用户名: 密码: 验证码:
肺动脉高压患者右心功能与预后的评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:超声心动图评价肺动脉高压患者右心功能与心脏磁共振和右心导管测值的对比研究(PLos one.2013;8(8):e71276)
     目的:本研究通过分析超声心动图检测的右心功能指标与心脏磁共振检测的右心室射血分数和右心导管检测的血流动力学指标的相关性,探讨超声心动图指标在评价动脉性肺动脉高压患者右心功能的作用。
     方法:于2010年10月至2012年4月,前瞻性入选在阜外心血管病医院首次诊断为动脉性肺动脉高压的住院患者30例,包括特发性肺动脉高压24例,结缔组织病相关性肺动脉高压5例,遗传性肺动脉高压1例。所有入选患者于一周内完成右心导管、超声心动图和心脏磁共振检查。超声心动图检测指标包括:三尖瓣环收缩期位移幅度(tricuspid annular plane systolic excursion, TAPSE)、三尖瓣环收缩期峰值运动速度(tricuspid annular plane systolic velocity, S')、右心室面积变化分数(right ventricular fractional area changes, RVFAC)、三尖瓣环等容收缩期加速度(isovolumic contraction acceleration, IVA)、右心室做功指数(right ventricular myocardial performance index, RVMPI)和右心室与左心室横径之比(ratio of right ventricular end-diastolic transverse diameter to left ventricular end-diastolic transverse diameter, RVETD/LVETD)。分析超声心动图检测的右心功能指标与心脏核磁共振检测的右心室射血分数及右心导管检测的血流动力学指标的相关性。
     结果:1.超声心动图检测的右心功能指标与心脏磁共振检测的右心室射血分数的相关性为:TAPSE (r=0.440, P=0.015), S'(r=0.444, P=0.016), IVA (r=0.600, P=0.001)、RVFAC (r=0.416, P=0.022)、RVETD/LVETD (r=-0.649, P<0.001)均与心脏磁共振检测的右心室射血分数的相关性均具有统计学意义,而RVMPI与心脏磁共振检测的右心室射血分数的相关性无统计学意义(r=-0.027,P=0.888)。在校正右房平均压、肺动脉平均压和肺血管阻力后,只有IVA和RVETD/LVETD可以独立反映右心室射血分数。2.超声心动图检测的右心功能指标与右心导管检测的血流动力学指标的相关性为:TAPSE(r=-0.615, P<0.001)、S'(r=-0.557, P=0.002)、RVFAC (r=-0.454, P=0.012和RVETD/LVETD (r=0.543, P=0.002)与肺血管阻力的相关性均具有统计学意义;TAPSE (r=-0.378, P=0.039)、RVFAC(r=-0.369,p=0.0045)和RVMPI (r=-0.367, P=0.046)与肺动脉平均压的相关性具有统计学意义;TAPSE (r=-0.403, P=0.027)、IVA (r=-0.408, P=0.025)和RVETD/LVETD (r-0.395, P=0.031)与右房平均压的相关性具有统计学意义。结论:IVA和RVETD/LVETD可以独立反映右心室射血分数;TAPSE、S'、RVFAC和RVETD/LVETD也可以反映肺血管阻力。
     第二部分:PET技术评价肺动脉高压患者右心功能的研究(Clin Nucl Med.2014,39(5):426-430)
     目的:本研究应用正电子发射断层显像技术(positron emission tomography, PET)检测肺动脉高压患者空腹和糖负荷状态下心室18F-氟脱氧葡萄糖(18F-fluorodeoxy-glycose, FDG)标准摄取值,分析心室葡萄糖摄取指标与心脏磁共振检测的右心室射血分数及右心导管检测的血流动力学指标的相关性,探讨这些指标在评价肺动脉高压患者右心功能中的价值。
     方法:于2010年10月至2012年4月,前瞻性入选在阜外心血管病医院首次诊断为肺动脉高压的住院患者38例,包括特发性肺动脉高压21例,先天性心脏病相关性肺动脉高压修补术后5例,结缔组织病相关性肺动脉高压6例,遗传性毛细血管增多症相关性肺动脉高压1例,遗传性肺动脉高压1例和慢性血栓栓塞性肺动脉高压4例。所有入选患者均于1周内完成右心导管、PET和心脏磁共振检查。检测患者空腹和糖负荷状态下心室FDG标准摄取值(standard uptake value, SUV),并校正部分容积效应,计算右心室与左心室SUV之比(SUV-R/L)。分析葡萄糖摄取指标与心脏磁共振检测的右心室射血分数(right ventricular ejection fraction, RVEF)和右心导管检测的血流动力学指标的相关性。
     结果:糖负荷状态下患者右心室FDG标准摄取值(SUV-R)和左心室FDG标准摄取值(SUV-L)均高于空腹状态(1.43±0.79vs.1.09±0.37),差异具有统计学意义(P=0.005)。患者空腹和糖负荷状态下,SUV-R和SUV-R/L与心脏磁共振检测的RVEF均呈显著负相关(空腹状态:r=-0.341,P=0.036和r=-0.345,P=0.034;糖负荷状态:r=-0.362,P=0.028和r=-0.512,P=0.001)。患者空腹和糖负荷状态下,SUV-R和SUV-R/L与肺血管阻力均呈显著正相关(空腹状态:r=0.627,P<0.001和r=0.576,P<0.001;糖负荷状态:r=0.392,P=0.016和r=0.615,P<0.001)。但在校正年龄、体重指数、性别和血流动力学指标后只有SUV-R/L能够独立反映RVEF (P=0.048)。
     结论:肺动脉高压患者右心室与左心室葡萄糖摄取量之比可以反映肺动脉高压患者的右心功能,在糖负荷状态下较空腹状态下意义更大。
     第三部分:血浆CXCL10、CXCL12和CXCL16评价特发性肺动脉高压患者右心功能的研究(Heart&Lung.已接收)
     目的:对比研究特发性肺动脉高压患者和正常对照组血浆CXC-趋化因子配体10(CXC-Chemokine Ligand10,CXCL10)、CXCL12和CXCL16水平,探讨这三项生物学标记物在评价特发性肺动脉高压患者右心功能中的价值。
     方法:于2010年10月至2012年7月,前瞻性入选在阜外心血管病医院首次诊断为特发性肺动脉高压的住院患者61例和性别、年龄匹配的正常对照组20例。采集患者和正常对照组外周静脉血标本,离心处理后用酶联免疫吸附测定法检测血浆CXCL10、CXCL12和CXCL16水平。所有患者均行超声心动图和右心导管检查,其中29例患者行心脏磁共振检查。血标本采集、超声心动图、右心导管和心脏磁共振检查于一周内完成。分析患者血浆生物学标记物水平与影像学技术检测右心功能指标及右心导管检测血流动力学指标的相关性。
     结果:特发性肺动脉高压患者血浆CXCL10、CXCL12和CXCL16水平高于正常对照组,差异有统计学意义(202.79±104.58pg/ml vs.103.56±65.00pg/ml,P<0.001;2656.55±459.52pg/ml vs.2323.02±400.87pg/ml,p=-0.004和2.83±0.62ng/ml vs.2.28±0.47ng/ml,P=0.001).患者组血浆CXCL10、CXCL12和CXCL16水平均与N-末端B型脑钠肽原(r=0.452,P<0.001;r=-0.458,p=0.001和r=-0.590,P=0.001)、三尖瓣环收缩期位移幅度(r=0.364,P<0.001;r=-0.479,P<0.001和r=-0.569,P=0.017)和右心室射血分数(r=0.300,p=-0.026;r=0.280,p=-0.029和r=-0.507,P=0.003)呈显著正相关。血浆CXCL10和CXCL12水平与mRAP呈正相关(r=0.387,p=0.004和r=0.255,p=0.049)。但CXCL16水平与血流动力学指标的相关性均无统计学意义。三项生物学标记物水平与肺血管阻力和mPAP的相关性也无统计学意义。
     结论:特发性肺动脉高压患者血浆CXCL10.CXCL12和CXCL16水平较正常人升高,并可以反映患者的右心功能。
     第四部分:红细胞分布宽度评价艾森曼格综合症患者预后的研究(Clin Chem Lab Med.2014,52(5):743-750)
     目的:本研究旨在探讨红细胞分布宽度在预测艾森曼格综合征患者生存中的意义。
     方法:回顾性分析于2005年1月至2009年10月首次诊断为艾森曼格综合症住院患者的临床资料,自2009年10月开始,每6个月±2周对患者随访一次,随访方式包括电话、信函、门诊和住院,随访终点为全因死亡,随访信息由专门设计的网络数据库记录。随访截止时间为2012年12月31日,生存时间定义为行右心导管的时间到死亡或随访结束的时间。用ROC曲线分析产生红细胞分布宽度预测患者死亡的界值,应用Kaplan-Meier曲线描述红细胞分布宽度高于界值的患者和低于界值的患者的生存,用Log-Rank方法比较两组患者之间生存是否存在统计学差异。用多因素COX风险比例模型分析影响艾森曼格综合征患者生存的因素。
     结果:本研究共纳入艾森曼格综合征患者109例,中位随访时间为4.2年(3.7-5.0年),在此期间21例(19.3%)患者死亡。患者基线红细胞分布宽度与肺动脉平均压(r=0.271,P=0.004)和全肺阻力(r=0.465,P<0.001)呈显著正相关,与混合静脉血氧饱和度(r=-0.286,P=0.003)和体动脉血氧饱和度(r=-0.423,P<0.001)呈显著负相关。该组艾森曼格综合征患者的1年、3年和5年的生存率分别为94%,87%和78%。Kaplan-Meier生存分析显示基线红细胞分布宽度大于或等于13.9%的患者的生存率较红细胞分布宽度小于13.9%的患者更低,Log-rank检验差异具有统计学意义(P=0.001)。多因素Cox回归分析显示红细胞分布宽度为艾森曼格综合征患者生存的独立预测因子,风险比为1.162(95%可信区间:1.036-1.302;P=0.010)。
     结论:基线红细胞分布宽度与艾森曼格综合征患者的血流动力学指标相关,是艾森曼格综合征患者生存的独立预测因子。
Part I:Echocardiographic Parameters in Patients with Pulmonary Arterial Hypertension:Correlations with Right Ventricular Ejection Fraction Derived From Cardiac Magnetic Resonance and Hemodynamics
     Purpose:To analyze the correlations between the echocardiographic parameters and RVEF as well as hemodynamics, in order to systematically elucidate the role of these parameters to assess the right ventricular function in patients with pulmonary arterial hypertension.
     Methods:Thirty patients were enrolled prospectively including24with idiopathic PAH,5with PAH associated with connective tissue diseases and1with hereditary PAH. Right heart catheterization, echocardiography and cardiac magnetic resonance (CMR) were performed within1week interval. The echocardiographic parameters measured included: tricuspid annular plane systolic excursion (TAPSE), tricuspid annular plane systolic velocity (S'), right ventricular fractional area changes,(RVFAC), isovolumic contraction acceleration (IVA), right ventricular myocardial performance index,(RVMPI) and ratio of right ventricular end-diastolic transverse diameter to left ventricular end-diastolic transverse diameter (RVETD/LVETD). The correlations between echocardiographic parameters and right ventricular ejection fraction (RVEF) derived from CMR as well as hemodynamics were analyzed.
     Results:All echocardiographic parameters except RVMPI correlated significantly with RVEF (TAPSE,r=0.440, P=0.015; S',r=0.444, P=0.016; IVA,r=0.600, P=0.001; RVFAC, r=0.416, P=0.022; RVETD/LVETD, r=-0.649, P<0.001; RVMPI,r=-0.027, P=0.888). After adjusted for mean right atrial pressure, mean pulmonary arterial pressure and pulmonary vascular resistance (PVR), only IVA and RVETD/LVETD could independently predict RVEF. Four echocardiographic parameters displayed significant correlations with PVR (TAPSE, r=-0,615, P<0.001; S',r=-0.557, P=0.002; RVFAC, r=-0.454, P=0.012; RVETD/LVETD, r=0.543, P=0.002). Moreover, TAPSE (r=-0.403, P=0.027), IVA (r=-0.408, P=0.025) and RVETD/LVETD (r=0.395, P=0.031) had significant relationships with mRAP. TAPSE, RVFAC and RVMPI showed significant correlations with mPAP (r=-0.378,P=0.039; r=-0.369, P=0.045; r=0.367, P=0.046).
     Conclusions:The echocardiographic parameters IVA and RVETD/LVETD can reflect RVEF independently regardless of hemodynamics in patients with PAH. In addition, TAPSE, S', RVFAC and RVETD/LVETD can also reflect PVR in PAH patients.
     Part II:Significance of PET in evaluating right ventricular function in patients with Pulmonary Hypertension
     Purpose:This study was designed to measure18F-fluorodeoxyglycose (FDG) uptake of ventricles in patients with pulmonary hypertension by positron emission tomography (PET) in fasting and glucose loading conditions, and to investigate the correlations between FDG uptake parameters and right ventricular function as well as hemodynamics.
     Methods:Thirty eight patients were included prospectively idiopathic pulmonary arterial hypertension21patients, congenital heart disease associated pulmonary arterial hypertension after repair surgery5patients, pulmonary hypertension associated with connective tissue diseases6patients, pulmonary hypertension with hereditary haemorrhagic telangiectasia1patient, hereditary pulmonary hypertension1patient and chronic thromboembolic pulmonary hypertension4patients. All patients erolled underwent FDG PET imaging in fasting and glucose loading conditions. The FDG standardized uptake value (SUV) corrected for partial volume effect in both right ventricle (RV) and left ventricle (LV) were measured, in addition, the ratio of RV to LV SUV (SUV-R/L) was calculated. Right heart catheterization and cardiac magnetic resonance (CMR) were performed in all patients within1week. The correlations between FDG uptake parameters and right ventricular function as well as hemodynamics were analyzed.
     Results:SUV of RV (SUV-R) and SUV of LV (SUV-L) were significantly higher in glucose loading than in fasting condition. SUV-R and SUV-R/L in fasting condition showed significant relations with RV ejection fraction (RVEF) derived from CMR (r=-0.341, P=0.036and r=-0.345, P=0.034), and in glucose loading condition (r=-0.362, P=0.028and r=-0.512, P=0.001). In fasting condition, SUV-R and SUV-R/L showed significantly positive correlations with pulmonary vascular resistance (PVR)(r=0.627, P<0.001and r=0.576, P<0.001) as well as in glucose loading condition (r=0.392, P=0.016and r=0.615, P<0.001). Only SUV-R/L in glucose loading condition could independently predict RVEF after adjusted for age, body mass index, gender, mean right atrial pressure, mean pulmonary arterial pressure and PVR (P=0.048).
     Conclusions:The glucose uptake of right ventricle increases with right ventricular function decrease in PH patients, which is more significant in glucose loading than in fasting condition.
     Part Ⅲ:Increased Levels of Plasma CXC-Chemokine Ligand10,12and16are associated with Right Ventricular Function in Patients with Idiopathic Pulmonary Arterial Hypertension
     Purpose:To investigate the significance of plasma CXC-Chemokine Ligand10(CXCL10), CXC-Chemokine Ligand12(CXCL12) and CXC-Chemokine Ligand16(CXCL16) for assessing right ventricular function in patients with idiopathic pulmonary arterial hypertension (IPAH).
     Methods:Sixty one patients with IPAH from Pulmonary Vascular Diseases Center of Fu Wai hospital between October2010and July2012were enrolled prospectively. Peripheral venous blood samples were collected from61patients with IPAH and20healthy volunteers. Plasma levels of all three biomarkers CXCL10, CXCL12and CXCL16were measured by enzyme-linked immunosorbent assay. Echocardiography and right heart catheterization were performed in all patients, while cardiac magnetic resonance was performed in29patients. Echocardiography, cardiac magnetic resonance, RHC and blood samples collection were conducted in three-day interval. The Spearman correlation test was performed to assess correlations between levels of biomarkers and right functional parameters.
     Results:Plasma CXCL10, CXCL12and CXCL16concentrations were increased significantly in IPAH patients compared with controls (202.79±104.58pg/ml vs103.56±65.00pg/ml, P<0.001;2656.55±459.52pg/ml vs.2323.02±400.87pg/ml, P=0.004和2.83±0.62ng/ml vs2.28±0.47ng/ml, P=0.001). CXCL10, CXCL12and CXCL16correlated significantly with NT-proBNP (r=0.452, P<0.001;r=0.364, P<0.001and r=0.300, P=0.026), TAPSE derived from echocardiography (r=-0.458, P=0.001; r=-0.479, P<0.001and r=-0.302, P=0.026) and RVEF derived from cardiac magnetic resonance (r=-0.590, P=0.001;r=-0.569, P=0.017and r=-0.507, P=0.003).
     Conclusions:Increased levels of CXCL10, CXCL12and CXCL16can reflect right ventricular dysfunction in patients with IPAH.
     Part Ⅳ:Red Blood Cell Distribution Width Predicts Survival in Patients with Eisenmenger Syndrome
     Purpose:This study aimed to investigate the significance of RDW for predicting survival in patients with Eisenmenger syndrome (ES).
     Methods:We retrospectively reviewed the clinical records and collected baseline data for patients newly diagnosed with ES in our hospital between January2005and October2009. Follow-up data were collected periodically using a specifically designed network database until December31,2012. The end point was all-cause death. A receiver operating characteristic (ROC) curve was generated to identify the optimal cutoff value of RDW for predicting survival. Survival curves were calculated using the Kaplan-Meier method and compared using log-rank tests. Univariate Cox regression analyses were performed to identify variables related to survival. All variables with a P value<0.05were tested in a forward stepwise multivariate Cox proportional hazards model, and hazard ratios with95%confidence intervals (CI) were expressed.
     Results:A total of109patients with ES were included in the study. Twenty-one patients (19.3%) died during a median follow-up period of4.2years (interquartile range3.7-5.0years). Baseline RDW was significantly correlated with mixed venous oxygen saturation (r=-0.286, P=0.003), arterial oxygen saturation (r=-0.423, P<0.001), mean pulmonary arterial pressure (r=0.271, P=0.004) and total pulmonary resistance (r=0.465, P<0.001). The1-,3-and5-year survival rates for all109patients were94%,87%and78%, respectively. Kaplan-Meier analysis showed that patients with RDW>13.9%had a lower survival rate than patients with RDW<13.9%(P=0.001). Multivariate Cox regression analysis showed that RDW was an independent prognostic marker in ES, with a hazard ratio of1.162(95%CI1.036-1.302; P=0.010).
     Conclusions:Baseline RDW correlates with hemodynamics and is an independent prognostic marker in ES.
引文
[1]Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS, Gomez-Sanchez MA, Jondeau G, Klepetko W, Opitz C, Peacock A, Rubin L, Zellweger M, Simonneau G; ESC Committee for Practice Guidelines (CPG). Guidelines for the diagnosis and treatment of pulmonary hypertension:the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT) [J]. Eur Heart J.2009,30(20):2493-2537.
    [2]Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, Gomez Sanchez MA, Krishna Kumar R, Landzberg M, Machado RF, Olschewski H, Robbins IM, Souza R. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol [J].2013,62(25 Suppl):D34-41.
    [3]Humbert M, Sitbon O, Chaouat. A Pulmonary arterial hypertension in France:results from a national registry. Am J Respir Crit Care Med 2006; 173(9):1023-1030.
    [4]董琳、何建国、熊长明,柳志红,曾伟杰,倪新海,顾晴,赵智慧,程显声.成人肺动脉高压疾病特征的多中心临床研究.中华医学杂志.2012,92(16):1087-1090.
    [5]D'Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Kernis JT, Survival in patients with primary pulmonary hypertension:Results from a national prospective registry [J]. Ann Intern Med.1991;115(5):343-349.
    [6]Koh ET, Lee P, Gladman DD. Pulmonary hypertension in systemic sclerosis:an analysis of 17 patients. Br J Rheumatol 1996; 35(10):989-993.
    [7]Galie N, Manes A, Palazzini M, Negro L, Marinelli A, Gambetti S, Mariucci E, Donti A, Branzi A, Picchio FM. Management of pulmonary arterial hypertension associated with congenital systemic-to-pulmonary shunts and Eisenmenger's syndrome [J]. Drugs.2008,68(8):1049-1066.
    [8]Kirson NY, Birnbaum HG, Ivanova JI. Prevalence of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension in the United States [J]. Curr Med Res Opin.2011; 27(9):1763-1768.
    [9]van Wolferen SA, Marcus JT, Boonstra A, Marques KM, Bronzwaer JG, Spreeuwenberg MD, Postmus PE, Vonk-Noordegraaf A. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension [J]. Eur Heart J.2007;28(10):1250-1257.
    [10]Mooij CF, de Wit CJ, Graham DA, Powell AJ, Geva T. Reproducibility of MRI measurements of right ventricular size and function in patients with normal and dilated ventricles [J]. J Magn Reson Imaging.2008;28(1):67-73.
    [11]Bradlow WM, Hughes ML, Keenan NG, Bucciarelli-Ducci C, Assomull R, Gibbs JS, Mohiaddin RH Measuring the heart in pulmonary arterial hypertension (PAH): implications for trial study size [J]. J Magn Reson Imaging.2010;31(1):117-124.
    [12]Tei C, Dujardin KS, Hodge DO, Bailey KR, McGoon MD, Tajik AJ, Seward SB. Doppler echocardiographic index for assessment of global right ventricular function [J]. J Am Soc Echocardiograph.1996;9(6):838-847.
    [13]Grignola JC, Gines F, Guzzo D. Comparison of the Tei index with invasive measurements of right ventricular function [J]. Int J Cardiol.2006;113(1):25-33.
    [14]Schiller NB, Kwan DM. The Tei index as an expression of right ventricular impairment and recovery:investment grade or subprime? [J]. JACC Cardiovasc Imaging.2009;2(2):150-152.
    [15]Sato T, Tsujino I, Ohira H, Oyama-Manabe N, Yamada A, Ito YM, Goto C, Watanabe T, Sakaue S, Nishimura M. Validation study on the accuracy of echocardiographic measurements of right ventricular systolic function in pulmonary hypertension [J]. J Am Soc Echocardiograph.2012;25(3):280-286.
    [16]Zeng WJ, Sun YJ, Xiong CM, Gu Q, He JG Prognostic value of echocardiographic right/left ventricular end-diastolic diameter ratio in idiopathic pulmonary arterial hypertension [J]. Chin Med J (Engl).2011;124(11):1672-1677.
    [17]Takeyama D, Kagaya Y, Yamane Y, Shiba N, Chida M, Takahashi T, Ido T, Ishide N, Takishima T. Effects of chronic right ventricular pressure overload on myocardial glucose and free fatty acid metabolism in the conscious rat [J]. Cardiovasc Res. 1995;29(6):763-767.
    [18]Takeyama D, Kagaya Y, Yamane Y, Shiba N, Chida M, Takahashi T, Ido T, Ishide N, Takishima T. Different mechanisms for changes in glucose uptake of the right and left ventricular myocardium in pulmonary hypertension [J]. J Nucl Med. 2005;46(6):25-31.
    [19]Oikawa M, Kagaya Y, Otani H, Sakuma M, Demachi J, Suzuki J, Takahashi T, Nawata J, Ido T, Watanabe J, Shirato K. Increased [18F]fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol [J]. J Am Coll Cardiol.2005;45(11):1849-1855.
    [20]Can MM, Kaymaz C, Tanboga IH, Tokgoz HC, Canpolat N, Turkyilmaz E, Sonmez K, Ozdemir N. Increased right ventricular glucose metabolism in patients with pulmonary arterial hypertension [J]. Clin Nucl Med.2011;36(9):743-748.
    [21]Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF, Rabinovitch M. Cellular and molecular pathobiology of pulmonary arterial hypertension [J]. J Am Coll Cardiol. 2004;43(s):13S-24S.
    [22]Perros F, Dorfmuller P, Montani D, Hammad H, Waelput W, Girerd B, Raymond N, Mercier O, Mussot S, Cohen-Kaminsky S, Humbert M, Lambrecht BN Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension [J]. Am J Resp Crit Care Med.2012;185(3):311-321.
    [23]von Haehling S, von Bardeleben RS, Kramm T, Thiermann Y, Niethammer M, Doehner W, Anker SD, Munzel T, Mayer E, Genth-Zotz S. Inflammation in right right ventricular dysfunction due to thromboembolic pulmonary hypertension [J]. Int J Cardiol.2010;144(2):206-211.
    [24]Heath D, Yacoub M. Lung mast cells in plexogenic pulmonary arteriopathy [J]. J Clin Pathol.1991;44(12):1003-1006.
    [25]Humbert M, Monti G, Brenot F, Sitbon O, Portier A, Grangeot-Keros L, Duroux P, Galanaud P, Simonneau G, Emilie D. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension [J]. Am J Respir Crit Care Med.1995;151(5):1628-1631.
    [26]Itoh T, Nagaya N, Ishibashi-Ueda H, Kyotani S, Oya H, Sakamaki F, Kimura H, Nakanishi N. Increased plasma monocyte chemoattractant protein-1 level in idiopathic pulmonary arterial hypertension [J]. Respirology.2006; 11 (2):158-163.
    [27]Nickel N, Jonigk D, Kempf T, Bockmeyer CL, Maegel L, Rische J, Laenger F, Lehmann U, Sauer C, Greer M, Welte T, Hoeper MM, Golpon HA. GDF-15 is abundantly expressed in plexiform lesions in patients with pulmonary arterial hypertension and affects proliferation and apoptosis of pulmonary endothelial cells [J]. Respir Res.2011.12:62.
    [28]Soon E, Holmes AM, Treacy CM, Doughty NJ, Southgate L, Machado RD, Trembath RC, Jennings S, Barker L, Nicklin P, Walker C, Budd DC, Pepke-Zaba J, Morrell NW. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension [J]. Circulation.2010; 122(9): 920-927.
    [29]Lorenzen JM, Nickel N, Kramer R, Golpon H, Westerkamp V, Olsson KM, Haller H, Hoeper MM. Osteopontin in patients with idiopathic pulmonary hypertension [J]. Chest.2011;139(5):1010-1017.
    [30]Farber JM. Mig and IP-10:CXC chemokines that target lymphocytes [J]. J Leukoc Biol.1997;61(3):246-257.
    [31]Heresi GA, Aytekin M, Newman J, Dweik RA. CXC-Chemokine ligand 10 in idiopathic pulmonary arterial hypertension:marker of improved survival [J]. Lung. 2010;188(3):191-197.
    [32]Young KC, Torres E, Hatzistergos KE, Hehre D, Suguihara C, Hare JM. Inhibition of the SDF-1/CXCR4 axis attenuates neonatal hypoxia-induced pulmonary hypertension [J]. Circ Res.2009;104(11):1293-1301.
    [33]Lunyin Y, Charles A. Effect of chemokine receptor CXCR4 on hypoxia-induced pulmonary hypertension and vascular remodeling in rats [J]. Respir Res.2011; 12,21. doi:10.1186/1465 -9921-12-21.
    [34]Diegelmann J, Seiderer J, Niess JH, Haller D, Goke B, Reinecker HC, Brand S. Expression and regulation of the chemokine CXCL16 in Crohn's disease and models of intestinal inflammation [J]. Inflamm Bowel Dis.2010;(11):1871-81.
    [35]Huang M, Han Y, Zhang X, Pei F, Deng J, Kang J, Yan C. An intron polymorphism in the CXCL16 gene is associated with increased risk of coronary artery disease in Chinese Han population:a large angiography-based study [J]. Atherosclerosis.2010;210(1):160-165.
    [36]Dahl CP, Husberg C, Gullestad L, Waehre A, Damas JK, Vinge LE, Finsen AV, Ueland T, Florholmen G, Aakhus S, Halvorsen B, Aukrust P, Oie E, Yndestad A, Christensen G. Increased production of CXCL16 in experimental and clinical heart failure:a possible role in extracellular matrix remodeling [J]. Circ Heart Fail.2009; 2(6):624-632.
    [37]Cantor WJ, Harrison DA, Moussadji JS, Connelly MS, Webb GD, Liu P, McLaughlin PR, Siu SC. Determinants of survival and length of survival in adults with Eisenmenger syndrome [J]. Am J Cardiol.1999;84(6):677-681.
    [38]Van De Bruaene A, De Meester P, Voigt JU, Delcroix M, Pasquet A, De Backer J, De Pauw M, Naeije R, Vachiery JL, Paelinck B, Morissens M, Budts W. Right ventricular function in patients with Eisenmenger syndrome [J]. Am J Cardiol. 2012;109(8):1206-1211.
    [39]Moceri P, Dimopoulos K, Liodakis E, Germanakis I, Kempny A, Diller GP, Swan L, Wort SJ, Marino PS, Gatzoulis MA, Li W. Echocardiographic Predictors of Outcome in Eisenmenger Syndrome [J]. Circulation.2012; 126(12):1461-1468.
    [40]Van De Bruaene A, Delcroix M, Pasquet A, De Backer J, De Pauw M, Naeije R, Vachiery JL, Paelinck B, Morissens M, Budts W. Iron de ficiency is associated with adverse outcome in Eisenmenger patients [J]. Eur Heart J.2011;32(22):2790-2799.
    [41]Diller GP, Dimopoulos K, Broberg CS, Kaya MG, Naghotra US, Uebing A, Harries C, Goktekin O, Gibbs JS, Gatzoulis MA. Presentation, survival prospects, and predictors of death in eisenmenger syndrome:a combined retrospective and case-control study [J]. Eur Heart J.2006;27(14):1737-1742.
    [42]Oya H, Nagaya N, Satoh T, Sakamaki F, Kyotani S, Fujita M, Nakanishi N, Miyatake K. Haemodynamic correlates and prognostic significance of serum uric acid in adult patients with Eisenmenger syndrome [J]. Heart.2000;84(1):53-58.
    [43]Reardon LC, Williams RJ, Houser LS, Miner PD, Child JS,Aboulhosn JA. Usefulness of Serum Brain Natriuretic Peptide to Predict Adverse Events in Patients With the Eisenmenger Syndrome [J]. Am J Cardiol.2012;110(10):1523-1526.
    [44]Diller GP, Alonso-Gonzalez R, Kempny A, Dimopoulos K, Inuzuka R, Giannakoulas G, Castle L, Lammers AE, Hooper J, Uebing A, Swan L, Gatzoulis M, Wort SJ. B-type natriuretic peptide concentrations in contemporary eisenmenger syndrome patients:predictive value and response to disease targeting therapy [J]. Heart.2012;98(9):736-742.
    [45]Hampole CV, Mehrotra AK, Thenappan T, Gomberg-Maitland M, Shah SJ. Usefulness of red cell distribution width as a prognostic marker in pulmonary hypertension [J]. Am J Cardiol.2009;104(6):868-872.
    [46]Rhodes CJ, Wharton J, Howard LS, Gibbs JS, Wilkins MR. Red cell distribution width outperforms other potential circulating biomarkers in predicting survival in idiopathic pulmonary arterial hypertension [J]. Heart.2011;97(13):1054-1060.
    [1]Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS, Gomez-Sanchez MA, Jondeau G, Klepetko W, Opitz C, Peacock A, Rubin L, Zellweger M, Simonneau G; ESC Committee for Practice Guidelines (CPG). Guidelines for the diagnosis and treatment of pulmonary hypertension:the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT) [J]. Eur Heart J.2009;30(20):2493-2537.
    [2]van Wolferen SA, Marcus JT, Boonstra A, Marques KM, Bronzwaer JG, Spreeuwenberg MD, Postmus PE, Vonk-Noordegraaf A. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension [J]. Eur Heart J.2007;28(10):1250-1257.
    [3]van de Veerdonk MC1, Kind T, Marcus JT, Mauritz GJ, Heymans MW, Bogaard HJ, Boonstra A, Marques KM, Westerhof N, Vonk-Noordegraaf A. Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy [J]. J Am Coll Cardiol.2011;58(24):2511-2519.
    [4]Mooij CF, de Wit CJ, Graham DA, Powell AJ, Geva T. Reproducibility of MRI measurements of right ventricular size and function in patients with normal and dilated ventricles [J]. J Magn Reson Imaging.2008;28(1):67-73.
    [5]Bradlow WM, Hughes ML, Keenan NG, Bucciarelli-Ducci C, Assomull R, Gibbs JS, Mohiaddin RH Measuring the heart in pulmonary arterial hypertension (PAH): implications for trial study size [J]. J Magn Reson Imaging.2010;31(1):117-124.
    [6]Tei C, Dujardin KS, Hodge DO, Bailey KR, McGoon MD, Tajik AJ, Seward SB. Doppler echocardiographic index for assessment of global right ventricular function [J]. J Am Soc Echocardiograph.1996;9(6):838-847.
    [7]Grignola JC, Gines F, Guzzo D. Comparison of the Tei index with invasive measurements of right ventricular function [J]. Int J Cardiol.2006,113(1):25-33.
    [8]Schiller NB, Kwan DM. The Tei index as an expression of right ventricular impairment and recovery:investment grade or subprime? [J]. JACC Cardiovasc Imaging.2009;2(2):150-152.
    [9]Sato T1, Tsujino I, Ohira H, Oyama-Manabe N, Yamada A, Ito YM, Goto C, Watanabe T, Sakaue S, Nishimura M. Validation study on the accuracy of echocardiographic measurements of right ventricular systolic function in pulmonary hypertension [J]. J Am Soc Echocardiograph.2012;25:280-286.
    [10]Zeng WJ, Sun YJ, Xiong CM, Gu Q, He JG. Prognostic value of echocardiographic right/left ventricular end-diastolic diameter ratio in idiopathic pulmonary arterial hypertension [J]. Chin Med J (Engl).2011;124(11):1672-1677.
    [11]ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement:guidelines for the six-minute walk test [J]. Am J Respir Crit Care Med.2002;166(1):111-117.
    [12]De Castro S1, Cavarretta E, Milan A, Caselli S, Di Angelantonio E, Vizza Carmine D, Lucchetti D, Patel A, Kuvin J, Pandian NG. Usefulness of tricuspid annular velocity in identifying global RV dysfunction in patients with primary pulmonary hypertension:a comparison with 3D echo-derived right ventricular ejection fraction [J]. Echocardiography.2008;25(3):289-293.
    [13]Sade LE, Gulmez O, Ozyer U, Ozgul E, Agildere M. Tissue Doppler Study of the Right Ventricle with a Multisegmental Approach:Comparison with Cardiac Magnetic Resonance [J]. J Am Soc Echocardiograph.2009;22(4):361-368.
    [14]Wahl A, Praz F, Schwerzmann M, Bonel H, Koestner SC, Hullin R, Schmid JP, Stuber T, Delacretaz E, Hess OM, Meier B, Seiler C. Assessment of right ventricular systolic function:comparison between cardiac magnetic resonance derived ejection fraction and pulsed-wave tissue Doppler imaging of the tricuspid annulus [J]. Int J Cardiol.2011;151(1):58-62.
    [15]Grapsa J, Gibbs JS, Dawson D, Watson G, Patni R, Athanasiou T, Punjabi PP, Howard LS, Nihoyannopoulos P. Morphologic and functional remodeling of the right ventricle in pulmonary hypertension by real time three dimensional echocardiography [J]. Am J Cardiol.2012;109(6):906-913.
    [16]Vogel M, Schmidt MR, Kristiansen SB, Cheung M, White PA, Sorensen K, Redington AN. Validation of myocardial acceleration during isovolumic contraction as a novel noninvasive index of right ventricular contractility:comparison with ventricular pressure-volume relations in an animal model [J]. Circulation. 2002;105(14):1693-1699.
    [17]Schattke S, Knebel F, Grohmann A, Dreger H, Kmezik F, Riemekasten G, Baumann G, Borges AC. Early right ventricular systolic dysfunction in patients with systemic sclerosis without pulmonary hypertension:a Doppler Tissue and Speckle Tracking echocardiography study [J]. Cardiovasc Ultrasound.2010,8:3. doi: 10.1186/1476-7120-8-3.
    [18]Tugcu A, Yildirimturk O, Tayyareci Y, Demiroglu C, Aytekin S. et al. Evaluation of subclinical right ventricular dysfunction in obstructive sleep apnea patients using velocity vector imaging [J]. Circ J.2010;74(2):312-319.
    [19]Fremont B, Pacouret G, Jacobi D, Puglisi R, Charbonnier B, de Labriolle A. Prognostic value of echocardiographic right/left ventricular end-diastolic diameter ratio in patients with acute pulmonary embolism:results from a monocenter registry of 1416 patients [J]. Chest.2008;133(2):358-362.
    [20]Kaul S, Tei C, Hopkins JM, Shah PM. Assessment of right ventricular function using two-dimensional echocardiography [J]. Am Heart J.1984;107(3):526-531.
    [21]Ueti OM, Camargo EE, Ueti Ade A, de Lima-Filho EC, Nogueira EA. Assessment of right ventricular function with Doppler echocardiographic indices derived from tricuspid annular motion:comparison with radionuclide angiography [J]. Heart. 2002;88(3):244-248.
    [22]Kind T, Mauritz GJ, Marcus JT, van de Veerdonk M, Westerhof N, Vonk-Noordegraaf A. Right ventricular ejection fraction is better reflected by transverse rather than longitudinal wall motion in pulmonary hypertension [J]. J Cardiovasc Magn Reson.2010;12:35. doi:10.1186/1532-429X-12-35.
    [23]Zimbarra Cabrita I, Ruisanchez C, Dawson D, Grapsa J, North B, Howard LS, Pinto FJ, Nihoyannopoulos P, Gibbs JS. Right ventricular function in patients with pulmonary hypertension; the value of myocardial performance index measured by tissue Doppler imaging [J]. Eur J Echocardiogr.2010;11(8):719-24.
    [24]Wang J, Prakasa K, Bomma C, Tandri H, Dalal D, James C, Tichnell C, Corretti M, Bluemke D, Calkins H, Abraham TP. Comparison of novel echocardiographic parameters of right ventricular function with ejection fraction by cardiac magnetic resonance [J]. J Am Soc Echocardiograph.2007;20(9):1058-1064.
    [25]Vonk MC, Sander MH, van den Hoogen FH, van Riel PL, Verheugt FW, van Dijk AP. Right ventricle Tei-index:A tool to increase the accuracy of non-invasive detection of pulmonary arterial hypertension in connective tissue diseases [J]. Eur J Echocardiography.2007;8(5):317-321.
    [26]Dalsgaard M, Snyder EM, Kjaergaard J, Johnson BD, Hassager C, Oh JK. Isovolumic acceleration measured by tissue Doppler echocardiography is preload independent in healthy subjects [J]. Echocardiography.2007;24(6):572-579.
    [1]Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS, Gomez-Sanchez MA, Jondeau G, Klepetko W, Opitz C, Peacock A, Rubin L, Zellweger M, Simonneau G; ESC Committee for Practice Guidelines (CPG). Guidelines for the diagnosis and treatment of pulmonary hypertension:the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT) [J]. Eur Heart J.2009;30(20):2493-2537.
    [2]van Wolferen SA, Marcus JT, Boonstra A, Marques KM, Bronzwaer JG, Spreeuwenberg MD, Postmus PE, Vonk-Noordegraaf A. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension [J]. Eur Heart J.2007;28(10):1250-1257.
    [3]Fang W, Zhao L, Xiong CM, Ni XH, He ZX, He JG, Wilkins MR. Comparison of 18F-FDG uptake by right ventricular myocardium in idiopathic pulmonary arterial hypertension and pulmonary arterial hypertension associated with congenital heart disease [J]. Pulm Circ.2012;2(3):365-372.
    [4]Yonekura Y, Brill AB, Som P, Yamamoto K, Srivastava SC, Iwai J, Elmaleh DR, Livni E, Strauss HW, Goodman MM. Regional myocardial substrate uptake in hypertensive rats:a quantitative autoradiographic measurement [J]. Science. 1985;227(4693):1494-1496.
    [5]Taegtmeyer H, Overturf ML. Effects of moderate hypertension on cardiac function and metabolism in the rabbit [J]. Hypertension.1988; 11(5):416-426.
    [6]Kagaya Y, Kanno Y, Takeyama D, Ishide N, Maruyama Y, Takahashi T, Ido T, Takishima T. Effects of long-term pressure overload on regional myocardial glucose and free fatty acid uptake in rats [J]. A quantitative autoradiographic study. Circulation.1990;81(4):1353-1361.
    [7]Takeyama D, Kagaya Y, Yamane Y, Shiba N, Chida M, Takahashi T, Ido T, Ishide N, Takishima T. Effects of chronic right ventricular pressure overload on myocardial glucose and free fatty acid metabolism in the conscious rat [J]. Cardiovasc Res. 1995,29(6):763-767.
    [8]Takeyama D, Kagaya Y, Yamane Y, Shiba N, Chida M, Takahashi T, Ido T, Ishide N, Takishima T. Different mechanisms for changes in glucose uptake of the right and left ventricular myocardium in pulmonary hypertension [J]. J Nucl Med. 2005;46(6):25-31.
    [9]Oikawa M, Kagaya Y, Otani H, Sakuma M, Demachi J, Suzuki J, Takahashi T, Nawata J, Ido T, Watanabe J, Shirato K. Increased [18F]fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol [J]. J Am Coll Cardiol.2005;45(11):1849-1855.
    [10]Can MM, Kaymaz C, Tanboga IH, Tokgoz HC, Canpolat N, Turkyilmaz E, Sonmez K, Ozdemir N. Increased right ventricular glucose metabolism in patients with pulmonary arterial hypertension [J]. Clin Nucl Med.2011;36(9):743-748.
    [11]Brooks D, Solway S, Gibbons WJ. ATS statement on six-minute walk test. Am J Respir Crit Care Med.2003; 167(9):1287.
    [12]Mielniczuk LM, Birnie D, Ziadi MC, deKemp RA, DaSilva JN, Burwash I, Tang AT, Davies RA, Haddad H, Guo A, Aung M, Williams K, Ukkonen H, Beanlands RS. Relation between right ventricular function and increased right ventricular 18F-Fluorodeoxyglucose accumulation in patients with heart failure [J]. Circ Cardiovasc Imaging.2011;4(1):59-66.
    [13]Herrero P, Markham J, Myears DW, Weinheimer C, Bergmann S. Measurement of myocardial blood flow with positron emission tomography:correction for count spillover and partial volume effects [J]. Math Comput Model.1988;11:807-812.
    [14]Bing RJ, Siegel A, Vitale A, Balboni F, Sparks E, Taeschler M,. Klapper M, Edwards S. Metabolic studies on the human heart in vivo:part Ⅰ and part Ⅱ [J]. Am J Med.1953;15(3):504-515.
    [15]van der Vusse GJ, van Bilsen M, et al. Cardiac fatty acid uptake and transport in health and disease [J]. Cardiovasc Res.2000;45(2):279-293.
    [16]Mooij CF, de Wit CJ, Graham DA, Powell AJ, Geva T. Reproducibility of MRI measurements of right ventricular size and function in patients with normal and dilated ventricles [J]. J Magn Reson Imaging.2008(1),28:67-73.
    [17]Bradlow WM, Hughes ML, Keenan NG, Bucciarelli-Ducci C, Assomull R, Gibbs JS, Mohiaddin RH Measuring the heart in pulmonary arterial hypertension (PAH): implications for trial study size [J]. J Magn Reson Imaging.2010,31(1):117-124.
    [18]Benza R, Biederman R, Murali S, Gupta H. Role of cardiac magnetic resonance imaging in the management of patients with pulmonary arterial hypertension [J]. J Am Coll Cardiol.2008; 52(21):1683-1692.
    [19]Taegtmeyer H, Golfman L, Sharma S, Razeghi P, van Arsdall M. Linking gene expression to function:metabolic flexibility in the normal and diseased heart [J]. Ann N Y Acad Sci.2004; 1015:202-213.
    [20]Massie BM, Schaefer S, Garcia J, McKirnan MD, Schwartz GG, Wisneski JA, Weiner MW, White FC. Myocardial high-energy phosphateand substrate metabolism in swine with moderate left ventricular hypertrophy [J]. Circulation. 1995;91(6):1814-1823.
    [21]Neubauer S, Horn M, Cramer M, Harre K, Newell JB, Peters W, Pabst T, Ertl G, Hahn D, Ingwall JS, Kochsiek K. Myocardial phosphocreatineto-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy [J]. Circulation. 1997;96(7):2190-2196.
    [22]Ding HJ, Shiau YC, Wang JJ, Ho ST, Kao A. The influences of blood glucose and duration of fasting on myocardial glucose uptake of [18F] fluoro-2-deoxy-D-glucose [J]. Nucl Med Commun.2002;23(10):961-965.
    [23]Liao R, Jain M, Cui L, D'Agostino J, Aiello F, Luptak I, Ngoy S, Mortensen RM, Tian R. Cardiac-specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice [J]. Circulation.2002; 106(16):2125-2131.
    [24]Sasaki H, Asanuma H, Fujita M, Takahama H, Wakeno M, Ito S, Ogai A, Asakura M, Kim J, Minamino T, Takashima S, Sanada S, Sugimachi M, Komamura K, Mochizuki N, Kitakaze M. Metformin prevents progression of heart failure in dogs: role of AMP-activated protein kinase [J]. Circulation.2009;119(19):2568-2577.
    [25]Liu X, Gai Y, Liu F, Gao W, Zhang Y, Xu M, Li Z. Trimetazidine inhibits pressure overload-induced cardiac fibrosis through NADPH oxidase-ROS-CTGF pathway [J]. Cardiovasc Res.2010;88(1):150-158.
    [26]Zhang L, Lu Y, Jiang H, Zhang L, Sun A, Zou Y, Ge J. Additional use of trimetazidine in patients with chronic heart failure:a meta-analysis [J]. J Am Coll Cardiol.2012;59(10):913-922.
    [27]Fang YH, Piao L, Hong Z, Toth PT, Marsboom G, Bache-Wiig P, Rehman J, Archer SL. Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploiting Randle's cycle [J]. J Mol Med (Berl).2012;90(1):31-43.
    [28]Piao L, Fang YH, Cadete VJ, Wietholt C, Urboniene D, Toth PT, Marsboom G, Zhang HJ, Haber I, Rehman J, Lopaschuk GD, Archer SL. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy:resuscitating the hibernating right ventricle [J]. J Mol Med.2010;88(1):47-60.
    [1]Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS, Gomez-Sanchez MA, Jondeau G, Klepetko W, Opitz C, Peacock A, Rubin L, Zellweger M, Simonneau G; ESC Committee for Practice Guidelines (CPG). Guidelines for the diagnosis and treatment of pulmonary hypertension:the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT) [J]. Eur Heart J.2009;30(20):2493-2537.
    [2]Souza R, Jardim C, Carvalho C, Rubenfeld G. The role of NT-proBNP as a prognostic marker in pulmonary hypertension [J]. Chest.2006;130(5):1627-1628.
    [3]Soon E, Doughty NJ, Treacy CM, Ross RM, Toshner M, Upton PD, Sheares K, Morrell NW, Pepke-Zaba J. Log-transformation improves the prognostic value of serial NT-proBNP levels in apparently stable pulmonary arterial hypertension [J]. Pulm Circ.2011;1(2):244-2499
    [4]Rubens C, Ewert R, Halank M, Wensel R, Orzechowski HD, Schultheiss HP, Hoeffken G Big endothelin-1 and endothelin-1 plasma levels are correlated with the severity of primary pulmonary hypertension [J]. Chest.2001;120(5):1562-1569.
    [5]Rhodes CJ, Wharton J, Howard LS, Gibbs JS, Wilkins MR. Red cell distribution width outperforms other potential circulating biomarkers in predicting survival in idiopathic pulmonary arterial hypertension [J]. Heart.2011; 97(13):1054-60.
    [6]Hampole CV, Mehrotra AK, Thenappan T, Gomberg-Maitland M, Shah SJ. Usefulness of red cell distribution width as a prognostic marker in pulmonary hypertension [J]. Am J Cardiol.2009; 104(6):868-872.
    [7]Filusch A, Giannitsis E, Katus HA, Meyer FJ. High-sensitive troponin T:a novel biomarker for prognosis and disease severity in patients with pulmonary arterial hypertension [J]. Clin Sci (Lond).2010;119(5):207-213.
    [8]Njaman W, Iesaki T, Iwama Y, Takasaki Y, Daida H. Serum uric Acid as a prognostic predictor in pulmonary arterial hypertension with connective tissue disease [J]. Int Heart J.2007; 48:523-532.
    [9]Nagaya N, Uematsu M, Satoh T, Kyotani S, Sakamaki F, Nakanishi N, Yamagishi M, Kunieda T, Miyatake K. Serum uric acid levels correlate with the severity and the mortality of primary pulmonary hypertension [J]. Am J Respir Crit Care Med. 1999;160(2):487-492.
    [10]Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF, Rabinovitch M. Cellular and molecular pathobiology of pulmonary arterial hypertension [J]. J Am Coll Cardiol. 2004;43(s):13S-24S.
    [11]Perros F, Dorfmuller P, Montani D, Hammad H, Waelput W, Girerd B, Raymond N, Mercier O, Mussot S, Cohen-Kaminsky S, Humbert M, Lambrecht BN Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension [J]. Am J Resp Crit Care Med.2012;185(3):311-321.
    [12]von Haehling S, von Bardeleben RS, Kramm T, Thiermann Y, Niethammer M, Doehner W, Anker SD, Munzel T, Mayer E, Genth-Zotz S. Inflammation in right right ventricular dysfunction due to thromboembolic pulmonary hypertension [J]. Int J Cardiol.2010;144(2):206-211.
    [13]Heath D, Yacoub M. Lung mast cells in plexogenic pulmonary arteriopathy [J]. J Clin Pathol.1991; 44(12):1003-1006.
    [14]Humbert M, Monti G, Brenot F, Sitbon O, Portier A, Grangeot-Keros L, Duroux P, Galanaud P, Simonneau G, Emilie D. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension [J]. Am J Respir Crit Care Med.1995;151(5):1628-1631.
    [15]Itoh T, Nagaya N, Ishibashi-Ueda H, Kyotani S, Oya H, Sakamaki F, Kimura H, Nakanishi N. Increased plasma monocyte chemoattractant protein-1 level in idiopathic pulmonary arterial hypertension [J]. Respirology.2006;11(2):158-163.
    [16]Nickel N, Jonigk D, Kempf T, Bockmeyer CL, Maegel L, Rische J, Laenger F, Lehmann U, Sauer C, Greer M, Welte T, Hoeper MM, Golpon HA. GDF-15 is abundantly expressed in plexiform lesions in patients with pulmonary arterial hypertension and affects proliferation and apoptosis of pulmonary endothelial cells [J]. Respir Res.2011;12(2):62.
    [17]Soon E, Holmes AM, Treacy CM, Doughty NJ, Southgate L, Machado RD, Trembath RC, Jennings S, Barker L, Nicklin P, Walker C, Budd DC, Pepke-Zaba J, Morrell NW. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension [J]. Circulation.2010;122(9):920-927.
    [18]Lorenzen JM, Nickel N, Kramer R, Golpon H, Westerkamp V, Olsson KM, Haller H, Hoeper MM. Osteopontin in patients with idiopathic pulmonary hypertension [J]. Chest.2011;139(5):1010-1017.
    [19]Farber JM. Mig and IP-10:CXC chemokines that target lymphocytes [J]. J Leukoc Biol.1997;61(3):246-257.
    [20]Heresi GA, Aytekin M, Newman J, Dweik RA. CXC-Chemokine ligand 10 in idiopathic pulmonary arterial hypertension:marker of improved survival [J]. Lung. 2010;188(3):191-197.
    [21]Young KC, Torres E, Hatzistergos KE, Hehre D, Suguihara C, Hare JM. Inhibition of the SDF-1/CXCR4 axis attenuates neonatal hypoxia-induced pulmonary hypertension [J]. Circ Res.2009;104(11):1293-1301.
    [22]Lunyin Y, Charles A. Effect of chemokine receptor CXCR4 on hypoxia-induced pulmonary hypertension and vascular remodeling in rats [J]. Respir Res.2011;12,21. doi:10.1186/1465 -9921-12-21.
    [23]Castellani C, Padalino M, China P, Fedrigo M, Frescura C, Milanesi O, Stellin G, Thiene G, Angelini A.Bone-marrow-derived CXCR4-positive tissue-committed stem cell recruitment in human right ventricular remodeling [J]. Hum Pathol. 2010;41(11):1566-1576.
    [24]Diegelmann J, Seiderer J, Niess JH, Haller D, Goke B, Reinecker HC, Brand S. Expression and regulation of the chemokine CXCL16 in Crohn's disease and models of intestinal inflammation [J]. Inflamm Bowel Dis.2010;(11):1871-1881.
    [25]Huang M, Han Y, Zhang X, Pei F, Deng J, Kang J, Yan C. An intron polymorphism in the CXCL16 gene is associated with increased risk of coronary artery disease in Chinese Han population:a large angiography-based study [J]. Atherosclerosis.2010;210(1):160-165.
    [26]Dahl CP, Husberg C, Gullestad L, Waehre A, Damas JK, Vinge LE, Finsen AV, Ueland T, Florholmen G, Aakhus S, Halvorsen B, Aukrust P, Oie E, Yndestad A, Christensen G. Increased production of CXCL16 in experimental and clinical heart failure:a possible role in extracellular matrix remodeling [J]. Circ Heart Fail.2009; 2(6):624-632.
    [27]Brooks D, Solway S, Gibbons WJ. ATS statement on six-minute walk test [J]. Am J Respir Crit Care Med.2003;167(9):1287.
    [28]Lasagni L, Francalanci M, Annunziato F, Lazzeri E, Giannini S, Cosmi L, Sagrinati C, Mazzinghi B, Orlando C, Maggi E, Marra F, Romagnani S, Serio M, Romagnani P. An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4 [J]. J Exp Med.2003;197(11):1537-1549.
    [29]Luster AD, Greenberg SM, Leder P. The IP-10 chemokine binds to a specific cell surface heparan sulfate site shared with platelet factor 4 and inhibits endothelial cell proliferation [J]. J Exp Med.1995;182(1):219-231.
    [30]Bodnar RJ, Yates CC, Wells A. IP-10 blocks vascular endothelial growth factor-induced endothelial cell motility and tube formation via inhibition of calpain. Circ Res.2006;98(5):617-625.
    [31]Tuder RM, Groves B, Badesch DB, Voelkel NF. Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension [J]. Am J Pathol.1994;144(2):275-285.
    [32]Masri FA, Anand-Apte B, Vasanji A, Xu W, Goggans T, Drazba J, Erzurum SC. Definitive evidence of fundamental and inherent alteration in the phenotype of primary pulmonary hypertension endothelial cells in angiogenesis [J]. Chest. 2005;128(s):571S.
    [33]White FC, Nakatani Y, Nimmo L, Bloor CM. Compensatory angiogenesis during progressive right ventricular hypertrophy [J]. Am J Cardiovasc Pathol.1992; 4(1): 51-68.
    [34]Schermuly RT, Yilmaz H, Ghofrani HA, Woyda K, Pullamsetti S, Schulz A, Gessler T, Dumitrascu R, Weissmann N, Grimminger F, Seeger W. Inhaled iloprost reverses vascular remodeling in chronic experimental pulmonary hypertension [J]. Am J Respir Crit Care Med.2005;172(3):358-363.
    [35]Roeleveld RJ, Vonk-Noordegraaf A, Marcus JT, Bronzwaer JG, Marques KM, Postmus PE, Boonstra A. Effects of epoprostenol on right ventricular hypertrophy and dilatation in pulmonary hypertension [J]. Chest.2004;125(2):572-579.
    [36]Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development [J]. Nature.1998;393(6685):595-599.
    [37]Ratajczak MZ, Majka M, Kucia M, Drukala J, Pietrzkowski Z, Peiper S, Janowska-Wieczorek A. Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle-derived fibroblasts is associated with the presence of both muscle progenitors in bone marrow and hematopoietic stem/progenitor cells in muscles [J]. Stem Cells.2003;21(3):363-371.
    [38]Damas JK, Eiken HG, Oie E, Bjerkeli V, Yndestad A, Ueland T, Tonnessen T, Geiran OR, Aass H, Simonsen S, Christensen G, Froland SS, Attramadal H, Gullestad L, Aukrust P. Myocardial expression of CC- and CXC-chemokines and their receptors in human end-stage heart failure [J]. Cardiovasc Res.2000;47(4):778-787.
    [39]Hatch HM, Zheng D, Jorgensen ML, Petersen BE. SDF-1 alpha/ CXCR4:a mechanism for hepatic oval cell activation and bone marrow stem cell recruitment to the injured liver of rats [J]. Cloning Stem Cells.2002;4(4):339-351.
    [40]Moore MA, Hattori K, Heissig B, Shieh JH, Dias S, Crystal RG, Rafii S. Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1 [J]. Ann NY Acad Sc.2001;938:36-45.
    [41]Hristov M, Zernecke A, Bidzhekov K, Liehn EA, Shagdarsuren E, Ludwig A, Weber C. Importance of CXC chemokine receptor 2 in the homing of human peripheral blood endothelial progenitor cells to sites of arterial injury [J]. Circ Res.2007; 100(4) 590-597.
    [42]Schober A, Knarren S, Lietz M, Lin EA, Weber C. Crucial role of stromal cell-derived factor-1alpha in neointima formation after vascular injury in apolipoprotein E-deficient mice [J]. Circulation.2003;108:2491-2497.
    [43]Barbero S, Bonavia R, Bajetto A, Porcile C, Pirani P, Ravetti JL, Zona GL, Spaziante R, Florio T, Schettini G. Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt [J]. Cancer Res.2003;63(8):1969-1974.
    [44]Buckley CD, Amft N, Bradfield PF, Pilling D, Ross E, Arenzana-Seisdedos F, Amara A, Curnow SJ, Lord JM, Scheel-Toellner D, Salmon M. Persistent induction of the chemokine receptor CXCR4 by TGF-beta 1 on synovial T cells contributes to their accumulation within the rheumatoid synovium [J]. J Immunol. 2000;165(6):3423-3429.
    [45]Abi-Younes S, Sauty A, Mach F, Sukhova GK, Libby P, Luster AD. The stromal cell-derived factor-1 chemokine is a potent platelet agonist highly expressed in atheroscleroticplaques [J]. Circ Res.2000;86(2):131-138.
    [1]Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS, Gomez-Sanchez MA, Jondeau G, Klepetko W, Opitz C, Peacock A, Rubin L, Zellweger M, Simonneau G; ESC Committee for Practice Guidelines (CPG). Guidelines for the diagnosis and treatment of pulmonary hypertension:the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT) [J]. Eur Heart J.2009;30(20):2493-2537.
    [2]Cantor WJ, Harrison DA, Moussadji JS, Connelly MS, Webb GD, Liu P, McLaughlin PR, Siu SC. Determinants of survival and length of survival in adults with Eisenmenger syndrome [J]. Am J Cardiol.1999;84(6):677-681.
    [3]Van De Bruaene A, De Meester P, Voigt JU, Delcroix M, Pasquet A, De Backer J, De Pauw M, Naeije R, Vachiery JL, Paelinck B, Morissens M, Budts W. Right ventricular function in patients with Eisenmenger syndrome [J]. Am J Cardiol. 2012;109(8):1206-1211.
    [4]Moceri P, Dimopoulos K, Liodakis E, Germanakis I, Kempny A, Diller GP, Swan L, Wort SJ, Marino PS, Gatzoulis MA, Li W. Echocardiographic Predictors of Outcome in Eisenmenger Syndrome [J]. Circulation.2012;126(12):1461-1468.
    [5]Van De Bruaene A, Delcroix M, Pasquet A, De Backer J, De Pauw M, Naeije R, Vachiery JL, Paelinck B, Morissens M, Budts W. Iron de ficiency is associated with adverse outcome in Eisenmenger patients [J]. Eur Heart J.2011;32(22):2790-2799.
    [6]Diller GP, Dimopoulos K, Broberg CS, Kaya MG, Naghotra US, Uebing A, Harries C, Goktekin O, Gibbs JS, Gatzoulis MA. Presentation, survival prospects, and predictors of death in eisenmenger syndrome:a combined retrospective and case-control study [J]. Eur Heart J.2006;27(14):1737-1742.
    [7]Oya H, Nagaya N, Satoh T, Sakamaki F, Kyotani S, Fujita M, Nakanishi N, Miyatake K. Haemodynamic correlates and prognostic significance of serum uric acid in adult patients with Eisenmenger syndrome [J]. Heart.2000;84(1):53-58.
    [8]Reardon LC, Williams RJ, Houser LS, Miner PD, Child JS,Aboulhosn JA. Usefulness of Serum Brain Natriuretic Peptide to Predict Adverse Events in Patients With the Eisenmenger Syndrome [J]. Am J Cardiol.2012; 110(10):1523-1526.
    [9]Diller GP, Alonso-Gonzalez R, Kempny A, Dimopoulos K, Inuzuka R, Giannakoulas G, Castle L, Lammers AE, Hooper J, Uebing A, Swan L, Gatzoulis M, Wort SJ. B-type natriuretic peptide concentrations in contemporary eisenmenger syndrome patients:predictive value and response to disease targeting therapy [J]. Heart.2012;98(9):736-742.
    [10]van Kimmenade RR, Mohammed AA, Uthamalingam S, van der Meer P, Felker GM, Januzzi JL Jr. Red blood cell distribution width and 1-year mortality in acute heart failure [J]. Eur J Heart Fail.2010;12(2):129-136.
    [11]Gul M, Uyarel H, Ergelen M, Karacimen D, Ugur M, Turer A, Bozbay M, Ayhan E, Akgul O, Uslu N. The relationship between red blood cell distribution width and the clinical outcomes in non-ST elevation myocardial infarction and unstable angina pectoris:a 3-year follow-up [J]. Coron Artery Dis.2012;23(5):330-336.
    [12]Zorlu A, Bektasoglu G, Guven FM, Dogan OT, Gucuk E, Ege MR, Altay H, Cinar Z, Tandogan I, Yilmaz MB. Usefulness of admission red cell distribution width as a predictor of early mortality in patients with acute pulmonary embolism [J]. Am J Cardiol.2012;109(1):128-134.
    [13]Montagnana M, Cervellin G,Meschi T, Lippi G. The role of red blood cell distribution width in cardiovascular and thrombotic disorders [J]. Clin Chem Lab Med.2011;50(4):635-641.
    [14]Hampole CV, Mehrotra AK, Thenappan T, Gomberg-Maitland M, Shah SJ. Usefulness of red cell distribution width as a prognostic marker in pulmonary hypertension [J]. Am J Cardiol.2009;104(6):868-872.
    [15]Rhodes CJ,Wharton J, Howard LS, Gibbs JS, Wilkins MR. Red cell distribution width outperforms other potential circulating biomarkers in predicting survival in idiopathic pulmonary arterial hypertension [J]. Heart.2011;97(13):1054-1060.
    [16]Brooks D, Solway S, Gibbons WJ. ATS statement on six-minute walk test [J]. Am J Respir Crit Care Med.2003; 167:1287.
    [17]Perkins SL. Examination of blood and bone marrow. In:Greer JP, Foerster J, Lukens JN, Rodgers GM, Paraksevas F, Glader BE, eds. Wintrobe's Clinical Hematology. 11th ed. Salt Lake City, Utah:Lip-pincott Wilkins & Williams; 2003:5-25
    [18]Dimopoulos K, Inuzuka R, Goletto S, Giannakoulas G, Swan L, Wort SJ, Gatzoulis MA. Improved survival among patients with Eisenmenger syndrome re-ceiving advanced therapy for pulmonary arterial hypertension [J]. Circulation 2010;121(1):20-25.
    [19]Manes A, Palazzini M, Leci E, Bacchi Reggiani ML, Branzi A, Galie N. Current era survival of patients with pulmonary arterial hypertension associated with congenital heart disease:a comparison between clinical subgroups [J]. European Heart Journal. 2013;doi:10.1093/eurheartj/eht072
    [20]Rosove MH, Perloff JK, Hocking WG, Child JS, Canobbio MM, Skorton DJ. Chronic hypoxaemia and decompensated erythrocytosis in cyanotic congenital heart disease. Lancet.1986;2(8502):313-315.
    [21]Tay EL, Peset A, Papaphylactou M, Inuzuka R, Alonso-Gonzalez R, Giannakoulas G, Tzifa A, Goletto S, Broberg C, Dimopoulos K, Gatzoulis MA. Replacement therapy for iron deficiency improves exercise capacity and quality of life in patients with cyanotic congenital heart disease and/or the Eisenmenger syndrome [J]. Int J Cardiol.2011; 151 (3):307-312.
    [22]Van Craenenbroeck EM, Pelle AJ, Beckers PJ, Possemiers NM, Ramakers C, Vrints CJ, Van Hoof V, Denollet J, Conraads VM. Red cell distribution width as a marker of impaired exercise tolerance in patients with chronic heart failure [J]. European Journal of Heart Failure 2012;14(1),54-60.
    [23]Makhoul BF, Khourieh A, Kaplan M, Bahouth F, Aronson D, Azzam ZS. Relation between changes in red cell distribution width and clinical outcomes in acute decompensated heart failure [J]. Int J Cardiol 2013;167(4):1412-1416.
    [24]Van Craenenbroeck EM, Conraads VM, Greenlaw N, Gaudesius G, Mori C, Ponikowski P, Anker SD. The effect of intravenous ferric carboxymaltose on red cell distribution width:a subanalysis of the FAIR-HF study [J]. European Journal of Heart Failure.2013;15(7):756-762.
    [1]浦江,徐黎莎,王建平,黄娟,施林妹.超声心动图评价特发性肺动脉高压病右心功能研究[J].中国超声医学杂志.2011;27(5):23-25.
    [2]Lopez-Candales A, Dohi K, Rajagopalan N, Edelman K, Gulyasy B, Bazaz R. Defining normal variables of right ventricular size and function in pulmonary hypertension:an echocardiographic study [J]. Postgrad Med J.2008;84(987):40-45.
    [3]Wang J, Prakasa K, Bomma C, Tandri H, Dalal D, James C, Tichnell C, Corretti M, Bluemke D, Calkins H, Abraham TP. Comparison of novel echocardiographic parameters of right ventricular function with ejection fraction by cardiac magnetic resonance [J]. J Am Soc Echocardiogr.2007;20(9):1058-1064.
    [4]Sato T, Tsujino I, Ohira H, Oyama-Manabe N, Yamada A, Ito YM, Goto C, Watanabe T, Sakaue S, Nishimura M. Validation study on the accuracy of echocardiographic measurements of right ventricular systolic function in pulmonary hypertension [J]. J Am Soc Echocardiogr.2012;25(3):280-286.
    [5]Anavekar NS, Gerson D, Skali H, Kwong RY, Yucel EK, Solomon SD. Two-dimensional assessment of right ventricular function:an echocardiographic MRI correlative study. Echocardiography [J].2007;24(5):452-456.
    [6]赵美丽,陈松旺.Tei指数对肺动脉高压患者右心室功能的研究[J].中国超声诊断杂志.2006;7:413-415.
    [7]Zeng WJ, Sun YJ, Xiong CM, Gu Q, He JG. Prognostic value of echocardiographic right/left ventricular end-diastolic diameter ratio in idiopathic pulmonary arterial hypertension [J]. Chin Med J (Engl).2011;124(11):1672-1677.
    [8]Rignola JC, Gines F. Comparison of the Tei index with invasive measurements of right ventricular function [J]. Int J Cardiol.2006;113(1):25-33.
    [9]Zimbarra Cabrita, Ruisanchez C, Dawson D, Grapsa J, North B, Howard LS, Pinto FJ, Nihoyannopoulos P, Gibbs JS. Right ventricular function in patients with pulmonary hypertension:the value of myocardial performance index measured by tissue Doppler imaging [J]. Eur J Echocardiogr.2010;11(8):719-24
    [10]De Castro S, Cavarretta E, Milan A, Caselli S, Di Angelantonio E, Vizza Carmine D, Lucchetti D, Patel A, Kuvin J, Pandian NG Usefulness of tricuspid annular velocity in identifying global RV dysfunction in patients with primary pulmonary hypertension:a comparison with 3D echo-derived right ventricular ejection fraction [J]. Echocardiography.2008;25(3):289-93.
    [11]Rajagopalan N, Saxena N, Simon MA, Edelman K, Mathier MA, Lopez-Candales A. Correlation of tricuspid annular velocities with invasive hemodynamics in pulmonary hypertension [J]. Congest Heart Fail.2007;13(4):200-204.
    [12]Rajagopalan N, Simon MA, Mathier MA, Lopez-Candales A. Identifying right ventricular dysfunction with tissue Doppler imaging in pulmonary hypertension [J]. Int J Cardiol.2008;128(3):359-63.
    [13]Utsunomiya H, Nakatani S, Okada T, Kanzaki H, Kyotani S, Nakanishi N, Kihara Y, Kitakaze M. A simple method to predict impaired right ventricular performance and disease severity in chronic pulmonary hypertension using strain rate imaging [J]. Int J Cardiol.2011;147(1):88-94.
    [14]Schattke S, Knebel F, Grohmann A, Dreger H, Kmezik F, Riemekasten G, Baumann G, Borges AC. Early right ventricular systolic dysfunction in patients with systemic sclerosis without pulmonary hypertension:a Doppler Tissue and Speckle Tracking echocardiography study [J]. Cardiovasc Ultrasound.2010; 22:3.
    [15]Tugcu A, Yildirimturk O, Tayyareci Y, Demiroglu C, Aytekin S. Evaluation of subclinical right ventricular dysfunction in obstructive sleep apnea patients using velocity vector imaging [J]. Circ J.2010;74(2):312-9.
    [16]Yang T, Liang Y, Zhang Y, Gu Q, Chen G, Ni XH, Lv XZ, Liu ZH, Xiong CM, He JG. Echocardiographic parameters in patients with pulmonary arterial hypertension: correlations with right ventricular ejection fraction derived from cardiac magnetic resonance and hemodynamics [J]. PLoS One.2013;8(8):e71276.
    [17]Morikawa T, Murata M, Okuda S, Tsuruta H, Iwanaga S, Murata M, Satoh T, Ogawa S, Fukuda K. Quantitative Analysis of Right Ventricular Function in Patients With Pulmonary Hypertension Using Three-Dimensional Echocardiography and a Two-Dimensional Summation Method Compared to Magnetic Resonance Imaging [J]. Am J Cardiol.2011;107(3):484-489.
    [18]Grapsa J, O'Regan DP, Pavlopoulos H, Durighel G, Dawson D, Nihoyannopoulos P. Right ventricular remodelling in pulmonary arterial hypertension with three-dimensional echocardiography:comparison with cardiac magnetic resonance imaging [J]. Eur J Echocardiogr.2010;11(1):64-73.
    [19]陈冉,任卫东,唐力,陈欣,马春燕,李楠.实时三维超声心动图评价轻度肺动脉高压患者右室功能的研究[J].中国超声医学杂志.2009;25(1):38-40.
    [20]邵抑华.实时三维超声心动图评价肺动脉高压患者右室整体和局部功能的初步研究[J].临床心血管病杂志.2010;26(12):898-900.
    [21]Fukuda Y, Tanaka H, Sugiyama D, Ryo K, Onishi T, Fukuya H, Nogami M, Ohno Y, Emoto N, Kawai H, Hirata K. Utility of right ventricular free wall speckle-tracking strain for evaluation of right ventricular performance in patients with pulmonary hypertension [J]. J Am Soc Echocardiogr.2011;24(10):1101-1108.
    [22]Alunni JP, Degano B, Arnaud C, Tetu L, Blot-Souletie N, Didier A, Otal P, Rousseau H, Chabbert V. Cardiac MRI in pulmonary artery hypertension: correlations between morphological and functional parameters and invasive measurements [J]. Eur Radiol.2010;20(5):1149-1159.
    [23]Hoeper MM, Tongers J, Leppert A, Baus S, Maier R, Lotz J. Evaluation of right ventricular performance with a right ventricular ejection fraction thermodilution catheter and mri in patients with pulmonary hypertension [J]. CHEST.2001; 120(2): 502-507.
    [24]Hagger D, Condliffe R, Woodhouse N, Elliot CA, Armstrong IJ, Davies C, Hill C, Akil M, Wild JM, Kiely DG Ventricular mass index correlates with pulmonary artery pressure and predicts survival in suspected systemic sclerosis-associated pulmonary arterial hypertension [J]. Rheumatology.2009;48(9):1137-1142.
    [25]Roeleveld RJ, Marcus JT, Boonstra A, Postmus PE, Marques KM, Bronzwaer JG, Vonk-Noordegraaf A. A comparison of noninvasive MBI-based methods of estimating pulmonary artery pressure in pulmonary hypertension [J]. J Magu Reson imaing.2005;22(1):67-72.
    [26]Vogel-Claussen J, Shehata ML, Lossnitzer D, Skrok J, Singh S, Boyce D, Lechtzin N, Girgis RE, Mathai SC, Lima JA, Bluemke DA, Hassoun PM. Increased Right Ventricular Septomarginal Trabeculation Mass is a Novel Marker for Pulmonary Hypertension [J]. Invest Radiol.2011;46(9):567-575.
    [27]Mooij CF, de Wit CJ, Graham DA, Powell AJ, Geva T. Reproducibility of MRI Measurements of Right Ventricular Size and Function in Patients with Normal and Dilated Ventricles [J]. J Magn Reson Imaging.2008; 28(1):67-73.
    [28]McLure LE, Brown A, Lee WN, Church AC, Peacock AJ, Johnson MK. Non-invasive stroke volume measurement by cardiac magnetic resonance imaging and inert gas rebreathing in pulmonary hypertension [J]. Clin Physiol Funct Imaging, 2011;31(3):221-226.
    [29]van Wolferen SA, Marcus JT, Boonstra A, Marques KM, Bronzwaer JG, Spreeuwenberg MD, Postmus PE, Vonk-Noordegraaf A. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension [J]. European Heart Journal.2007;28(10):1250-1257.
    [30]van de Veerdonk MC, Kind T, Marcus JT, Mauritz GJ, Heymans MW, Bogaard HJ, Boonstra A, Marques KM, Westerhof N, Vonk-Noordegraaf A. Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy [J]. J Am Coll Cardiol.2011;58(24):2511-2519.
    [31]Chin KM, Kingman M, de Lemos JA, Warner JJ, Reimold S, Peshock R, Torres F. Changes in Right Ventricular Structure and Function Assessed Using Cardiac Magnetic Resonance Imaging in Bosentan-Treated Patients With Pulmonary Arterial Hypertension [J]. The American Journal of Cardiology.2008;101(11):1669-1672.
    [32]Sanz J, Kuschnir P, Rius T, Salguero R, Sulica R, Einstein AJ, Dellegrottaglie S, Fuster V, Rajagopalan S, Poon M. Pulmonary Arterial Hypertension:Noninvasive Detection with Phase-Contrast MR Imaging [J]. RadiologyVolume.2007;243(1): 71-79.
    [33]McCann GP, Gan CT, Beek AM, Niessen HW, Vonk Noordegraaf A, van Rossum AC. Extent of MRI Delayed enhancement of myocardial mass is related to right ventricular dysfunction in pulmonary artery hypertension [J]. Am J Roentgenol. 2007;188(2):349-354.
    [34]Junqueira FP, Macedo R, Coutinho AC, Loureiro R, De Pontes PV, Domingues RC, Gasparetto EL. Myocardial delayed enhancement in patients with pulmonary hypertension and right ventricular failure:evaluation by cardiac MRI [J]. The British Journal of Radiology.2009;82(982):821-826.
    [35]Vonk-Noordegraaf A, Marcus JT, Gan CT, Boonstra A, Postmus PE. Interventricular mechanical asynchrony due to right ventricular pressure overload in pulmonary hypertension plays an important role in impaired left ventricular filling [J]. Chest. 2005;128(suppl):628S-630S.
    [36]Harrild DM, Han Y, Geva T, Zhou J, Marcus E, Powell AJ. Comparison of cardiac MRI tissue tracking and myocardial tagging for assessment of regional ventricular strain [J]. Int J Cardiovasc Imaging.2012;3(8):256-258.
    [37]Zafrir N, Zingerman B, Solodky A, Ben-Dayan D, Sagie A, Sulkes J, Mats I, Kramer MR. Use of noninvasive tools in primary pulmonary hypertension to assess the correlation of right ventricular function with functional capacity and to predict outcome [J]. Int J Cardiovasc Imaging.2007;23(2):209-215
    [38]Yonekura Y, Brill AB, Som P, Yamamoto K, Srivastava SC, Iwai J, Elmaleh DR, Livni E, Strauss HW, Goodman MM. Regional myocardial substrate uptake in hypertensive rats:a quantitative autoradiographic measurement [J]. Science.1985; 227(4693):1494-1496.
    [39]Massie BM, Schaefer S, Garcia J, McKirnan MD, Schwartz GG, Wisneski JA, Weiner MW, White FC. Myocardial high-energy phosphateand substrate metabolism in swine with moderate left ventricular hypertrophy [J]. Circulation.1995;91(6): 1814-1823.
    [40]Neubauer S, Horn M, Cramer M, Harre K, Newell JB, Peters W, Pabst T, Ertl G, Hahn D, Ingwall JS, Kochsiek K. Myocardial phosphocreatineto-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy [J]. Circulation.1997; 96(7):2190-2196.
    [41]Kagaya Y, Kanno Y, Takeyama D, Ishide N, Maruyama Y, Takahashi T, Ido T, Takishima T. Effects of long-term pressureoverload on regional myocardial glucose and free fatty acid uptakein rats:A quantitative autoradiographic study [J]. Circulation.1990;81 (4):1353-1361.
    [42]Fang YH, Piao L, Hong Z, Toth PT, Marsboom G, Bache-Wiig P, Rehman J, Archer SL. Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploiting Randle's cycle [J]. J Mol Med (Berl).2012;90(1):31-43.
    [43]Piao L, Fang YH, Cadete VJ, Wietholt C, Urboniene D, Toth PT, Marsboom G, Zhang HJ, Haber I, Rehman J, Lopaschuk GD, Archer SL. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy:resuscitating the hibernating right ventricle [J]. J Mol Med.2010;88(1):47-60.
    [44]Tatebe S, Fukumoto Y, Oikawa-Wakayama M, Sugimura K, Satoh K, Miura Y, Aoki T, Nochioka K, Miura M, Yamamoto S, Tashiro M, Kagaya Y, Shimokawa H. Enhanced [18F]fluorodeoxyglucose accumulation in the right ventricular free wall predicts long-term prognosis of patients with pulmonary hypertension:a preliminary observational study [J]. Eur Heart J Cardiovasc Imaging.2014 Jan 9.
    [45]Can MM, Kaymaz C, Tanboga IH, Tokgoz HC, Canpolat N, Turkyilmaz E, Sonmez K, Ozdemir N. Increased right ventricular glucose metabolism in patients with pulmonary arterial hypertension [J]. Clinical Nuclear Medicine.2011;36(9):743-748.
    [46]Oikawa M, Kagaya Y, Otani H, Sakuma M, Demachi J, Suzuki J, Takahashi T, Nawata J, Ido T, Watanabe J, Shirato K. Increased [18F]-Fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol [J]. J Am Coll Cardiol.2005;45(11):1849-1855.
    [47]Bokhari S, Raina A, Rosenweig EB, Schulze PC, Bokhari J, Einstein AJ, Barst RJ, Johnson LL. Positron emission tomography imaging may provide a novel biomarker and understanding of right ventricular dysfunction in patients with idiopathic pulmonary arterial hypertension [J]. Circ Cardiovasc Imaging.2011;4(6):641-647.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700