用户名: 密码: 验证码:
应用蛋白质组学方法检测系统性红斑狼疮的生物学标记物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:神经精神狼疮脑脊液蛋白质指纹图谱及分析
     目的筛选神经精神狼疮(NPSLE)脑脊液生物标志物,并建立相应NPSLE疾病的树形分类模型。材料和方法用MALDI-TOF-MS联合WCX磁珠生成脑脊液蛋白质谱,比较NPSLE治疗前组(39例)与无神经精神症状的系统性红斑狼疮组(non-NPSLE,10例)之间和脊柱侧凸组(17例)的差异蛋白峰;建立NPSLE的树形分类模型,并用其他中枢神经系统受累疾病(伴神经精神症状的自身免疫性疾病5例,腰椎间盘突出13例)进行盲法检验。比较26例NPSLE患者治疗前后脑脊液蛋白质谱的差异蛋白峰。结果NPSLE治疗前组与非精神神经狼疮组(脊柱侧凸和non-NPSLE)脑脊液蛋白质谱共有25个差异峰,用其中质荷比为3237,4312,4514,4550,6688,6378,6822,8349,8595,11744和16230差异峰建立NPSLE树形分类模型,其对源数据的敏感性92.1%,特异性100%,盲法检验显示该模型分类NPSLE的特异性为85.7%。26例NPSLE患者治疗前后脑脊液质谱有18个差异峰,其中质荷比为4450、6822和8595蛋白峰显著降低,而在一例难治性NPSLE中,这三个差异峰并无变化。结论MALDI-TOF-MS联合WCX磁珠可用于脑脊液蛋白质组研究,发现了多个潜在脑脊液生物标志物可能用于NPSLE检测、诊断和病情评估,建立了敏感性及特异性均好的NPSLE树形分类模型。
     第二部分:神经精神狼疮脑脊液蛋白质指纹图谱差异蛋白峰鉴定
     研究背景及目的泛素蛋白(ubiquitin)是一种大多数真核细胞中76氨基酸蛋白,主要功能是标记需要分解掉的蛋白质,使其被水解。多项研究鉴定脑脊液SELDI-TOF-MS质谱的质荷比为8.6kda蛋白峰对应泛素蛋白(ubiquitin)。试验拟鉴定脑脊液质谱质荷比8.6kda的差异蛋白峰为ubiquitin蛋白。材料和方法使用兔抗人ubiquitin抗体进行脑脊液免疫沉淀后,分别运用MALDI-TOF-MS联合WCX磁珠法和免疫印迹法检测免疫沉淀反应后上清及沉淀蛋白。结果ubiquitin抗体免疫沉淀后上清蛋白质谱中质荷比8.6kda的蛋白峰强度显著下降;NPSLE患者CSF原液在免疫印迹中出现分子量介于6kd和14kd的目的条带,在加入ubiquitin抗体免疫沉淀后上清没有发现介于6kd和14kd的目的条带;抗ubiquitin的酶联免疫吸附测定(ELISA)检测NPSLE脑脊液中ubiquitin浓度较无神经精神症状的SLE组明显升高。结论脑脊液蛋白质谱的质荷比8.6kda蛋白峰对应ubiquitin蛋白,神经精神ubiquitin蛋白,神经精神狼疮(NPSLE)患者脑脊液泛素蛋白(ubiquitin)水平升高,提示泛素蛋白(ubiquitin)可能成为NPSLE的生物标志物。
     第三部分活动性红斑狼疮甲基强的松龙冲击前后的蛋白质指纹图谱及分析
     目的筛选活动性系统性红斑狼疮(SLE)甲基强的松龙冲击治疗前后血清生物标志物,并建立相应SLE甲基强的松龙冲击前后的树形分类模型。材料和方法用MALDI-TOF-MS联合WCX磁珠生成血清蛋白质谱,比较(38例)冲击治疗前后相关的血清的差异蛋白峰。结果冲击治疗前有效组和无效组蛋白质谱共有8个差异峰,用其中质荷比为4492、9198、5713、8469、10751、3456、9059差异峰建立SLE冲击治疗前的树形分类模型,其对数据源的敏感性为92.6%、特异性为100.0%;冲击治疗十四天后有效组和无效组蛋白质谱共有25个差异峰,用其中5261、5350、5939、6001、6122、7217、7997、8891、10901等差异峰建立SLE冲击治疗十四天后关于治疗有效组和无效组的树形分类模型,其对数据源的敏感性为96.3%、特异性为100.0%;SLE治疗前组(38例)和后组(38例)蛋白质谱共有18个差异峰,用其中质荷比为6958、27186、22844、6743、11404和3054差异峰建立SLE甲强冲击前后树形分类模型,其对源数据的敏感性84.2%,特异性89.5%;结论MALDI-TOF-MS联合WCX磁珠可用于血清蛋白质组研究,发现了多个潜在血清生物标志物可能用于SLE诊断、激素冲击治疗反应判断和进行SLE活动性评估,建立了敏感性及特异性均好的SLE树形分类模型。
PART one:Proteomic profiling of cerebrospinal fluid identifies biomarkers for neuropsychiatric systemic lupus erythematosus
     Objective:To identify neuropsychiatric systemic lupus erythematosus (NPSLE) specific cerebrospinal fluid (CSF) biomarkers and construct a decision tree model for NPSLE classification. Methods:we compared the proteomic profile of CSF from39patients with neuropsychiatric systemic lupus erythematosus (NPSLE),10SLE patients without neuropsychiatric symptoms (non-NPSLE) and17patients with scoliosis, using matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) combined with weak cationic exchange magnetic beads. We developed a decision tree model for NPSLE classification with biomarker patterns software, and tested the model with other independent CNS diseases (18samples). Results:We identified25mass-to-charge (m/z) peaks with statistically significant (p<0.05) differences between NPSLE (before treatment) patients and control group1(non-NPSLE). Of them, the m/z peaks at3237,4312,4514,4550,6688,6378,6822,8349,8595,11744and16230were used to construct a decision tree model to distinguish NPSLE from non-NPSLE patients with a sensitivity of92.1%and a specificity of100.0%based on learning data, with a specificity of85.7%based on external blind testing data. There were18m/z peaks with statistically significant (p<0.05) differences between before and after treatment in the same group of NPSLE patients. Of them4550,6822and8595decreased, while in a refractory case, they did not decrease. Conclusion: Our data suggested a potential application of MALDI-TOF-MS combined with weak cationic exchange magnetic beads to profile CSF proteome, several potential CSF biomarkers were indicated to detect, diagnose and monitor NPSLE, a decision tree model for NPSLE classification was set up with high sensitivity and specificity.
     PART two:Identifying one protein in the proteomic signature as ubiquitin
     Background and Objective:Ubiquitin is a protein containing76amino acid protein in eukaryotic cells. The main function is to mark proteins need to be broken down,then be hydrolyzed. A number of studies identified CSF by MALDI-TOF-MS that mass to charge ratio8.6kda protein peak corresponding to the ubiquitin. We undertook this study to prove the presence of m/z peak of8.6kda in CSF profile as ubiquitin.
     Methods:CSF was immunoprecipitated with rabbit anti(Hu)-ubiquitin antibody, after immunoprecipitation, the proteins of supernatant and agarose beads were detected by
     MALDI-TOF-MS and western blot, respectively. Results:The m/z peak of8.6kda in CSF profile was validated to be ubiquitin protein by both immunoprecipitation combining with MALDI-TOF-MS&WCX magnetic beads, immunoprecipitation combining with western blot and anti-ubiquitin ELISA. Conclusion:CSF protein mass spectra peaks corresponding to charge ratio8.6kda protein ubiquitin protein, neuropsychiatric systemic lupus erythematosus (NPSLE) patients with cerebrospinal fluid ubiquitin protein (ubiquitin) elevated, suggesting that the ubiquitin protein (ubiquitin) may be biomarkers of NPSLE。
     PART three:Proteomics profiles of Methylprednisolone Pulse Therapy in the treatment of Systemic Lupus Erythematosus flares
     Objective:To identify serum biomarkers of systemic lupus erythematosus (SLE) before and after methylprednisolone pulse therapy and construct a decision tree model for NPSLE classification. Methods:we compared the proteomic profile of serum from38patients with SLE flares before and14days after methylprednisolone pulse therapy, using matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) combined with weak cationic exchange magnetic beads. Results:Before the treatment, there were8discriminating peaks between effective group and ineffective group, and we used them to construct a decision tree model to distinguish effective from ineffective patients with a sensitivity of92.6%and a specificity of100%based on learning data. After14days of there were25discriminating peaks between effective group and ineffective group, and we used them to construct a decision tree model to distinguish effective from ineffective patients with a sensitivity of96.3%and a specificity of100%based on learning data. And we found18discriminating peaks between group before treatment and group after treatment, and construct a decision tree model to distinguish effective from ineffective patients with a sensitivity of84.2%and a specificity of89.5%based on learning data. Conclusion:Our data suggested a potential application of MALDI-TOF-MS combined with weak cationic exchange magnetic beads to profile serum proteome, several potential biomarkers were indicated to diagnosis and management of SLE, a decision tree model for NPSLE classification was set up with high sensitivity and specificity.
引文
1. Castellino G, Govoni M, Giacuzzo S, et al. Optimizing clinical monitoring of central nervous system involvement in SLE. Autoimmun Rev,2008,7:297-304.
    2. Ford H, Waterhouse E, Wallace DJ, et al. The American College of Rheumatology Nomenclature and Case Definition for Neuropsychiatric Lupus Syndromes. Arthritis & Rheumatism,1999,42: 599-608.
    3. Hanly, J. G. et al. Prospective study of neuropsychiatric events in systemic lupus erythematosus. J. Rheumatol.36,1449-1459 (2009)
    3. Zhou H, Zhang F, Tian X, et al. Clinical features and outcome of neuropsychiatric lupus in Chinese: analysis of 240 hospitalized patients. Lupus,2008,17:93-99.
    [1]黄敏慧等,吉林大学第二医院眼科,蛋白质组学在脑脊液中的研究新进展,2008
    [2]Zheng PP, Luider TM, Pieters R. Identification of tumor-related proteins by proteomic analysis of cerebrospinal fluid from patients with primary brain tumors [J].Neuropathol Exp Neurol,2003, 62(8):855
    [3]Inga Zerr, Monika Bodemer, Markus Otto. Diagnosis of Creutzfeldt-Jakob disease by two-dimensional gel eletrophoresis of cerebrospinal fluid. The Lancet,1996,348(9031):846.
    [4]Choe LH, Green A, Knight RS. Apolipoprotein E and other cerebrospinal fluid proteins differentiate ante mortem variant Creutzfeldt-Jakob disease from ante mortem sporadic Creutzfeldt-Jakob disease [J].Electrophoresis,2002,23(14):2242.
    [5]Simonsen et al, Novel panel of cerebrospinal fluid biomarkers for the prediction of progression to Alzheimer dementia in patients with mild cognitive impairment. Arch Neurol,2007,64.3.366.
    [6]张春梅,于子龙,丛斌.脑脊液微量白蛋白与血清白蛋白比值的临床意义.临床军医杂志,2008,36.
    [7]刘玉华,张素平,邓婉青.三种脑部炎症病变脑脊液铁蛋白、脑脊液白蛋白/血清白蛋白比值和免疫球蛋白的变化及意义.临床荟萃,2004,19.
    [8]Weisner B, Bernhardt W. Protein fractions of lumbar, cisternal, and ventricular cerebrospinal fluid. J Neurol Sci,1978,37:205-214.
    [9]Reiber H. Dynamics of brain-derived proteins in cerebrospinal fluid. Clin Chim Acta,2001,310: 173-186.
    [10]Zougman A, Pilch B, Podtelejnikov A, et al. Integrated analysis of the cerebrospinal fluid peptidome and proteome. J Proteome Res,2007,7.386-399.
    [11]Chodobski A, Szmydynger-Chodobska J. Choroid plexus:target for polypeptides and site of their synthesis. Microsc Res Tech,2001,52:65-82.
    [12]Kusuhara H, Sugiyama Y. Efflux transport systems for organic anions and cations at the blood-CSF barrier.56,2004, Adv Drug Deliv Rev:1741-1763.
    [13]Smith D, Johanson C, Keep R. Peptide and peptide analog transport systems at the blood-CSF barrier. Adv Drug Deliv Rev,2004,56:1765-1791.
    [14]Bigio MD. The ependyma:a protective barrier between brain and cerebrospinal fluid. Glia,1995, 14:1-13.
    [15]Guerreiro N, Gomez-Mancilla B, Charmont S. Optimization and evaluation of surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry for protein profiling of cerebrospinal fluid. Proteome Sci,2006,4:7.
    [16]Guo X, Chau W, Chan Y, et al. Relative anterior spinal overgrowth in adolescent idiopathic scoliosis--result of disproportionate endochondral-membranous bone growth? Summary of an electronic focus group debate of the IBSE. Eur Spine J,2005,14:862-873.
    [17]Burwell R, Dangerfield P, Freeman B, et al. Etiologic theories of idiopathic scoliosis:the breaking of bilateral symmetry in relation to left-right asymmetry of internal organs, right thoracic adolescent idiopathic scoliosis (AIS) and vertebrate evolution. Stud Health Technol Inform,2006,123: 385-390.
    [18]马兆龙,邱勇,王斌,et al.先天性脊柱侧凸患者中的脊髓畸形和脊椎畸形.中国脊柱脊髓杂志,2007,17.
    [19]Steinacker et al, Ubiquitin as potential cerebrospinal fluid marker of Creutzfeldt-Jakob disease. Proteomics,2010,10,81-89
    [20]Boschetti E, Righetti PG. Hexapeptide combinatorial ligand libraries:the march for the detection of the low-abundance proteome continues. Biotechniques,2008,44:663-665.
    [21]Boschetti E, Righetti PG. The ProteoMiner in the proteomic arena:a non-depleting tool for discovering low-abundance species. J Proteomics,2008,71.255-264.
    [22]Sihlbom C, Kanmert I, Bahr H, et al. Evaluation of the combination of bead technology with MALDI-TOF-MS and 2-D DIGE for detection of plasma proteins. J Proteome Res,2008,7: 4191-4198.
    [23]Li YZ, Hu CJ, Leng XM, et al. Promising diagnostic biomarkers for primary biliary cirrhosis identified with magnetic beads and MALDI-TOF-MS. Anat Rec (Hoboken),2009,292:455-460.
    1. Rock KL.Gramm C,Rothstein L,et al.Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell.1994;78:761-771.
    2. Cascio P,Call M,Petre BM,Walz T,Goldberg AL.Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes.EMBO J.2002;21:2636-2645.
    3. Cascio P,Hilton C,Kisselev AF,Rock KL,Goldberg AL.26S proteasomes and immune proteasomes produce mainly N-extended versions of an antigenic peptide.EMBO J.2001;20:2357-2366.
    4. Saric T,Chang SC,Hattori A,et al.An IFN-y-induced aminopeptidase in the ER,ERAP1,trims precursors to MHC class I-presented peptides.Nat Immunol.2002;3:1169-1176.
    5. Mo XY,Cascio P,Lemerise K,Goldberg AL,Rock K.Distinct proteolytic processes generate the C and N termini of MHC class I-binding peptides.J Immunol.1999;163:5851-5859.
    6.Strehl B,Seifert U,Kruger E,Heink S,Kuckelkorn U,Kloetzel PM.Interferon-y,the functional plasticity of the ubiquitin-proteasome system,and MHC class I antigen processing. Immunol Rev.2005; 207:19-30.
    7.Goldberg AL,Cascio P,Saric T,Rock KL.The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides.Mol Immunol.2002;39:147-164.
    8.York IA,Goldberg AL,Mo XY,Rock KL.Proteolysis and classI major histocompatibility complex antigen presentation. Immunol Rev.1999; 172:49-66.
    9. Saveanu L, Carroll O, Hassainya Y, van Endert P.Complexity, contradictions,and conundrums: studying post-proteasomal proteolysis in HLA class I antigen presentation.Immunol Rev.2005; 207:42-59.
    10. Kaneda K, Takasaki Y, Takeuchi K, et al.Autoimmune response to proteins of proliferating cell nuclear antigen multiprotein complexes in patients with connective tissue diseases.J Rheumatol. 2004;31:2142-2150.
    11.Matsushita M,Takasaki Y,Takeuchi K,Yamada H,Matsudaira R,Hashimoto H.Autoimmune response to proteasome activator 28ain patients with connective tissue diseases. J Rheumatol.2004; 31: 252-259.
    12. Cavazzana I, Franceschini F, Vassalini C, et al.Clinical and serological features of 35 patients with anti-Ki autoantibodies. Lupus.2005; 14:837-841.
    13. Mountz JD.Significance of increased circulating proteasome in autoimmune disease.J Rheumatol.2002; 29:2027-2030.
    14. Egerer K,Kuckelkorn U,Rudolph PE,et al.Circulating proteasomes are markers of cell damage and immunologic activity in autoimmune diseases.J Rheumatol.2002;29:2045-2052.
    15. Muller, et al. Presence of antibodies to ubiquitin during the autoimmune response associated with systemic lupus erythematosus. Proc. Nati. Acad. Sci.USA Vol.85, pp.8176-8180, November 1988, Immunology.
    16. Abdi,F.,Quinn,J.F.,Jankovic,J.,McIntosh,M.et al., Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders.J.Alzheimers Dis.2006,9,293-348.
    17. Wang,G.P.,Khatoon,S.,Iqbal,K.,Grundke-Iqbal,I.,Brain ubiquitin is markedly elevated in Alzheimer disease.Brain Res.1991,566,146-151.
    18. Davidsson,P.,Westman-Brinkmalm,A.,Nilsson,C.L., Lindbjer,M.et al.,Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients.Neuroreport 2002,13,611-615.
    19. Iqbal,K.,Grundke-Iqbal,I.,Elevated levels of tau and ubiquitin in brain and cerebrospinal fluid in Alzheimer's disease.Int. Psychogeriatr.1997,9,289-296.Discussion 317-221.
    20. Blennow,K.,Davidsson,P.,Wallin,A.,Gottfries,C.G., Svennerholm,L.,Ubiquitin in cerebrospinal fluid in Alzheimer's disease and vascular dementia.Int.Psychogeriatr.1994,6,13-22.Discussion 59-60.
    21. Majetschak, M.King,D.R., Krehmeier,U.,Busby,L.T. et al., Ubiquitin immunoreactivity in cerebrospinal fluid after traumatic brain injury:clinical and experimental findings.Crit.Care Med.2005, 33,1589-1594.
    22. Skoog,I.,Vanmechelen,E.,Andreasson,L.A.,Palmertz,B. et al.,A population-based study of tau protein and ubiquitin in cerebrospinal fluid in 85-year-olds:relation to severity of dementia and cerebral atrophy, but not to the apolipoprotein E4 allele.Neurodegeneration 1995,4,433-442.
    23. Simonsen et al, Novel panel of cerebrospinal fluid biomarkers for the prediction of progression to Alzheimer dementia in patients with mild cognitive impairment. Arch Neurol,2007,64.3.366.
    24. Fischer DF, De Vos RA, Van Dijk R et al. Disease specific accumulation of mutant ubiquitin as a marker for proteasomal dysfunction in the brain. Faseb J,2003;172014-2024
    25. Grune T, Merker K, Sandig G, et al. Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun,2003; 305709-718
    26. Hershko A. The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle.Cell Death Differ.2005;12:1191-1197.
    27. Wang J,Dong X,Reeves WH.A model for Ku heterodimer assembly and interaction with DNA. Implications for the function of Ku antigen.J Biol Chem.1998;273:31068-31074.
    28. Wang J,Satoh M,Pierani A,et al.Assembly and DNA binding of recombinant Ku(p70/p80) autoantigen defined by a novelmonoclonal antibody specific for p70/p80 heterodimers.J Cell Sci.1994;107(Pt 11):3223-3233.
    29. Gama V, Yoshida T,Gomez JA,et al.Involvement of the ubiquitin pathway in decreasing Ku70 levels in response to drug-induced apoptosis.Exp Cell Res.2006;312:488-499.
    1. Huang Z, Shi Y, Cai B, et al. MALDI-TOF MS combined with magnetic beads for detecting serum protein biomarkers and establishment of boosting decision tree model for diagnosis of systemic lupus erythematosus. Rheumatology,2009,48:626-631.
    1.Valesini G, Alessandri C, Celestino D, Conti F. Anti-endothelial antibodies and neuropsychiatric systemic lupus erythematosus. Ann NY Acad Sci.2006;1069:118-28.
    2.The American College of Rheumatology nomenclature and case definitions for neuropsychiatric lupus syndromes. Arthritis Rheum 1999;42(4):599-608.
    3. Pathogenesis, diagnosis and management of neuropsychiatric SLE manifestations. Bertsias, G. K. & Boumpas, D. T. Nat. Rev. Rheumatol. Advance online publication 11 May 2010; doi: 10.1038/nrrheum.2010.62
    4. Farzaneh-Far, A. et al. Relationship of antiphospholipid antibodies to cardiovascular manifestations of systemic lupus erythematosus. Arthritis Rheum.54,3918-3925 (2006).
    5. Hanly, J. G. et al. Prospective study of neuropsychiatric events in systemic lupus erythematosus. J. Rheumatol.36,1449-1459 (2009).
    6. Gonzalez, L. A. et al. Time to neuropsychiatric damage occurrence in LUMINA (LXVI):a multi-ethnic lupus cohort. Lupus 18,822-830 (2009).
    7. Hanly, J. G. et al. Autoantibodies and neuropsychiatric events at the time of systemiclupus erythematosus diagnosis:results from an international inception cohort study. Arthritis Rheum.58, 843-853 (2008).
    8. Greenwood DL, Gitlits VM, Alderuccio F, Sentry JW, Toh BH. Autoantibodies in neuropsychiatric lupus. Autoimmunity.2002; 35(2):79-86.
    9. Zaccagni H,Fried J,Cornell J,Padilla P,Brey RL.Soluble adhesion molecule levels,neuropsychiatric lupus and lupus-related damage.Front Biosci.2004;9:1654-9.
    10. Asherson RA,Khamashta MA,Gil A,Vazquez JJ,Chan O, Baguley E,et al.Cerebrovascular disease and antiphospholipid antibodies in systemic lupus erythematosus,lupus-like disease, and the primary antiphospholipid syndrome.Am J Med.1989; 86(4):391-9.
    11. Trysberg E,Tarkowski A.Cerebral inflammation and degeneration in systemic lupus erythematosus. Curr Opin Rheumatol.2004;16(5):527-33.
    12. Gomez-Pacheco L,Villa AR,Drenkard C,Cabiedes J,Cabral AR,Alarcon-Segovia D.Serum anti-beta2-glycoprotein-Ⅰ and anticardiolipin antibodies during thrombosis in systemic lupus erythematosus patients.Am J Med.1999;106(4):417-23.
    13. Meroni PL,Tincani A,Sepp N,Raschi E,Testoni C,Corsini E, et al.Endothelium and the brain in CNS lupus.Lupus.2003; 12(12):919-28.
    14. Steens SC, Bosma GP, Steup-Beekman GM, le Cessie S, Huizinga TW, van Buchem MA. Association between microscopic brain damage as indicated by magnetization transfer imaging and anticardiolipin antibodies in neuropsychiatric lupus. Arthritis Res Ther.2006;8(2):R38.
    15. Sanna G,Bertolaccini ML,Cuadrado MJ,Laing H,Khamashta MA,Mathieu A,et al.Neuropsychiatric manifestations in systemic lupus erythematosus prevalence and association with antiphospholipid antibodies.J Rheumatol.2003;30(5):985-92.
    16. Hanly JG,Hong C,Smith S,Fisk JD.A prospective analysis of cognitive function and anticardiolipin antibodies in systemic lupus erythematosus.Arthritis Rheum.1999;42(4):728-34.
    17. Menon S,Jameson-Shortall E,Newman SP,Hall-Craggs MR, Chinn R,Isenberg DA.A longitudinal study of anticardiolipin antibody levels and cognitive functioning in systemic lupus erythematosus.Arthritis Rheum.1999;42(4):735-41.
    18. Conti F,Alessandri C,Bompane D,Bombardieri M.Spinelli FR,Rusconi AC, et al. Autoantibody profile in systemic lupus erythematosus with psychiatric manifestations:a role for anti-endothelial-cell antibodies. Arthritis Res Ther.2004;6(4):R366-72.
    19. Morris RG, Anderson E, Lynch GS, Baudry M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature. 1986;319(6056):774-6.
    20. Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med.1994;330(9):613-22.
    21. Skerry TM, Genever PG. Glutamate signalling in non-neuronal tissues.Trends Pharmacol Sci.2001;22(4):174-81.
    22. Zipfel GJ, Lee JM, Choi DW. Reducing calcium overload in the ischemic brain.N Engl J Med.1999;341(20):1543-4.
    23. Cavalheiro EA, Olney JW. Glutamate antagonists:deadly liaisons with cancer. Proc Natl Acad Sci USA.2001;98(11):5947-8.
    24. Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci.1990;13:171-82.
    25. Dubinsky JM, Rothman SM.I ntracellular calcium concentrations during "chemical hypoxia" and excitotoxic neuronal injury.J Neurosci.1991;11(8):2545-51.
    26. Kotzin BL, Kozora E. Anti-DNA meets NMDA in neuropsychiatric lupus. Nat Med. 2001;7(11):1175-6.
    27. DeGiorgio LA, Konstantinov KN, Lee SC, Hardin JA, Volpe BT, Diamond B.A subset of lupus anti-DNA antibodies crossreacts with the NR2 glutamate receptor in systemic lupus erythematosus.Nat Med.2001;7(11):1189-93.
    28. Ozawa S, Kamiya H, Tsuzuki K. Glutamate receptors in the mammalian central nervous system. Prog Neurobiol.1998;54(5):581-618.
    29. Kowal C, Degiorgio LA, Lee JY, Edgar MA, Huerta PT, Volpe BT, et al. Human lupus auto-antibodies against NMDA receptors mediate cognitive impairment. Proc Natl Acad Sci USA. 2006; 103(52):19854-9.
    30. Arinuma Y, Yanagida T, Hirohata S. Association of cerebrospinal fluid anti-NR2 glutamate receptor antibodies with diffuse neuropsychiatric systemic lupus erythematosus. Arthritis Rheum.2008;58(4):1130-5.
    31. Omdal R, Brokstad K, Waterloo K, Koldingsnes W, Jonsson R, Mellgren SI. Neuropsychiatric disturbances in SLE are associated with antibodies against NMDA receptors. Eur J Neurol. 2005;12(5):392-8.
    32. Kudoh A, Takahira Y, Katagai H, Takazawa T. Small-dose ketamine improves the postoperative state of depressed patients. Anesth Analg.2002;95(l):114-8.table of contents.
    33. Berman RM, Cappiello A, Anand A,Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry.2000; 47(4):351-4.
    34. Lapteva L, Nowak M, Yarboro CH, Takada K, Roebuck-Spencer T, Weickert T, et al. Anti-N-methyl-D-aspartate receptor antibodies, cognitive dysfunction, and depression in systemic lupus erythematosus. Arthritis Rheum.2006;54(8):2505-14.
    35. Husebye ES, Sthoeger ZM, Dayan M, Zinger H, Elbirt D, Levite M, et al. Autoantibodies to a NR2A peptide of the glutamate/NMDA receptor in sera of patients with systemic lupus erythematosus. Ann Rheum Dis.2005; 64(8):1210-3.
    36. Elkon KB, Parnassa AP, Foster CL. Lupus autoantibodies target ribosomal P proteins. J Exp Med.1985;162(2):459-71.
    37. Francoeur AM, Peebles CL,Heckman KJ, Lee JC, Tan EM. Identification of ribosomal protein auto-antigens. J Immunol.1985;135(4):2378-84.
    38. Bonfa E, Golombek SJ, Kaufman LD, Skelly S, Weissbach H, Brot N, et al. Association between lupus psychosis and antiribosomal P protein antibodies. N Engl J Med.1987; 317(5):265-71.
    39.West SG, Emlen W, Wener MH, Kotzin BL. Neuropsychiatric lupus erythematosus:a 10-year prospective study on the value of diagnostic tests. Am J Med.1995;99(2):153-63.
    40. Watanabe T, Sato T, Uchiumi T, Arakawa M. Neuropsychiatric manifestations in patients with systemic lupus erythematosus:diagnostic and predictive value of longitudinal examination of anti-ribosomal P antibody.Lupus.1996;5(3):178-83.
    41. Arnett FC, Reveille JD, Moutsopoulos HM, Georgescu L, Elkon KB. Ribosomal P autoantibodies in systemic lupus erythematosus. Frequencies in different ethnic gro 泛素蛋白酶系统 and clinical and immunogenetic associations. Arthritis Rheum.1996;39(11):1833-9.
    42. Tzioufas AG, Tzortzakis NG, Panou-Pomonis E, Boki KA, Sakarellos-Daitsiotis M,Sakarellos C, et al. The clinical relevance of antibodies to ribosomal-P common epitope in two targeted systemic lupus erythematosus populations:a large cohort of consecutive patients and patients with active central nervous system disease. Ann Rheum Dis.2000;59(2):99-104.
    43. Nojima Y, Minota S, Yamada A, Takaku F, Aotsuka S, Yokohari R. Correlation of antibodies to ribosomal P protein with psychosis in patients with systemic lupus erythematosus. Ann Rheum Dis.1992;51(9):1053-5.
    44. Isshi K, Hirohata S. Differential roles of the anti-ribosomal P antibody and antineuronal antibody in the pathogenesis of central nervous system involvement in systemic lupus erythematosus. Arthritis Rheum.1998;41(10):1819-27.
    45. Isshi K,Hirohata S. Association of anti-ribosomal P protein antibodies with neuropsychiatric systemic lupus erythematosus. Arthritis Rheum.1996;39(9):1483-90.
    46. Press J, Palayew K, Laxer RM, Elkon K, Eddy A, Rakoff D, et al. Antiribosomal P antibodies in pediatric patients with systemic lupus erythematosus and psychosis. Arthritis Rheum. 1996;39(4):671-6.
    47. Massardo L,Burgos P,Martinez ME,Perez R,Calvo M,Barros J,et al.ntiribosomal P protein antibodies in Chilean SLE patients:no association with renal disease. Lupus.2002;11(6):379-83.
    48. Yoshio T, Hirata D, Onda K, Nara H, Minota S. Antiribosomal P protein antibodies in cerebrospinal fluid are associated with neuropsychiatric systemic lupus erythematosus. J Rheumatol.2005;32(1):34-9.
    49. Hirohata S, Arinuma Y, Takayama M, Yoshio T. Association of cerebrospinal fluid anti-ribosomal p protein antibodies with diffuse psychiatric/neuropsychological syndromes in systemic lupus erythematosus. Arthritis Res Ther.2007;9(3):R44.
    50. Schneebaum AB, Singleton JD, West SG, Blodgett JK, Allen LG, Cheronis JC, et al. Association of psychiatric manifestations with antibodies to ribosomal P proteins in systemic lupus erythematosus. Am J Med.1991;90(1):54-62.
    51. Gerli R, Caponi L, Tincani A, Scorza R, Sabbadini MG, Danieli MG, et al. Clinical and serological associations of ribosomal P autoantibodies in systemic lupus erythematosus:prospective evaluation in a large cohort of Italian patients. Rheumatology (Oxford).2002; 41(12):1357-66.
    52. Jonsen A, Bengtsson AA, Nived O, Ryberg B, Truedsson L, Ronnblom L, et al. The heterogeneity of neuropsychiatric systemic lupus erythematosus is reflected in lack of association with cerebrospinal fluid cytokine profiles. Lupus.2003;12(11):846-50.
    53. Teh LS, Bedwell AE, Isenberg DA, Gordon C, Emery P, Charles PJ, et al. Antibodies to protein P in systemic lupus erythematosus. Ann Rheum Dis.1992;51(4):489-94.
    54. van Dam A, Nossent H, de Jong J, Meilof J, ter Borg EJ, Swaak T, et al. Diagnostic value of antibodies against ribosomal phosphoproteins. A cross sectional and longitudinal study. J Rheumatol.1991; 18(7):1026-34.
    55. Sato T, Uchiumi T, Ozawa T, Kikuchi M, Nakano M, Kominami R, et al. Autoantibodies against ribosomal proteins found with high frequency in patients with systemic lupus erythematosus with active disease. J Rheumatol.1991;18(11):1681-4.
    56. Derksen RH, van Dam AP, Gmelig Meyling FH, Bijlsma JW, Smeenk RJ.A prospective study on antiribosomal P proteins in two cases of familial lupus and recurrent psychosis. Ann Rheum Dis.1990;49(10):779-82.
    57. Karassa FB, Afeltra A, Ambrozic A, Chang DM, De Keyser F, Doria A, et al. Accuracy of anti-ribosomal P protein antibody testing for the diagnosis of neuropsychiatric systemic lupus erythematosus:an international meta-analysis. Arthritis Rheum.2006; 54(1):312-24.
    58. Bluestein HG, Williams GW, Steinberg AD. Cerebrospinal fluid antibodies to neuronal cells: association with neuropsychiatric manifestations of systemic lupus erythematosus. Am J Med. 1981;70(2):240-6.
    59. Sanna G, Piga M, Terryberry JW, Peltz MT, Giagheddu S, Satta L, et al. Central nervous system involvement in systemic lupus erythematosus:cerebral imaging and serological profile in patients with and without overt neuropsychiatric manifestations. Lupus.2000; 9(8):573-83.
    60. Trysberg E, Nylen K, Rosengren LE, Tarkowski A. Neuronal and astrocytic damage in systemic lupus erythematosus patients with central nervous system involvement. Arthritis Rheum.2003; 48(10):2881-7.
    61. Alessandri C, Conti F, Valesini G. Role of anti-glial fibrillary acidic protein antibodies in the pathogenesis of neuropsychiatric systemic lupus erythematosus should be clarified:comment on the article by Trysberg et al. Arthritis Rheum.2004; 50(5):1698-9. author reply 1699.
    62. Yoshio T. Masuyama J, Kano S. Antiribosomal P0 protein antibodies react with the surface of human umbilical vein endothelial cells.J Rheumatol.1996;23(7):1311-2.
    63. Yoshio T, Masuyama J, Ikeda M, Tamai K, Hachiya T, Emori T, et al. Quantification of antiribosomal P0 protein antibodies by ELISA with recombinant P0 fusion protein and their association with central nervous system disease in systemic lupus erythematosus. J Rheumatol.1995;22(9):1681-7.
    64. Song J, Park YB, Lee WK, Lee KH, Lee SK. Clinical associations of anti-endothelial cell antibodies in patients with systemic lupus erythematosus. Rheumatol Int.2000;20(1):1-7.
    65. Williams RC Jr., Sugiura K, Tan EM. Antibodies to microtubule-associated protein 2 in patients with neuropsychiatric systemic lupus erythematosus.Arthritis Rheum.2004;50(4):1239-47.
    66. Lefranc D, Launay D, Dubucquoi S, de Seze J, Dussart P, Vermersch M, et al.Characterization of discriminant human brain antigenic targets in neuropsychiatric systemic lupus erythematosus using an immunoproteomic approach. Arthritis Rheum.2007; 56(10):3420-32.
    67. Jara LJ, Irigoyen L, Ortiz MJ, Zazueta B, Bravo G, Espinoza LR. Prolactin and interleukin-6 in neuropsychiatric lupus erythematosus. Clin Rheumatol.1998; 17(2):110-4.
    68. Hirohata S, Hayakawa K. Enhanced interleukin-6 messenger RNA expression by neuronal cells in a patient with neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 1999;42(12):2729-30.
    69. Hirohata S, Miyamoto T. Elevated levels of interleukin-6 incerebrospinal fluid from patients with systemic lupus erythematosus and central nervous system involvement. Arthritis Rheum.1990;33(5):644-9.
    70. Winfield JB, Shaw M, Silverman LM, Eisenberg RA, Wilson HA 3rd.Koffler D. Intrathecal igG synthesis and blood-brain barrier impairment in patients with systemic lupus erythematosus and central nervous system dysfunction. Am J Med.1983; 74(5):837-4.
    71. Alcocer-Varela J, Aleman-Hoey D, Alarcon-Segovia D.Interleukin-1 and interleukin-6 activities are increased in the cerebrospinal fluid of patients with CNS lupus erythematosus and correlate with local late T-cell activation markers.Lupus.1992; 1(2):111-7.
    72. Tsai CY, Wu TH, Tsai ST, Chen Kh,hajeb P, Lin WM, et al. Cerebrospinal fluid interleukin-6, prostaglandin E2 and autoantibodies in patients with neuropsychiatric systemic lupus erythematosus and central nervous system infections. Scand J Rheumatol.1994;23(2):57-63.
    73. Trysberg E, Carlsten H, Tarkowski A. Intrathecal cytokines in systemic lupus erythematosus with central nervous systeminvolvement.Lupus.2000;9(7):498-503.
    74. Dellalibera-Joviliano R, Dos Reis ML, Cunha Fde Q, Donadi EA. Kinins and cytokines in plasma and cerebrospinal fluid of patients with neuropsychiatric lupus. J Rheumatol.2003; 30(3):485-92.
    75. Fragoso-Loyo H, Richaud-Patin Y, Orozco-Narvaez A, Davila-Maldonado L, Atisha-Fregoso Y, Llorente L, et al.Interleukin-6 and chemokines in the neuropsychiatric manifestations of systemic lupus erythematosus. Arthritis Rheum.2007;56(4):1242-50.
    76. Shiozawa S, Kuroki Y, Kim M, Hirohata S, Ogino T. Interferon-alpha in lupus psychosis. Arthritis Rheum.1992;35(4):417-22.
    77. Svenungsson E, Andersson M, Brundin L, van Vollenhoven R, Khademi M, Tarkowski A, et al. Increased levels of proinflammatory cytokines and nitric oxide metabolites in neuro- psychiatric lupus erythematosus.Ann Rheum Dis.2001;60(4):372-9.
    78.Gilad R, Lampl Y, Eshel Y, Barak V, Sarova-Pinhas I. Cerebrospinal fluid soluble interleukin-2 receptor in cerebral lupus. Br J Rheumatol.1997;36(2):190-3.
    79. XY Lu, YY Gu, et al. Intrathecal cytokine and chemokine profiling in neuropsychiatric lupus or lupus complicated with central nervous system infection. Lupus 2010;19:689. February 23,2010, doi:10.1177/0961203309357061
    80. Goetzl EJ, Banda MJ, Leppert D. Matrix metalloproteinases in immunity. J Immunol.1996; 156(1):1-4.
    81. Faber-Elmann A, Sthoeger Z, Tcherniack A, Dayan M, Mozes E. Activity of matrix metalloproteinase-9 is elevated in sera of patients with systemic lupus erythematosus.Clin Exp Immunol.2002;127(2):393-8.
    82. Ainiala H, Hietaharju A, Dastidar P, Loukkola J, Lehtimaki T, Peltola J, et al. Increased serum matrix metalloproteinase 9 levels in systemic lupus erythematosus patients with neuropsychiatric manifestations and brain magnetic resonance imaging abnormalities. Arthritis Rheum. 2004;50(3):858-65.
    83. Trysberg E, Blennow K, Zachrisson O, Tarkowski A. Intrathecallevels of matrix metalloproteinases in systemic lupus erythematosus with central nervous system engagement.Arthritis Res Ther.2004;6(6):R551-6.
    84. Bresnihan B,Hohmeister R,Cutting J,Travers RL,Waldburger M,Black C,et al.The neuropsychiatric disorder in systemic lupus erythematosus:evidence for both vascular and immune mechanisms.Ann Rheum Dis.1979;38(4):301-6.
    85. Tatsukawa H,Ishii K,Haranaka M,Kumagi M,Hino I, Yoshimatsu H.Evaluation of average amount of cerebral blood flow measured by brain perfusion index in patients with neuropsychiatric systemic lupus erythematosus.Lupus.2005;14(6):445-9.
    86. Hanly JG, Walsh NM, Sangalang V. Brain pathology in systemic lupus erythematosus. J Rheumatol.1992; 19(5):732-41.
    87. Devinsky O,Petito CK,Alonso DR.Clinical and neuropathological findings in systemic lupus erythematosus:the role of vasculitis,heart emboli,and thrombotic thrombocytopenic purpura. Ann Neurol.1988;23(4):380-4.
    88. Santer DM, Yoshio T, Minota S, Moller T, Elkon KB. Potent induction of IFN-alpha and chemokines by autoantibodies in the cerebrospinal fluid of patients with neuropsychiatric lupus. J Immunol.2009; 182(2):1192-201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700