用户名: 密码: 验证码:
微生物燃料电池及介孔磷酸锆阳极材料的电化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前污水处理仍是一种消耗大量电能的处理技术,因此解决污水处理工程中的耗能问题,降低治污成本,对于广大污染严重的发展中国家来说尤为重要。微生物燃料电池能降低污水COD并且能产生电能,因而成为环境与新能源方面研究的热点。但由于产电性能低,电池内阻大以及受结构设计的限制使得微生物燃料电池不能适应大规模的污水处理。
     制约微生物燃料电池输出功率的最大因素是发生在阳极上的电子传递过程。在微生物燃料电池最新的研究中,采用对微生物酶分子的蛋白质外壳进行修饰,将电极延伸至酶分子活性中心附近,以缩短电子传递的距离。随着纳米科学和技术的发展,研究者们发现一些纳米材料在微生物或酶的强化稳定和活化方面表现出了很大的潜力。磷酸锆(ZrP)类材料是近年逐步发展起来的一类多功能材料,具有良好的生物相容性,但磷酸锆的导电性能差限制了其作为阳极材料在燃料电池中的应用。
     本论文研究的单室空气阴极微生物燃料电池(ACMFC),以石墨毡为阳极,Pt/C(铂/碳纸)为阴极,以空气中的氧为最终电子受体,简化了微生物燃料电池的装置,降低了电池内阻;阳极室采用开放式,不对阳极室通厌氧气体,降低了运行成本;论文研究了装置内流体条件、葡萄糖底物浓度等条件对电池产电性能的影响并评价污水处理效果。测试结果表明最佳水流流速为15.0 mL/min、最适葡萄糖底物的浓度为1.0 g/L,电池的最大功率为90.2 mW/m2。电池运行48 h,对模拟废水的COD去除率可达到81.6 %。
     论文第三章分别以表面活性剂及XC-72为模板,磷酸为沉淀剂,通过调节磷酸的量采用水热法合成不同形貌的磷酸锆及ZrP/XC-72复合物。测试结果表明当磷酸的量大于2.4 mol/L时,可以合成厚度为5 nm~10 nm,大小200 nm~300 nm的六方形片状磷酸锆。当磷酸的量为1.2 mol/L时,可以合成具有3 nm介孔结构的无定形磷酸锆。对比片状磷酸锆、介孔磷酸锆及ZrP/XC-72复合物负载葡萄糖氧化酶的电化学性能,测试结果得到电子传递速率分别为1.3 s-1,1.6 s-1,2.0 s-1(扫速为100 mV/s),表明介孔结构比片状结构负载酶的效果好,而ZrP/XC-72复合物负载酶能明显提高电子传递速率。三种材料制备的电极表观负载酶的浓度分别为1.4×10-10 mol/cm2、6.6×10-11 mol/cm2、1.8×10-10 mol/cm2(扫速为100 mV/s),比文献报道的大1~2个数量级。
Currently, sewage treatment technology is a process of exhausting a lot of electrical energy. Solving the energy consumption issue and reducing the anti-pollution cost are especially useful for the developing countries. Microbial fuel cell (MFC) can generate electricity while treating wastewater, so it attracts more attention as a new type of energy recovery technology. The major problems faced by MFC towards commercialization are the high internal resistance and the limitation in the structures designing to harvest more power.
     The biggest factor for energy output of battery is electron transfer in anode. In the current study, the modified microbial protein shell can make the electrode extend to the enzyme activity center. The distance of electron transfer is shortened greatly. With the development of nano science and technology, finding some nanomaterials have great potential in strengthening enzymes’stability and activation. Zirconium phosphate is gradually developed in recent years as a kind of multifunctional material. It has good biocompatibility, but the low conductivity limits zirconium phosphate’s application as the anode in fuel cells.
     In this paper, we designed an air cathode MFC; Graphite felt and Pt/C were used for anode and cathode, respectively and oxygen in air was the final electron acceptor. Those designs had simplified the MFC devices and reduced internal resistance of battery. An open anode chamber reduced the operation cost. The energy output of MFC at different conditions was compared such as flow rate, concentration of glucose and so on. The results demonstrated that the best flow rate was 15.0 mL/min and optimal concentration of glucose was 1.0 g/L, while the great power output of battery was 90.2 mW/m2. The COD removal rate could reach 81.6 % for working 48 h.
     In chapter three of this paper, adjusting the volume of phosphoric acid could prepare the zirconium phosphate with different morphologies in hydrothermal synthesis. In the process, the surfactant was a template and phosphoric acid was the precipitation agent. Carbon was a hard template. Test results showed that when the amount of phosphate was more than 2.4 mol/L, we could make zirconium phosphate to be hexagon nano piece with the size of 200 nm~300 nm and thickness of 5 nm~ 10 nm. When the amount of phosphate was 1.2 mol/L, zirconium phosphate was mesoporous structure materials with bore of 3 nm. Using XC-72 as a template ZrP/XC-72 complex was synthesized. Their abilities of immobilizing GOD were compared. The Ks were 1.3 s-1,1.6 s-1,2.0 s-1 for platelike ZrP, mesoporous ZrP and ZrP/XC-72 respectively. That was the electronic transfer rate of zirconium phosphate with mesoporous structure was faster than platelike zirconium phosphate and ZrP/XC-72 could improve the electronic transfer rate of an electrode. The amount of enzyme loading on the surface of electrode was 1.4×10-10 mol/cm2, 6.6×10-11 mol/cm2 and 1.8×10-10 mol/cm2 respectively. Those were 1~2 orders of magnitude better than that reported in the literature.
引文
1 Clauwaert P, Ha DVD, Boon N, et al. Open Air Biocathode Enables Effective Electricity Generation with Microbial Fuel Cells. Environmental Science & Technology. 2007, 41: 7564~7569
    2 Catala T, Fana YZ, Li KC, et al. Effects of Furan Derivatives and Phenolic Compounds on Electricity Generation in Microbial Fuel Cells. Journal of Power Sources. 2008, 180: 162~166
    3 Mohan SV, Mohanakrishna G, Sarma PN. Composite Vegetable Waste as Renewable Resource for Bioelectricity Generation through Non-Catalyzed Open-Air Cathode Microbial Fuel Cell. Biochemical Engineering Journal. 2010, 51: 32~39
    4曹效鑫,梁鹏,黄霞.“三合一”微生物燃料电池的产电特性研究.环境科学学报, 2006, 26 (8): 1252~1257
    5王万成,陶冠红.微生物燃料电池运行条件的优化.环境化学. 2008, 4(27): 527~530
    6崔康平,金松.微生物燃料电池阳极室内电子受体竞争研究.环境科学研究. 2010, 23 (1): 90~93
    7 Farneth WE, D'amore MB. Encapsulated Laccase Electrodesfor Fuel Cell Cathodes. Journal of Electroanalytical Chemistry. 2005, 581(2): 197~205
    8 Kong XY, Sun YM, Yuan ZH, et al. Effect of Cathode Electron-Receiver on the Performance of Microbial Fuel Cells. International Conference on Electrical Engineering. Electronics and Automatics. Bejaia Algeria Slovenia: International Journal of Hydrogen Energy. 2010: 7224~7227
    9 Zhang T, Zeng YL, Chen SL, et al. Improved Performances of E.coli-Catalyzed Microbial Fuel Cells with Composite Graphite/PTFE Anodes. Electrochemistry Communications. 2007, 9: 349~353
    10 Mohan SV, Mohanakrishna G, Velvizhi G, et al. Bio-catalyzed Electrochemical Treatment of real Field Dairy Wastewater with Simultaneous Power Generation. Biochemical Engineering Journal. 2010, 51: 32~39
    11 Cheng SA, Liu H, Logan BE. Increased Performance of Single-Chamber Microbial Fuel Cells Using an Improved Cathode Structure. Electrochemistry Communications. 2006, 8: 489~494
    12 Lee JY, Shin HY, Kang SW, et al. Use of Bioelectrode Containing DNA-Wrapped Single-Walled Carbon Nanotubes for Enzymebased Biofuel Cell. Journal of Power Sources. 2010, 195(3): 750~755
    13 Habrioux A, Servat K, Tingry S, et al. Enhancement of the Performances of a Single Concentric Gglucose/O2 Biofuel Cell by Combination of Bilirubin Oxidase/Nafion Cathode and Au-Pt Anode. Electrochemistry Communications. 2009, 11(1): 111~113
    14陈玲.生物传感器的研究进展综述.传感器与微系统. 2006, 09: 4~7
    15 Usrey ML, Strano MS. Controlling Single-Walled Carbon Nanotube Surface Adsroption with Covalent and Noncovalent Functionlization. Journal of Physics Chemistry C. 2009, 113(28): 12443~12453
    16 Morozan A, Stamatin L, Nastase F, et a1. The Biocompatibility Microorganisms-Carbon Nanostructures for Applications in Microbial Fuel Cells. Physica Status Solidi (A). 2007, 204(6): 1797~1803
    17胡贵权,管文军,李昱等.纳米碳管葡萄糖生物传感器的研究.浙江大学学报(工学版), 2005, 05(39): 668~671
    18 Qiao Y, Li CM, Bao SJ, et a1. Carbon Nanotube-Polyaniline Composite as Anode Material for Microbial Fuel Cells. Journal of Power Sources. 2007, 170(1): 79~84
    19 Kim JR, Min B, Logan BE. Evaluation of Procedures to Aecli-Mate a Microbial Fuel Cell for Electricity Production. Applied Microbiology Biotechnology. 2005, 68 (1):23~30
    20康永,柴秀娟,纳米材料的性能研究进展.合成材料老化与应用. 2010, 4(39) : 33~39
    21谢兆雄,韩锡光,谢水奋等.金属氧化物纳米晶体的表面结构控制及功能调控的研究进展.厦门大学学报(自然科学版). 2011, 2(50) : 305~310
    22 Tian N, Zhou ZY, Yu NF, et al. Direct Electro Deposition of Tet Rahexahedral Pd Nanocrystals With High Index Facets and High Catalytic Activity for Ethanol Electro Oxidation. Journal of the American Chemical Society. 2010, 132: 7580~7581
    23郭玉明,王玲玲,张洁等.纳米材料在生物学及医学领域的应用.化学通报. 2011, 2(74): 105~116
    24陈华艳.利用角蛋白制备功能材料的研究.天津:天津大学. 2007
    25 Zhen HE, Zhou XT, Wang L. Development of Advanced Functional Materials in MFCs. Journal of Shenyang Chemical University. 2010, 2(4): 184~191
    26罗江山.纳米金属功能材料研究进展.中国工程物理研究院科技年报. 2010
    27刘超,成国祥.模板法制备介孔材料的研究进展.离子交换与吸附. 2003, 19(4): 374~384
    28任楠,唐颐.多级有序沸石材料的模板法组装.石油化工. 2005, 34(5): 405~ 411
    29陈岗庆,李奠础,李瑞丰.介孔材料合成的研究.山西化工. 2006. 4(26): 68~71
    30董秀芳,曹端林,李裕等.软模板法合成有序介孔材料的研究进展.化学工程师. 2010, 05: 43~49
    31冯英俊,何文,刘建安.有序介孔磷酸锆的研究进展.化工科技. 2006, 14(6): 64~68
    32 Jung JH, Sohn HJ. Preparation and Characterization of Mesoporous Zirconium Phosphates from Alkyl Phosphates Microporous and Mesoporous Materials. Journal of Material Chemistry. 2007, 106: 49~55
    33 Jimenez JJ, Torres PM, Pastor PO, et al. Surfactant-Assisted Synthesis of a Mesoporous Form of Zirconium Phosphate with Acidic Properties. Advanced Materials. 1998, 10 (10): 812~815
    34 Odobel F, Bujoli B, and Massiot D. Zirconium Phosphonate Frameworks Covalently Pillared with a Bipyridine Moiety. Chemistry of Materials. 2001, 13: 163~173
    35 Clearfield A, Costantino U, Alberti G, et al. Comprehensive Supramolecular Chemistry Elsevier Amsterdam. 1996, 7: 107~150
    36 Dragone R, Galli P, Massucci MAA, Trombetta MJ. A Simple Proton To Enhance The Recycling Properties of Amphiphilic Rhodium Hydroformycation Catalysts. Catalyst Communication. 2003, 13: 834~840
    37 Yaroslavtsev AB, Nikonenko VV, et al. Ion Transfer in Ion-exchange and Membrane Material. Solid State Ionics. 2003, 72: 438~470
    38薛艳,田进军.磷酸锆化合物合成研究进展.化工中间体. 2007 , 09: 33~37
    39冯英俊.多形貌磷酸锆的有机化合物导向合成研究.山东:山东轻工业学院. 2007
    40李颖,刘可,华伟明等.苯磺酸修饰的层柱磷酸锆的制备及催化应用.高等学校化学学报. 2010, 4(32): 216~220
    41 Jing DW and Guo LJ. Efficient Hydrogen Production by a Composite CdS/Mesoporous Zirconium Titanium Phosphate Photocatalyst under Visible Light. Journal of Physical Chemistry C. 2007, 111: 13437~13441
    42 Kapoor MP, Inagaki SJ, and Yoshida H. Novel Zirconium-Titanium Phosphates Mesoporous Materials for Hydrogen Production by Photoinduced Water Splitting. Journal of Physical Chemistry B. 2005, 109, 9231~9238
    43 Sun Y, Afanasiev P, Vrinat M, et al. Porous Zirconium Phosphates Prepared by Surfactant-Assisted Precipitation. Journal of Material Chemistry. 2000, 10: 2320~2324
    44万谦,肖国光,杨平华等.基于碳纳米管修饰电极的酶生物传感器研究进展.广东化工. 2010, 201(37): 112~114
    45聂华贵.新型电化学生物传感技术的研究及纳米材料在其中的应用.长沙:湖南大学. 2009
    46孙冬梅,蔡称心,邢巍等.葡萄糖氧化酶在活性炭上的固定及直接电化学.无机化学学报. 2005, 3: 405~408
    47 Duteanu N, Erable B, Kumar SMS, et al. Effect of Chemically Modified Vulcan XC-72 on the Performance of Air-Breathing Cathode in a Single-Chamber Microbial Fuel Cell. Bioresource Technology. 2010, 101: 5250~5255
    48温青,刘智敏,陈野.空气阴极生物燃料电池电化学性能.物理化学学报. 2008, 24(6): 1063~1067
    49卢娜,周顺桂,张锦涛等.环境科学.利用玉米浸泡液产电的微生物燃料电池研究. 2009, 2(30): 563~567
    50 Cheng SA, Liu H, Logan BE. Increased Performance of Single-Chamber Microbial Fuel Cells Using an Improved Cathode Structure. Electrochemistry Communications. 2006, 8: 489~494
    51赵书菊,岳学海,郭庆杰等.厌氧流化床单室无膜微生物燃料电池性能研究.环境化学. 2010, 29(4): 700~704
    52 Li MC, Zhang CP, Liu GL, et al. Power Generation from Veratryl Alcohol and Microbial Community Analysis in the Microbial Fuel Cell. Journal of Environmental Science and Health Part A. 2010, 45: 1195~1206
    53 Cao YQ, Hu YY, Sun J, et al. Explore Various Co-Substrates for Simultaneous Electricity Generation and Congo Red Degradation in Air-Cathode Single-Chamber Microbial Fuel Cell. Bioelectrochemistry. 2010, 79: 71~76
    54汪家权,夏雪兰,陈少华等.两类微生物燃料电池治理硝酸盐废水的实验研究.环境科学学报. 2011, 2 (31): 254~259
    55 Lu N, Zhou SG, Zhuang L, et al. Electricity Generation from Starch Processing Wastewater Using Microbial Fuel Cell Technology. Biochemical Engineering Journal. 2009, 43(3), 246~251
    56尤世界.微生物燃料电池处理有机废水过程中的产电特性研究.哈尔滨:哈尔滨工业大学, 2008
    57张金娜,赵庆良,尤世界等.生物阴极微生物燃料电池不同阴极材料产电特性.高等学校化学学报. 2010, 1(31): 162~166
    58温青,孙茜,赵立新等.微生物燃料电池对废水中对硝基苯酚的去除.现代化工. 2009, 4(29): 40~42
    59 Xia CR, Liu ML. Microstructures, Conductivities and Electro-Chemical Properties of Ce0.9Gd0.1O2 and GDC-Ni Anodes for Low-Temperature SOFCs. Solid State Ionics. 2002, (152/153): 423~430
    60范宝安,刘祥丽,朱庆山.交流阻抗谱法研究燃料电池的极化阻力.电源技术. 2009, 4(33): 0251~0253
    61电化学阻抗谱的应用及其解析方法.《百度文库》. http://wenku.baidu.com/view/bc5d37bd960590c69ec37674.html
    62温青,吴英,王贵领等.双极室联合处理啤酒废水的微生物燃料电池.高等学校化学学报. 2010, 6(31): 1231~1234
    63 Reddy CM, Eglinton TI, Hounshell A, et al. The West Falmouth Oil Spill after Thirty Years: The Persistence of Petroleum Hydrocarbons in Marsh Sediments. Environmental Science & Technology. 2002, 36(22): 4754~4760
    64 Rogers SW, Ong SK, Kjartanson BH, et al. Natural Attenuation of Polycyclic Aromatic Hydrocarbon-Contaminated Sites: Review Practice Periodical of Hazardous, Toxic and Radioactive Waste Management. 2002, 6(3): 141~155
    65张永娟,姜颖,焦安英.高效双室微生物燃料电池的运行特性.上海化工. 2011, 3(36): 10~13
    66 Kang M, Yi SH, Lee HI, et al. Reversible Replication between Ordered Mesoporous Silica and Mesoporous Carbon. Chemical Communications. 2002, 17: 1944~1945
    67 Al-Hakimi AM,尚亚卓,刘洪来.烷基三甲基溴化铵-十二烷基硫酸钠混合体系双水相性质.华东理工大学学报(自然科学版). 2009, 5(38): 728~733
    68陈丰,陈志刚,李霞章等.以碳球为模板合成氧化铈纳米空心球.硅酸盐学报. 2011, 39(3): 397~402
    69 Zheng X, Ma XB, Ma YY, et al. Zirconium Phosphonates-Supported Chiral Mn (III) Salen Complexes for the Asymmetric Epoxidation of Unfunctionalized Olefins. Catalysis Communications. 2009, 10: 1261~1266
    70杜以波,李峰,何静.片状化合物α-磷酸锆的制备和表征.无机化学学报. 1998, 14(1): 79~83
    71 Liu W, Zhao XS, Ikegawc T, et al. Two Step Synthesis and Characterization of Thermally Stable Hexagonal Zirconium Phosphate. Materials Letters. 2004, 58: 3328~3333
    72马国仙,仲慧,陆天虹等.葡萄糖氧化酶在炭黑上的固定及直接电化学.物理化学学报. 2007, 23(7): 1053~1058
    73郭兴梅,刘旭光,窦涛.酸氧化处理对碳球表面基团含量的影响.现代化工. 2009, 9(29): 177~179
    74余承忠.嵌段共聚物导向下新型介孔分子筛材料的合成与表征.上海:复旦大学. 2002
    75 Karlsson M, Andersson C. Conductive Mesocellular Silica–Carbon Nanocomposite Foamsfor Immobilization, Direct Electrochemistry and Biosensing of Proteins. Advanced Functional Materials. 2008, 18: 59 ~599
    76唐嘉伟.新型介孔材料的设计合成及其功能研究.上海.复旦大学. 2008
    77卢惠娟,陈冲,郭宏涛等.无探针紫外光谱法测定CTAB的第二临界胶束浓度.化学学报. 2004, 24(64): 2437~2441

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700