Cao,p.Liang,X.Huang.A membrane electrode assembly typed microbia 1 fuel cell for electricity generation.[J]Acta Science Circum stantiae,2006,26(8):1 252-1 257.
    [1].X.X.Cao,p.Liang,X.Huang.A membrane electrode assembly typed microbia 1 fuel cell for electricity generation.[J]Acta Science Circum stantiae,2006,26(8):1 252-1 257.
    [2].C.M.Moore,S.D.Minteer,R.S.Martin.Lab on a Chip.2005,5(2):218-225.
    [3].周晓云 主编.酶学原理与酶工程,中国轻工业出版社,2005,93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700