用户名: 密码: 验证码:
六种绿叶蔬菜中典型农药残留规律及代表作物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物上农药非法使用、不正确使用、超范围使用和缺乏限量标准等问题是农产品和食品安全的核心问题。根据作物形态学特点和农药残留分布规律的不同,将作物进行适当分类和分组,选取同一组和亚组中具有相似形态和残留行为并且具有经济价值的作物作代表作物,对典型代表作物进行规范田间残留试验并对残留数据进行外推是一条科学有效的解决品种繁多的作物包括小作物上缺少农药登记和无农药残留限量标准的有效途径。
     本研究建立了甲基托布津、多菌灵、甲霜灵、精吡氟禾草灵、嘧菌酯、噻嗪酮、杀扑磷、噻虫嗪、腐霉利、毒死蜱、高效氯氟氰菊酯、高效氯氰菊酯12种农药在小白菜(pakchoi)、小油菜(rape)、茼蒿(crown daisy)、苋菜(amaranth)、菠菜(spinach)、叶用莴苣(lettuce)、芹菜(celery)中的QuEChERS提取净化方法,其中甲基托布津、多菌灵、甲霜灵、精吡氟禾草灵、嘧菌酯、噻嗪酮、杀扑磷、噻虫嗪和腐霉利用LC-MS/MS测定,毒死蜱、高效氯氟氰菊酯和高效氯氰菊酯用GC-ECD检测。所有分析物在各基质中标准曲线的线性相关系数在0.991-1.00之间,线性范围在0.001-10.0mg/L之间。12种农药的添加回收率在60.1-118.6%范围内,RSD在1.1-13.9%之间,LOQ范围为0.01-0.08mg/kg范围内。该方法适用七种叶菜中12种农药的检测。
     为选取绿叶蔬菜的代表作物,并为建立农药残留限量标准所采用,对甲基托布津、甲霜灵、精毗氟禾草灵、毒死蜱、高效氯氰菊酯在小白菜、油菜、茼蒿、苋菜、菠菜、叶用莴苣上进行三地田间残留试验。结果表明在相同的施药剂量下,菠菜或苋菜的原始沉积量、最大残留量更高,在相同的安全间隔期时菠菜或苋菜中残留量相对也较高。菠菜或苋菜被选作绿叶蔬菜的代表作物。为了验证所选代表作物的是否合适,进行了嘧菌酯、精吡氟禾草灵、噻嗪酮、杀扑磷、噻虫嗪、腐霉利和高效氯氰菊酯在六种绿叶蔬菜上三地的田间试验,同样比较农药的消解动态、原始沉积量、最大残留量和最终残留。除茼蒿中部分农药的最终残留量相对较高外,其他试验结果均无差异。从农药消解动态、原始沉积量、最大残留量、最终残留量等几个方面综合考虑,本研究结果表明菠菜或苋菜可作为绿叶蔬菜的代表作物。
     为考察不同生长季节对农药残留规律的影响,对甲基硫菌灵等5种农药在小白菜、油菜、茼蒿、苋菜、菠菜、叶用莴苣上进行了两季(夏季:5-7月份;秋季:8-10月份)田间试验。结果表明在相同的施药剂量下,大部分农药秋季的原始沉积量、最大残留量大于夏季的原始沉积量和最大残留量。在相同的收获间隔期时,石家庄样品中超过85%农药秋季的残留量高于夏季残留量,北京样品几乎所有农药残留量均高于夏季残留量。为验证以上试验结果,对嘧菌酯、精吡氟禾草灵、噻嗪酮、杀扑磷、噻虫嗪、腐霉利和高效氯氰菊酯在石家庄、北京和南京进行一年两季的残留试验。试验结果表明,在相同的施药剂量下大部分农药秋季原始沉积量、最大残留量高于夏季的原始沉积量和最大残留量;超过70%样品中农药秋季的残留量高于夏季残留量。方差分析结果表明不同生长季节对农药原始沉积量和半衰期的影响较大,对最终残留量影响较小。
     为考察不同施药次数对农药残留规律的影响,对嘧菌酯、精吡氟禾草灵、噻嗪酮、杀扑磷、噻虫嗪、腐霉利和高效氯氰菊酯在芹菜上进行一年两季(夏季和秋季)的残留实验,试验设计施药一次和两次,从农药消解动态、原始沉积量、最大残留量、最终残留量等几个方面考察不同施药次数对农药残留行为的影响。结果表明,施药间隔7d时,夏季试验时约64%的农药施药两次时半衰期比施药一次时半衰期长,秋季试验时越50%的农药施药两次时半衰期比施药一次时半衰期长。石家庄夏季试验结果表明,芹菜施药两次时嘧菌酯、噻嗪酮、杀扑磷、噻虫嗪和高效氯氰菊酯的原始沉积量比施药一次时高;秋季试验施药两次时7种农药的原始沉积量均比施药一次要高,而且原始沉积量增加的幅度比夏季试验时要高很多,特别是嘧菌酯和高效氯氰菊酯。北京的试验结果跟石家庄一致,施药两次时农药的原始沉积量比施药一次时高(夏季试验嘧菌酯除外),而且秋季试验时原始沉积量增长比例比夏季施药时要高。夏季试验时约60%的农药施药两次时,最终残留量较施药一次有升高;而同样的施药剂量条件下秋季试验时超过90%的农药施药两次时,农药的最终残留量比施药一次时残留量更高。方差分析结果表明不同施药次数时芹菜中农药的原始沉积量、半衰期和最终残留量均无显著差异。
     对六种绿叶蔬菜中农药残留进行了膳食摄入风险评估。从多菌灵等5种农药慢性风险评估结果来看,菠菜和苋菜或叶用莴苣的慢性风险较高;从嘧菌酯等7种农药慢性风险评估结果来看,菠菜和苋菜或茼蒿的慢性风险较高。多菌灵等5种农药急性风险评估结果表明菠菜和苋菜中急性风险比较高,嘧菌酯等7种农药急性风险评估结果也表明菠菜和苋菜中急性风险较高。膳食摄入风险评估综合了农药田间试验残留数据和食物的摄入水平,从风险评估结果来看,菠菜或苋菜可作为绿叶蔬菜的代表作物。
Ilegal usage, incorrect usage of pesticides, pesticides application out of the label, and the lack of maximum residue limits are the core issues of agricultural products and food safety. Crops are classified and grouped accourding to their morphology and residue characteristics, representative commodities are chosen based on their commercial importance and the similarity of their morphology and residue characteristics to other related commodities in the group or suboup. Supervised field residue trials of representative commodities will be conducted according to good agriculture production, and the residues datas could be used in the residue extrapolation, which is a scientific and effective solution to resolve relative problems such as lack of pesticide registration on minor crop and the absence of maximum residue limits.
     In this study, a multi-residue method was built to determine of thiophanate-methyl, carbendazim, metalaxyl, fluazifop-P-butyl, azoxystrobin, buprofezin, methidathion, thiamethoxam, procymidone, chlorpyrifos, lambda-cyhalothrin, beta-cypermethrin in pakchoi, rape, crown daisy, amaranth, spinach, lettuce and celery. A quick, easy, cheap, effective, rugged and safe (QuEChERS) method was used in*sample preparation, thiophanate-methyl, carbendazim, metalaxyl, fluazifop-P-butyl, azoxystrobin, buprofezin, methidathion, thiamethoxam and procymidone were detected by liquid chromatography tandem mass spectrometry (LC-MS/MS), chlorpyrifos, lambda-cyhalothrin and beta-cypermethrin were determined by gas chromatography with electron capture detector (GC-ECD). The limits of quantification (LOQ) in all leafy vegetables were in the range of0.001-0.08mg/kg for all analytes and the average recoveries of all pesticides ranged from60.1%to118.6%. Good linearity was found for all pesticides with cofficients between0.991and1.00in a range of0.001-10.0mg/kg. The developed method was successfully used to determine the12pesticide residues in seven leafy vegetables.
     To select representative commodities in leafy green vegetables and for adorption in establishment of maximum residue limits of pesticides, supervised field residue trails of thiophanate-methyl, fluazifop-P-butyl, metalaxyl, chlorpyrifos and lambda-cyhalothrin on six leafy green vegetables including pakchoi, rape, crown daisy, amaranth, spinach and lettuce were designed and conducted in three places. It was found that almost all initial concentrations and maximal concentrations of pesticides in spinach and/or amaranth were higher than others with the same application dose, and the final residues for most pesticides in shinach and/or amaranth at the same preharvest interval (PHI) were higher. Spinach and/or amaranth were selected as representative crop in leafy green vegetables. In order to verify the accuracy of representative commodities selected, supervised field residue trials of azoxystrobin, fluazifop-P-butyl, buprofezin, methidathion, thiamethoxam, procymidone, beta-cypermethrin in the six leaf vegetables were conducted in three places. Initial concentrations, maximal concentrations and final residues were also used to compare. In addition to the part of higher final residues in crown daisy, the other results were consistent. In consideration of residue dynamics, initial concentrations and final residues, spinach and/or amaranth were recommended to select as representative commodities in leafy green vegetables.
     To investigate the influence of different planting seasons on the dissipation of pesticides, supervised field residue trails of thiophanate-methyl, metalaxyl, fluazifop-P-butyl, chlorpyrifos and lambda-cyhalothrin on six leafy green vegetables including pakchoi, rape, crown daisy, amaranth, spinach and lettuce were designed and conducted at two planting seasons (summer:between May and July; autumn:between August and October) in three places. The results showed that initial concentrations and maximal concentrations of most pesticides in six leafy green vegetables at autumn were higher that at summer. More than85%samples contained more pesticide residues at autumn at the same PHI in Shijiazhuang, and almost all samples had higher concentrations of pesticides at autumn at same PHI in Beijing. In order to verify the conclusion above, supervised field residue trails of azoxystrobin, fluazifop-P-butyl, buprofezin, methidathion, thiamethoxam, procymidone, beta-cypermethrin in the six leafy green vegetables were conducted at two planting seasons in Shijiazhuang, Beijing and Nanjing. For most pesticides, the initial concentrations and maximal concentrations at autumn were higher than that at summer with the same spray dose More than70%samples contained more pesticide residues at autumn at the same PHI. Analysis variance results showed that initial concentrations and half-lives of pesticides were influced by different planting seasons in a larger degree than the final residues.
     In order to investigate the effect of different spraying times on pesticide residues, supervised field residue trails of azoxystrobin, fluazifop-P-butyl, buprofezin, methidathion, thiamethoxam, procymidone, beta-cypermethrin in celery were conducted at two planting seasons. The experiments were designed for spraying one time and two times. Initial concentrantions, maximal concentrations and final concentrations of pesticides were considered in data analysis. The results of the experiments showed that half-lives of about64%pesticides were longer when sprayed two times (spraying pesticide interval was7days) than that sprayed one time at summer, and half-lives of about50%pesticides were longer when sprayed two times at autumn. The initial concentrations of azoxystrobin, buprofezin, methidathion, thiamethoxam, beta-cypermethrin in celery when spraying two times were higher than that when spraying one time at summer in Shijiazhuang, the initial concentrations of the seven pesticides when spraying two times were higher than that spraying one time at autumn, and the increase was higher at autumn especially to azoxystrobin and beta-cypermethrin. The results of Beijing were consistent with that of Shijiazhuang, initial concentrations of pesticides when spraying two times were higher than that when spraying one time in Beijing in addition to the azoxystrobin at summer. Approximately60%samples contained more pesticide residues when spraying two times at summer, while more than90%samples had higher concentrations of pesticides when spraying two times at autumn. There were no significant differences in initial concentrations, half-lives and final residues in celery with different spraying times.
     The dietary risk assessment of pesticides in six leafy green vegetables was conducted. The chronic assessment results of five pestides (carbendazim etc.) demonstrated that chronic dietary risk of spinach and amaranth (or leaf lettuce) was much higher; and the chronic assessment results of seven pesticides (azoxystrobin etc.) indicated that chronic dietary risk of spinach and amaranth (or crown daisy) was much higher. The acute assessment results of five pestides (carbendazim etc.) showed that acute dietary risk of spinach and/or amaranth was higher; and acute assessment results of seven pesticides (azoxystrobin etc.) presented that the acute dietary risk of spinach and/or amaranth was higher. Risk assessment is a comprehensive indicator in that it reflects the field experiment results and the dietary intake at same time. Spinach and/or amaranth could be recommended to select as representative commodities in according to the risk assessment results.
引文
[1]杨顺江.中国蔬菜产业发展研究:[博士学位论文].武汉:华中农业大学,2004.
    [2]李宝聚.蔬菜主要病害2013年发生概况及2014年发生趋势.中国蔬菜,2014,2:5-8.
    [3]张志勇.叶类蔬菜农药残留防控体系研究:[博士学位论文].南京:南京农业大学,2008.
    [4]中华人民共和国农业部.中华人民共和国农业部第1490号公告.用于农药最大残限量标准制定的作物分类.2010.
    [5]汪李平,周国林,刘义满.有机蔬菜-绿叶蔬菜生产技术规程.长江农业,2013,15:4-7.
    [6]周新远.不可替代的绿叶蔬菜.饮食与健康,2013,5:30-31.
    [7]赵晓东.小白菜耐热生理生化指标及遗传多样性的研究:[硕士学位论文].南昌:江西农业大学,2013.
    [8]胥获,代光辉,郝博济,等.茼蒿色素的提取工艺及稳定性研究.食品研究与开发,2009,30(2):19-23.
    [9]刘敏,谢晶苋菜品质分析及货架寿命的预测.食品工业科学,2008,29(4):251-257.
    [10]袁玉伟.菠菜中常用农药残留动态及其限量研究:[博士学位论文].北京:中国农业科学院研究生院农业质量标准与检测技术研究所,2008.
    [11]赵仁来.几种莴苣的贮藏特性及低温贮藏技术研究:[硕士学位论文].成都:四川农业大学,2012.
    [12]钱传范,刘丰茂,潘灿平,等.农药残留分析原理与方法北京:化学工业出版社,2011,1-2.
    [13]马为民.农药残留分析技术新进展(综述).河北科技师范学院学报,2005,19(4):67-70.
    [14]刘爱红,张琳.农药残留与食物安全.安徽农业科学,2007,35(13):4017-4018.
    [15]陈琦,赵敏娟.国内外农药对农产品安全的影响及农户安全生产行为评述.北方园艺,2012,21:196-202.
    [16]李凯年.控制农药、兽药残留,确保食物安全.中国食物与营养,2004,1:13-16.
    [17]吴海涛.蔬菜中农药残留分析方法及去除方法的研究:[硕士学位论文].武汉:华中农业大学,2005.
    [18]温雅君,孙江,高景红,等.蔬菜中农药残留检出率的规律性研究.中国农学通报,2012,28(12):248-251.
    [19]陈静,房新宇,沈菊芳,等蔬菜中20种有机氯农药残留气相色谱分析方法的研究.化学世界,2010,7:408-411.
    [20]王松.蔬菜中有机磷农药残留测定方法的研究:[硕士学位论文].南京:南京农业大学,2009.
    [21]沈伟健,曹孝文,刘一军,等.气相色谱-负化学源质谱法测定蔬菜中17种拟除虫菊酯类农药残留量.色谱,2012,30(11):1172-1177.
    [22]邓立刚,李增梅,郭长英,等.超高效液相色谱-串联质谱法测定蔬菜中7种氨基甲酸酯类农药残留.食品科学,2011,32(6):221-224.
    [23]瞿德业,魏善明,周围,等.蔬菜中氨基甲酸酯类农药残留的固相微萃取分离和HPLC法测定.应用化学,2009,26(4);498-450.
    [24]周光理.蔬菜中农药残留的研究进展.科技信息,2012,35:349-350.
    [25]宋雁,贾旭东,李宁.国内外农药登记管理体系.毒理学杂志,2012,26(4):310-314.
    [26]宋天俊,刘琦,倪寿山.我国农药管理的现状及对策.现代农业科技,2009,15:377-378.
    [27]辛德兴.农药管理30年.农药科学与管理,2008,29(11):5-7.
    [28]中华人民共和国农业部.农药管理条例实施办法.农药科学与管理,1999,20(4):2-7.
    [29]中华人民共和国农业部.农业部关于修订《农药管理条件实施办法》的决定.农药科学与管理,2008,29(1):4-5.
    [30]中华人民共和国农业部.农药登记资料要求.农药,2001,40(7):1-7.
    [31]周喜应,李友顺.加强我国农药登记试验管理之管见.农药科学与管理,2013,34(8):5-8.
    [32]嵇莉莉,朴秀英,宗伏霖,等.我国农药登记情况分析.农药科学与管理,2013,34(12):18-22.
    [33]宋稳成,单炜力,叶纪明.国内外农药最大残留限量标准现状与发展趋势.农药学学报,2009,11(4):414-420.
    [34]顾宝根,刘亚萍,林艳,等.欧盟农药管理概况.农药科学与管理,2004,25(12):27-30.
    [35]EEC (the Council of European Communities). Council Directive concerning the placing of plant protection products on the market (91/414/EEC).1991.
    [36]张翼翾,张一宾.欧盟的农药登记制度.农药科学与管理,2010,31(10):7-15.
    [37]沈钦一,刘亚萍,常雪艳,等.欧盟农药管理制度及其对我国农药管理的启示.中国植保导刊,2011,31(4):52-55.
    [38]李富根,王以燕,吴进龙,等.欧盟农用再评价制度概述.农药科学与管理,2011,32(12):9-12.
    [39]EPARegisteringPestixides.http://www.epa.gov/pesticides/regulating/registering/index.htm.
    [40]EPAPesticides:Regulationg Pesticides/Laws and Regulations. http://www.epa.gov/pesticides /regulating/laws.htm.
    [41]朴秀英,嵇莉莉,吕宁,等.美国农药登记再评价及其启示.农药科学与管理,2013,34(8):11-15.
    [42]殷琛.日本农药安全管理研究.农药管理与应用,2011,15(1):6-8.
    [43]张一宾.以农药安全为目的的日本农药登记制度.农药研究与应用,2006,10(5):16-19.
    [44]赵维佳.绿色蔬菜中农药多残留分析方法研究:[硕士学位文].南京:南京农业大学,2004.
    [45]贾锐.谈紫外-可见分光光度法在药物分析中的应用.中国石油和化工标准质量,2011,6:34.
    [46]刘玉法,魏素梅,王磊,等紫外-可见分光光度法测定噻唑磷含量.农药,2009,48(5):350-351.
    [47]张国文,潘军辉,阙青民.偏最小二乘-分光光度法同时测定福美锌和代森锰农药残留量.分析实验室,2006,25(11):27-33.
    [48]王惠,吴文君.农药分析与残留分析.北京:化学工业出版社,2007,13.
    [49]Sherma J. Thin-layer chromatography in food and agricultural analysis.Journal of Chromatography A,2000,880:129-147.
    [50]王惠,吴文君.农药分析与残留分析.北京:化学工业出版社,2007,143-144.
    [51]Butz S.,Stan H.J.Screening of 265 pesticides in water by thin-layer chromatography with automated multiple development. Analytical Chemistry,1995,67(3):620-630.
    [52]Sherma J. Thin-layer chromatography in food and agricultural analysis. Journal of Chromatography A,2000,880:129-147.
    [53]许美玲,刘仲昌.农药速测卡与气相色谱法测定蔬菜中有机磷农药残留量的比较.临床和实验医学杂志,2006,5(5):576-577.
    [54]汪世新,陆自强,陈丽芳,等.速测灵对蔬菜有机磷农药残留检测的研究.江苏农业研究,2001,22(4):29-31.
    [55]Hyotylainen T., Tuutijarvi T., Kuosmanen K. Determination of pesticide residues in red wines with microporous membrane liquid-liquid extraction and gas chromatography. Anal Bioanal Chem, 2002,372:732-736.
    [56]Herrera A., Perez-Arquillue C., Conchello P.,et al. Determination of pesticides and PCBs in honey by solid-phase extraction cleanup followed by gas chromatography with electron-capture and nitrogen-phosphorus dectection.Anal Bioanal Chem,2005,381:695-701.
    [57]Nerin C., Batlle R., Cacho J. Determination of pesticides in high-water-content samples by off-line supercritical fluid extraction-gas chromatography-electron-capture detection. Journal of Chromatography A,1998,795:117-124.
    [58]Berijani S., Assadi Y, Anbia M., et al. Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection Very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water.Journal of Chromatography A,2006, 1123:1-9.
    [59]Ahmadi F., Assadi Y, Milani Hosseini S.M.R., Rezaee M. Determination of organophosphorus photometric detector. Journal of Chromatography A,2006,1101:307-312.
    [60]Liu Z.Y, Slrlmanne S.R., Patterson D.G., et al. Comprehensive two-dimensional gas chromatography for the fast separation and determination of pesticides extracted from human serum. Analtical Chemistry,1994,66:3086-3092.
    [61]中华人民共和国农业部.NY/T 761-2008.蔬菜和水果中有机磷、有机氯、拟除虫菊酯和氨基甲酸酯类农药多残留的测定.2008
    [62]Cao C.F., Wang Z., Urruty L., et al. Focused microwave assistance for extraction some pesticide residues from strawberries into water before their determination by SPME/HPLC/DAD. Journal of Agricultural and Food Chemistry,2001,49:5092-5097.
    [63]Obana H., Okihashi M., Akutsu K., et al. Determination of acetamiprid, imidacloprid, and nitenpyram residues in vegetables and fruits by high-performance liquid chromatography with diode-array detection.Journal of Agricultural and Food Chemistry,2002,50:4464-4467.
    [64]Carabias-Martinez R., Rodriguez-Gonzalo E., Paniagua-Marcos P.H., et al. Analysis of pesticides residues in matrices with high lipid contents by membrane separation coupled on-line to a high-performance liquid chromatography systemJournal of Chromatography A,2000,869: 427-439.
    [65]Abad A, Moreno M.J., Pelegri R., et al. Determination of carbaryl, carbofuran and methiocarb in cucumbers and strawberries by monoclonal enzyme immunoassays and high-performance liquid chromatography with fluorescence detection An analytical comparison. Journal of Chromatography A,1999,833:3-12.
    [66]Seccia S., Fidente P., Montesano D., et al. Determination of neonicotinoid insecticides residues in bovine milk samples by solid-phase extraction clean-up and liquid chromatography with diode-array detection.Journal of Chromatography A,2008,1214:115-120.
    [67]闫磊,张燕,张延超,等.超高效液相色谱测定蔬菜中的十种农药残留.农业科技与信息,2013,21:29-31.
    [68]Nguyen T.D., Han E.M., Seo M.S., et al. A multi-residue method for the determination of 203 pesticides in rice paddies using gas chromatography/mass spectrometry. Anah/tica Chimica Acta, 2008,619:67-74.
    [69]Ferrer C., Gomez M.J., Garcia-Reyes J.F., et al. Determination of pesticide residues in olives and olive oil by matrix solid-phase dispersion followed by gas chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry. Journal of Chromatography A,2005,1069:183-194.
    [70]Silva M.G.D., Aquino A, Dorea H.S., et al. Simultaneous determination of eight pesticide residues in coconut using MSPD and GC/MS.Talanta,2008,76:680-684.
    [71]Vitali M., Guidotti M., Giovinazzo R., et al.Determination of pesticide residues in wine by SPME and GC/MS for consumer risk assessment. Food Additives and Contaminants,1998,15(3): 280-287.
    [72]Zrostlikova J., Haislova J., Cajka T. Evaluation of two-dimensional gas chromatography-time-of-flight mass spectrometry for the determination of multiple pesticide residues in fruit. Journal of Chromatography A,2003,1019:173-186.
    [73]中华人民共和国卫生部.GB/T 5009.218-2008.水果和蔬菜中多种农药残留鳖的测定.2009.
    [74]Muccio AD., Fidente P., Barbini D.A, et al. Application of solid-phase extraction and liquid chromatography-mass spectrometry to the determination of neonicotinoid pesticide residues in fruit and vegetables. Journal of Chromatography A,2006,1108:1-6.
    [75]Jansson C., Pihlstrom T., Osterdahl B.G., et al. Anew multi-residue method for analysis of pesticide residues in fruit and vegetables using liquid chromatography with tandem mass spectrometric detection. Journal of Chromatography A,2004,1023:93-104.
    [76]Blasco C., Pico Y, Manes J., et al. Determination of fungicide residues in fruits and vegetables by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Journal of Chromatography A,2002,947227-235.
    [77]Leabdro C.C., Hancock P., Fussell R.J., et al. Comparison of ultra-performance liquid chromatography and high-performance liquid chromatography for the determination of priority pesticides in baby foods by tandem quadrupole mass spectrometry. Journal of Chromatography A, 2006,1103:94-101.
    [78]Ferrer I., Thurman E.M., Fernandez-Alba AR. Quantitation and accurate mass analysis of pesticides in vegetables by LC/TOF-MS. Analytical Chemistry,2005,77(9)2818-2825.
    [79]刘永杰,张金振,曹明章,等.酶抑制法快速检测农产品农药残留的研究与应用.现代农药,2004,3(2):25-28.
    [80]胡蓉.酶抑制法在蔬菜农药残留快速检测中的应用.辣椒杂志,2013,4:42-44.
    [81]林春绵,胡晓燕,张安平.酶抑制法快速检测有机磷农药残留的研究进展.浙江工业大学学报,2009,37(4):386-391.
    [82]赵永福,董学芝.酶抑制技术检测蔬果农药残留量研究进展.分析测试技术与仪器,2005,11(4):277-286.
    [83]王林,王晶,张莹,等.蔬菜中有机磷和氨基甲酸酯类农药残留量的快速检测方法研究.中国食品卫生杂志,2003,15(1):39-41.
    [84]王小红.酶抑制法检测蔬菜中的有机磷农药残留的方法研究:[硕士学位论文].武汉:华中农业大学.2006.
    [85]王文,刘瑾,盛伟楠,等.采用酶抑制法检测大蒜中农药残留的改进方法.食品科学,2013,34(12):135-139.
    [86]Amine A., Mohammadi H., Bourais I., et al. Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosensors and Bioelectronics,2006,21:1405-1423.
    [87]Jin S.Y, Xu Z.C., Chen J.P., et al. Determination of organophosphate and carbamate pesticides based on enzyme inhibition using a pH-sensitive fluorescence probe. Analytica Chimica Acta,2004, 523:117-123.
    [88]丁晓燕,卢平,胡德禹.酶联免疫分析方法在有机磷农药残留检测中的应用研究进展.山地农业生物学报,30(6):547-553.
    [89]刘凤咎,苏海涛,贾军燕,等.酶联免疫法在农药残留检测中的应用.农业工程技术,2013,6:38-42.
    [90]王硕,刘佳,王俊平.除虫脲农药残留的酶联免疫测定方法.农业环境科学学报,2005,24(6):1254-1258.
    [91]吴雅欣.有机磷农药多残留ELISA方法探讨:[硕士学位论文].北京:中国农业科学院.2009.
    [92]华修德.有机磷农药单残留及多残留免疫分析方法的建立与应用:[博士学位论文].南京:南京农业大学.2012.
    [93]鲍华军.高效氟吡甲禾灵和精吡氟禾草灵酶联免疫吸附测定方法研究:[硕士学位论文].南京:南京农业大学.2010.
    [94]Urruty L., Montury M., Braci M., et al. Comparison of two recent solventless methods for the determination of procymidone residues in wines:SPME/GC/MS and ELISA tests. Journal of Agricultural and Food Chemistry,1997,45(5):1519-1522.
    [95]Qian G.L., Wang L.M., Wu YR., et al. A monoclonal antibody-based sensitive enzyme-linked immunosorbent assay (ELISA) for the analysis of the organophosphorous pesticides chlorpyrifos-methyl in real samples. Food Chemistry,2009,117:364-370.
    [96]Anastassiades M., Lehotay S., Stajnbaher D., et al. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in procuce. Journal of AOAC International,2003,86(2):412-431.
    [97]Lehotay S., De Kok A, Hiemstra M., et al.alidation of a fast and easy method for the determination of residues from 229 pesticides in fruits and vegetables using gas and liquid chromatography and mass spectrometric detection. Journal of AOAC International,2005,88(2): 595-614.
    [98]Lehotay S., Son K.A, Kwon H., et al. Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables.Journal of Chromatography A,2010, 1217:2548-2560.
    [99]Lehotay S., Mastovska K., Yun S.J. Evaluation of two fast and easy methods for pesticide residue analysis in fatty food matrixes. Journal of AOAC International,2005,88(2):630-638.
    [100]幸让新,马菁,刘娅,等QuEChERS方法在农产品农药残留分析中的应用进展.保险与加工,2009,3:47-50.
    [101]洪萍,徐陆妹,楼冰冰,等.QuEChERS方法及其在农药残留分析中的应用进展.中国卫生检验杂志,2004,18(4):756-758.
    [102]Schenck F.J., Hobbs J.E. Evaluation of the quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach to pesticide residue analysis. Bulletin of Environmental Contamination and Toxicology,2004,73:24-30.
    [103]Paya P., Anastassiades M., Mack D., et al. Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Analytical and Hoanalytical Chemistry,2008,390(3):947-959.
    [104]Lesueur C., Knittl P., Gartner M., et al. Analysis of 140 pesticides from conventional farming foodstuff samples after extraction with the modified QuEChERS method. Food Control,2008,19: 906-914.
    [105]Koesukwiwat U., Lehotay S., Mastovska K., et al. Extension of the QuEChERS method for pesticide residues in cereals to flaxseeds, peanuts, and doughs. Journal of Agricultural and Food Chemistry,2010,58:5950-5958.
    [106]Chen G.Q., Cao P.Y, Iiu R.J. A multi-residue method for fast determination of pesticides in tea by ultra performance liquid chromatography-electrospray tandem mass spectrometry combined with modified QuEChERS sample preparation procedure.Food Chemistry,2011,125:1406-1411.
    [107]卢大胜,熊丽蓓,温忆敏,等.QuEChERS前处理方法联合GPC-GC/MS在测定蔬菜水果农药残留中的应用.质谱学报,2011,32(4):229-235.
    [108]Zhao P.Y, Wang L., Zhou L., et al. Multi-walled carbon nanotubes as alternative reversed-dispersive solid phase extraction materials in pesticide multi-residue analysis with QuEChERS method. Journal of Chromatography A 2012,1225:17-25.
    [109]Zhao P.Y, Wang L., Luo J.H., et al. Determination of pesticide residues in complex matrices using multi-walled carbon nanotubes as reversed-dispersive solid phase extraction sorbent. Journal of Separation Science,2012,35:153-158.
    [110]Zhao P.Y, Wang L., Jiang YP., et al. Dispersive cleanup of acetonitrile extracts of tea samples by mixed multiwalled carbon nanotubes, primary secondary amine, and graphitized carbon black sorbents. Journal of Agricultural and Food Chemistry,2012,60:4026-4033.
    [111]Zhao P.Y, Fan S.F., Yu C.S., et al. Multiplug filtration clean-up with multiwalled carbon nanotubes in the analysis of pesticide residues using LC-ESI-MS/MS. Journal of Separation Science,2013,36: 3379-3386.
    [112]Zhao P.Y, Huang B.Y, Li YJ., et al. Rapid multiplug filtration cleanup with multiple-walled carbon nanotubes and gas chromatography-triple-quadruple mass spectrometry detection for 186 pesticide residues in tomato and tomato products. Journal of Agricultural and Food Chemistry, 2014,62:3710-3725.
    [113]Lendoiro E., Quintela O., Castro AD., et al. Target screening and confirmation of 35 licit and illicit drugs and metabolites in hair by LC-MSMS. Food Science International,2012,217: 207-215.
    [114]Wille K., Noppe H.,Verheyden K., Bussche J.V, Wulf et a.l "Validation and application of an LC-MS/MS method for the simultaneous quantification of 13 Pharmaceuticals in seawater. Analytical Bioanahytical Chemistry,2010,397(5):1797-1808.
    [115]Ma S.R., Turino G.M., Lin YY Quantitation of desmosine and isodesmosine in urine, plasma, and sputum by LC-MS/MS as biomarkers for elastin degradation. Journal of Chromatography B,2011, 879 (21):1893-1898.
    [116]Mari A., Montoro P., Pizza C., et al. Liquid chromatography tandem mass spectrometry determination of chemical markers and principal component analysis of Vitex agnuscastus L. fruits (Verbenaceae) and derived food supplements. Journal of Pharmaceutical and Biomedical Analysis, 2012,70:224-230.
    [117]Fan S.F., Wang X.P., Li P.W., et al. Simultaneous determination of 13 phytohormones in oilseed rape tissues by liquid chromatography-electrospray tandem mass spectrometry and the evaluation of the matrix effect. Journal of Separation Science,2011,34,640-650.
    [118]Paul K., Tang L. From ions in solution to ions in the gas phase. Analytical Chemistry,1993, 65(22):972A-986A
    [119]向平,沈敏,卓先义,液相色谱-质谱分析中的基质效应.分析测试学报,2009,28 (6):753-756.
    [120]King R., Bonfiglio R., Fernandez-Metzler C., et al. Mechanistic investigation of ionization suppression in electrospray ionization. Journal of the American Society for Mass Spectrometry, 2000,11 (11):942-950.
    [121]Bonfiglio R., King R.C., Olah T.V, et al. The effects of sample preparation methods on the variability of the electrospray ionization response for model drug compounds. Rapid Communications in Mass Spectrometry,1999,13:1175-1185.
    [122]Van Hout M.W.J., Niederlander H.A.G., de Zeeuw R. A, et al. Ion suppression in the determination of clenbuterol in urine by solid-phase extraction atmospheric pressure chemical ionization ion-trap mass spectrometry. Rapid Communications in Mass Spectrometry,2003,17 (3): 245-250.
    [123]Matuszewski B.K., Constanzer M.L., Chavez-Eng C.M., Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Analytical Chemistry,2003, 75 (13):3019-3030.
    [124]Ismaiel O.A, Halquist M.S., Elmamly M.Y, et al Monitoring phospholipids for assessment of matrix effects in liquid chromatography-tandem mass spectrometry method for hydrocodone and pseudoephedrine in human plasma. Journal of Chromatography B,2007,859 (1):84-93.
    [125]Dams R, Huestis M.A, Lambert W.E., et al. Matrix effect in bio-analysis of illicit drugs with LC-MS/MS:influence of ionization type, sample preparation, and biofluid. Journal of the American Society for Mass Spectrometry,2003,14 (11):1290-1294.
    [126]Ghosh C., Shinde C.P., Chakraborty B.S. Influence of ionization source design on matrix effects during LC-ESI-MS/MS analysis. Journal of Chromatography B,2012,893-894:193-200.
    [127]Mai De Steene J.C., Lambert W.E. Comparison of matrix effect in HPLC-MS/MS and UPLC-MS/MS analysis of nine basic Pharmaceuticals in surface waters. American Society for Mass Spectrometry,2008,19:713-718.
    [128]Ferrer C., Lozano A., Aguera A., et al. Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables. Journal of Chromatography A,2011,1218: 7634-7639.
    [129]Bogialli S., Ciampanella C., Curini R., et al. Development and validation of a rapid assay based on liquid chromatography-tandem mass spectrometry for acrolide antibiotic residues in eggs. Journal of Chromatogr A,2009,12(16):6810-6815.
    [130]Chambers E., Wagrowski-Diehl D.M., Liu Z.L., et al. Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses. Journal of Chromatography B,2007,852:22-34.
    [131]Souverain S., Rudaz S.,Veuthey J.L. Matrix effect in LC-ESI-MS and LC-APCI-MS with off-line and on-line extraction procedures. Journal of Chromatography A,2004,1058:61-66.
    [132]Cappiello A, Famiglini G., Pierini E., et al. Advanced liquid chromatography-mass spectrometry interface based on electron ionization. Analytical Chemistry,2007,79:5364-5372.
    [133]Hernadez F., Sancho J.Y., Pozo O.J. Critical review of the application of liquid chromatography/mass spectrometry to the determination of pesticide residues in biological samples. Analytical and Bioanalytical Chemistry,2005,382 (4):934-946.
    [134]Fang G.Z., Wang X.N., Wang S. Multiwalled carbon notubes as SPE adsorbents for simultaneous determination of seven sulfonylurea herbicides in environmental water by LC-MS/MS. Chromatographia,2010,72 (5-6):403-409.
    [135]Food and Agriculture Organization, World Health Organization. Report of the 41 Session of the Codex Committee on Pesticide Residues. Beijing, China,2009.
    [136]Food and Agriculture Organization, World Health Organization. Report of the 42 Session of the Codex Committee on Pesticide Residues. Xian, China,2010.
    [137]张红,陈子雷,王文正,等.小作物中农药残留限量标准制定的研究.农产品质量与安全,2012,2:32-35.
    [138]宋稳成,单炜力,潘灿平,等.小作物用农药登记管理研究.中国农学通报,2010,26(2):212-215.
    [139]Food and Agriculture Organization, World Health Organization. Report of the 43 Session of the Codex Committee on Pesticide Residues. Beijing, China,2011.
    [140]Food and Agriculture Organization, World Health Organization. Report of the 44 Session of the Codex Committee on Pesticide Residues. Shanghai, China,2012.
    [141]Food and Agriculture Organization, World Health Organization. Report of the 45 Session of the Codex Committee on Pesticide Residues. Beijing, China,2013.
    [142]孙彩霞,董国堃,章强华.欧盟食品农药残留限量的整合与发展.农药,2009,48(1):7-9.
    [143]Index of crops/crop groups/crop subgroup, and crop definitions. August 23,2012. IR-4.http://ir4.ratgers.edu/other/CropGroup.htm.
    [144]Positive list system for agricultural chemical residues in food. 日本厚生劳动 省.httpy/www.mhlw.go.jp/english/policy/health-medical/food/index.html.
    [145]Food and Agriculture Organization, World Health Organization. Report of the 40 Session of the Codex Committee on Pesticide Residues. Hangzhou, China,2008.
    [146]European Commission. Guidance document:Guidelines on comparability, extrapolation, group tolerances and data requirements for setting MRLs. SANCO 7525/VI/95-rev.9.2011.
    [147]Food and Agriculture Organization, World Health Organization. Joint FAO/WHO Standards Programme, Codex Committee on Pesticide Residues, Fotry Sixth Session. Nanjing, China,2014.
    [148]魏启文,陶传江,宋稳成,等.农药风险评估及其现状与对策研究.农产品质量与安全,2010,2:38-42.
    [149]汪禄祥,黎其万,刘家富,等.风险分析在农产品质量安全管理中的应用.中国农学通报,2006,22(9):85-87.
    [150]章力建,张星联,蒋士强.农产品质量安全风险监测和评估.中国农业科技导报,2013,15(4):8-13.
    [151]张韩杰,闫艳春.农药残留及微生物在农药降解中的应用与展望.植物保护,2004,1:31-35.
    [152]何亚斌.不同蔬菜中农药残留与消解规律的初步研究:[硕士学位论文].武汉:华中农业大学.2005.
    [153]秦曙,庞斌,乔雄梧,等.施药与采样技术对代森锰锌在苹果和土壤中残留量的影响.环境化学,2014,33(1):69-73.
    [154]张夕林,丁晓丽,钱允辉,等.施药时间和次数与稻草中农药残留量的关系分析.江苏省昆虫学会第十二届会员代表大会论文摘要集.2008.
    [155]施海萍,叶建人,蔡娟娟,等.农药不同使用方法影响作物上农药残留量的试验研究.中国植保导刊,2004,24(5):32-33.
    [156]Wrubel J. Pesticide product registration. New York:New York State Department of Environmental Conservation.2004.
    [157]庾琴,周华,王静,等.啶虫脒在环境中的降解代谢及其安全性的研究进展.农药,2007,46(4):223-226.
    [158]Haver W.V Determination of carbendazim and thiophanate-methyl resides in some vegetables and fruits by high pressure liquid chromatography. Zeitschrift fur Lebensmittel-Untersuchung und-Forschung,1981,172:1-3.
    [159]Prousalis K.P., Polygenis D.A, Syrikou A, et al. Determination of carbendazim, thiabendazole, and o-phenylphenol residues in lemons by HPLC following sample clean-up by ion-pairing.Analytical and Bioanalytical Chemistry,2004,379:458-463.
    [160]Veneziano A, Vacca G., Arana S., et al. Determination of carbendazim, thiabendazole and thiophanate-methyl in banana (Musa acuminata) sample imported to Italy. Food Chemistry,2004, 87:383-386.
    [161]Sukul P., Spiteller M. Metalaxyl:persistence, degradation,metabolism, and analytical methods.Review of Environmental Contamination Toxicology,2000,164,1-26.
    [162]Friesen G. H., Wall, D. A Effect of Application on Efficacy ofFluazifop-P-Butyl in Flax.Weed Technology,1991,5,504-508.
    [163]Racke K D. Environmental fate of chlorpyrifos. Review of Environmental Contamination Toxicology,1993,131,1-150.
    [164]Leistra M., ZweersA J., Warinton J. S., et al. Fate of insectide lambda-cyhalothrinin ditch enclosures differing in vegetation density. Pest Management Science,2003,60,75-84.
    [165]Wu YX., Tiedemann APhysiological effects of azoxystrobin and epoxiconazole on senescence and the oxidatives status of wheat. Pesticide Biochemistry and Physiology,2001,71:1-10.
    [166]贝亚维,股秀慧,陈华平,等.噻嗪酮的作用方式研究.浙江农业学报,1995,8(1):30-33.
    [167]Yamazaki Y, Ninomiya T. Determination of benomyl, diphenyl, o-phenylphenol, thiabendazole, chlorpyrifos, methidathion, and methyl parathion in oranges by solid-phase extraction, liquid chromatography, and gas chromatography. Journal of AOAC International,1999,82(6): 1474-1478.
    [168]Nauen R., Ebbinghaus-Kintscher U., Salgado VL., et al. Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pesticide Biochemistry and Physiology, 2003,76:55-69.
    [169]Zhou Q.X., Ding YJ., Xiao J.P. Sensitive determination of thiamethoxam, imidacloprid and acetamiprid in environmental water samples with solid-phase extraction packed with multiwalled carbon nanotubes prior to high-performance liquid chromatography.Analytical and Bioanalytical Chemistry,2000,385:1520-1525.
    [170]Ostby J., Kelce W.R., Lambright C., et al. The fungicide procymidone alters sexual differentiation in the male rat by acting as an androgen-receptor antagonist in vivo and in vitro. Toxicology and Industrial Health,1999,15(1-2):80-93.
    [171]Chen S.H., Hu M.Y, Liu J.J., et al. Biodegradation of beta-cypermethrin and 3-phenoxybenzoic acid by a novel Ochrobactrum lupine DG-S-01. Journal of Hazardour Materials,2011,187: 433-440.
    [172]吕晓玲QuEChERS方法在农药残留检测中的应用研究:[硕士学位论文].北京:中国农业科学院.2010.
    [173]刘满满,康澍,姚成.QuEChERS方法在农药多残留检测中的应用研究进展.农药学学报,2013,15(1):8-22.
    [174]Vn De Steene J.C., Lambert W.E Comparison of matrix effects in HPLC-MS/MS and UPLC-MS/MS analysis of nine basic Pharmaceuticals in surface waters. Journal of the American Society for Mass Spectrometry,2008,19(5):713-718.
    [175]Kruve A, Leito I., Herodes K. Combating matrix effects in LC/ESI/MS:The extrapolative diution approach. Anarytica Chimica Acta,2009,651:75-80.
    [176]Pucci V, Di Palma S., Alfieri A, et al. Anovel strategy for reducing phospholipids-based matrix effect in LC-ESI-MS bioanalysis by means of HybridSPE. Journal of Pharmaceutical and Biomedical Analysis,2009,50:867-871.
    [177]Ferrer C., Lozano A, Aguera A, et al. Overcoming matrix effects using the dilution approach in mult ires idue methods for fruits and vegetables. Journal of Chromatography A 2011,1218: 7634-7639.
    [178]文人.良好农业规范.福建质量信息,2007,9:17-18.
    [179]吕婕,吕青,李成德.良好农业规范(GAP)的现状及应用研究.安徽农业科学,2009,在3779(12):5812-5813,5816.
    [180]周顺利,周丽丽,肖相芬,等良好农业规范(GAP)及其在中国作物安全生产中的应用现状与展望.中国农业科技导报,2009,11(5):42-48.
    [181]中华人民共和国农业部.中华人民共和国农业行业标准NY/T 78-2004.农药残留试验准则.2004.
    [182]刘静.四种拟除虫菊酯类农药在苹果中的残留降解及其影响因素研究:[硕士学位论文].杨凌:西北农林科技大学.2009.
    [183]钱允辉,王志强,张夕林,等.水稻中后期相关农药使用次数与农药残留动态关系的研究.中国农业科学,2008,41(9):2678-2685.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700