用户名: 密码: 验证码:
血管内皮生长因子促进绵羊卵母细胞体外成熟机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过10个系列试验,在绵羊卵母细胞体外培养液中添加血管内皮生长因子(Vascular Endothelial Growth Factor,VEGF),研究VEGF对绵羊卵母细胞体外受精及胚胎发育的影响,并通过绵羊卵母细胞成熟过程中细胞的形态学结构、细胞骨架、胞内丝裂原活化蛋白激酶(P44/p42 Mitogen-activated Protein Kinases,P44/p42 MAP kinases)、蛋白激酶C (Protein Kinase C,PKC)和酪氨酸蛋白激酶(Protein Tyrosine Kinases,PTK)活性的变化,以及VEGF及其两受体KDR/Flk-1和Flt-1在绵羊卵母细胞成熟过程中表达的研究,揭示VEGF对绵羊卵母细胞体外成熟的作用和机理。
     一、血管内皮生长因子对绵羊卵母细胞体外成熟、体外受精及胚胎发育的影响
     试验1:不同浓度VEGF对绵羊胚胎体外发育的影响
     在绵羊卵母细胞体外成熟培养液(TCM199+胎牛血清)、HSOF受精液及SOF胚胎发育液中添加不同剂量的VEGF(对照组0 ng/ml、试验组Ⅰ5 ng/ml和试验组Ⅱ10 ng/ml),研究其对卵母细胞成熟和早期胚胎发育的影响。结果显示:对照组、试验组Ⅰ、试验组Ⅱ卵母细胞成熟率分别是80.68%、86.09%和85.22%。试验组Ⅰ和试验组Ⅱ与对照组相比,极显著的提高了卵母细胞成熟率(P<0.01),但试验组Ⅰ和试验组Ⅱ之间差异不显著。试验组Ⅰ和试验组Ⅱ的卵裂率分别是75.18%和73.48%,高于对照组的69.38%,但差异不显著。试验组Ⅰ的桑葚胚率和囊胚率是45.45%和30.06%,极显著的高于对照组37.61%和23.65%(P<0.01);同时试验组Ⅱ的桑葚胚率和囊胚率是40.25%和27.80%,低于试验组Ⅰ,高于对照组,但差异不显著。结果表明:体外培养液中添加5ng/mlVEGF为适宜添加量,VEGF明显提高了受精卵发育到桑葚胚和囊胚的能力。
     试验2:BSA成熟培养液中添加VEGF对绵羊卵母细胞体外成熟、体外受精及胚胎发育的影响
     本试验采用在成分相对明确的BSA成熟培养液系统中,添加不同浓度VEGF,检测对卵母细胞成熟和胚胎发育的作用。成熟培养液(TCM199+BSA)中分别添加0 ng/mlVEGF对照组、5 ng/ml、10 ng/ml的VEGF试验组卵母细胞成熟培养后,经体外受精和体外培养。结果显示:试验组Ⅰ和试验组Ⅱ的成熟率分别是83.98%和80.23%,对照组是75.76%。试验组Ⅰ和试验组Ⅱ与对照组相比,极显著的提高了绵羊卵母细胞的成熟率(P<0.01),并且试验组Ⅰ和试验组Ⅱ之间差异显著(P<0.05)。试验组Ⅰ的卵裂率是79.39%,高于试验组Ⅱ和对照组的72.24%和75.85%,差异不显著。试验组Ⅰ桑葚胚率是45.03%,明显高于试验组Ⅱ和对照组38.85%和38.94%的桑葚胚率,差异不显著。试验组Ⅰ囊胚率是23.54%,极显著高于对照组的18.09%(P<0.01);试验组Ⅱ囊胚率是21.05%,高于对照组Ⅰ的18.09%,差异不显著。结果表明:BSA成熟培养液中添加5ng/ml VEGF为适宜添加量,对绵羊卵母细胞体外胚胎的发育有积极的促进作用。
     试验3:VEGF添加对绵羊卵母细胞体外受精多精入卵的影响
     在绵羊卵母细胞体外成熟培养液(TCM199+BSA)中添加不同剂量的VEGF(对照组0 ng/ml和试验组5 ng/ml)成熟培养,经体外受精培养后,地衣红染色结果显示:试验组和对照组的受精率分别是83.86%和75.75%,多精入卵率分别是7.68%和12.64%,未受精率是8.47%和11.60%。试验组受精率极显著高于对照组(P<0.01);试验组多精入卵率极显著低于对照组(P<0.01);试验组的未受精率显著低于对照组(P<0.05)。结果表明:VEGF明显降低了多精入卵率,有效的抑制了绵羊卵母细胞受精过程中的多精入卵现象的发生。
     二、VEGF促进绵羊卵母细胞体外成熟的机理研究
     1、VEGF对绵羊卵母细胞体外成熟过程中细胞核成熟和细胞质成熟的影响
     试验4:在绵羊卵母细胞体外成熟培养液(TCM199+BSA)中添加不同剂量的VEGF(对照组0 ng/ml和试验组5 ng/ml)进行成熟培养,再采用地衣红染色技术,研究VEGF对绵羊卵母细胞体外成熟过程中染色体形态的影响。结果显示:试验组拥有正常染色体成熟卵母细胞的成熟率是87.42%,高于对照组的83.89%。结果表明:VEGF对卵母细胞体外成熟和维持染色体正常形态具有一定的促进作用。
     试验5:在BSA成熟培养系统中成熟培养后,采用免疫细胞化学和激光共聚焦显微技术,研究VEGF对绵羊卵母细胞体外成熟过程中α-tubulin蛋白和微管组织中心(Microtubule Organizing Centers,MTOCs)时空迁移和重新组装的影响。结果显示:试验组与对照组相比,极大的促进了α-tubulin从微管组织中心向染色体的空间迁移和重新组装。同时试验得出,试验组和对照组的微管蛋白和MII期染色体的正常分布率分别是77.50%和62.60%。试验组与对照组相比,极显著的提高了微管蛋白和MII期染色体的正常分布率(P<0.01)。结果表明:VEGF促进了MTOCs从胞内和皮质区的消失,并加速了α-tubulin重新分配和向染色体的聚集,有效的提高了卵母细胞核成熟质量。
     试验6:在BSA成熟培养系统中成熟培养后,采用免疫细胞化学和激光共聚焦显微技术,研究VEGF对绵羊卵母细胞体外成熟过程中皮质颗粒(Cortical Granule,CGs)时空迁移和重新组装的影响。结果显示:试验组与对照组相比,极大的促进了CGs从胞质向皮质区的时空迁移。试验组和对照组的皮质颗粒正常迁移分布率分别为79.24%和60.97%。试验组与对照组相比,极显著的提高了皮质颗粒正常迁移分布率(P<0.01)。结果表明:VEGF通过促进绵羊卵母细胞成熟过程中CGs的时空迁移,对绵羊卵母细胞胞质成熟具有积极促进作用。
     2、VEGF对绵羊卵母细胞体外成熟过程中细胞超微结构变化的影响
     试验7:在绵羊卵母细胞体外成熟培养液(TCM199+BSA)中添加不同剂量的VEGF(对照组0 ng/ml和试验组5 ng/ml)进行成熟培养,再结合透射电镜技术,研究VEGF对绵羊卵母细胞体外成熟过程中细胞超微结构变化的影响。结果显示:①VEGF有效促进了微绒毛的发育和变化,增加了游离端斜行插入透明带微绒毛的数量,促进了细胞内外物质交流和养分的吸收;②VEGF促进了皮质颗粒在卵母细胞成熟培养过程中向皮质区迁移的时间和空间变化;③发现特征性绵羊卵母细胞线粒体――带帽状线粒体,并且VEGF对线粒体的迁移有一定的促进作用;④VEGF的添加对卵母细胞成熟过程中脂滴数量的增加没有显著的作用,但VEGF减少了小脂滴聚集为大脂滴。
     3、VEGF对绵羊卵母细胞体外成熟过程中胞内磷酸化P44/p42 MAP kinases、PKC和PTK活性变化的影响
     试验8:在绵羊卵母细胞体外成熟培养液(TCM199+BSA)中添加不同剂量的VEGF(对照组0 ng/ml和试验组5 ng/ml)进行成熟培养,再结合酶联免疫技术,检测胞内磷酸化P44/p42 MAP kinases、PKC和PTK活性的变化。结果显示:绵羊卵母细胞成熟过程中三种磷酸化激酶活性都呈波动变化,试验组的P44/p42 MAP kinases、PKC和PTK相对含量始终高于对照组相对含量。成熟培养16小时和20小时时,试验组P44/p42 MAP kinases(Erk1和Erk2)含量显著高于对照组(P<0.05);成熟培养16、21小时和24小时时,试验组PTK含量显著升高于对照组(P<0.05)。结果表明:VEGF添加到绵羊卵母细胞成熟培养液中,改变了PTK磷酸化水平,进一步引起信号传递分子MAP kinase和PKC的磷酸化,从而有效促进了绵羊卵母细胞体外成熟。
     4、VEGF及其受体KDR/Flk-1和Flt-1在绵羊卵母细胞体外成熟过程中的表达
     试验9:在绵羊卵母细胞体外成熟培养液(TCM199+BSA)中添加不同剂量的VEGF(对照组0 ng/ml和试验组5 ng/ml)进行成熟培养,再结合RT-PCR技术,研究VEGF及其受体KDR/Flk-1和Flt-1mRNA在绵羊卵母细胞体外成熟过程中颗粒细胞和卵母细胞细胞中的表达。结果显示:①卵母细胞培养前VEGF mRNA在卵母细胞中就有表达。在整个成熟过程中对照组中其表达一直持续,但比培养前的表达量有所下降;在试验组中,VEGF mRNA在卵母细胞中的表达呈下降趋势,到成熟培养24小时时表达量微弱;卵母细胞培养前VEGF mRNA在颗粒细胞中有表达。到培养8小时时,对照组表达量升高,但后期表达量明显下降。试验组在培养8小时时表达量就已经下降,24小时时持续低水平表达。②卵母细胞培养前Flt-1 mRNA在卵母细胞中有微弱表达,随着培养时间的延续表达量明显下降。培养8小时和24小时对照组比试验组表达强,到24小时试验组几乎检测不到Flt-1 mRNA的表达;卵母细胞培养前Flt-1 mRNA在颗粒细胞中有表达,到8小时时对照组表达加强,随培养时间延续其表达量下降,直至24小时检测不到。试验组从培养8小时开始就几乎检测不到Flt-1 mRNA的表达。③卵母细胞培养前KDR/Flk-1 mRNA在卵母细胞中有微弱表达,随着培养时间的延续,无论是试验组还是对照组其表达量都明显上升;卵母细胞培养前KDR/Flk-1 mRNA在颗粒细胞中有强表达,随培养时间的延续其表达量在对照组培养8小时时加强,但在试验组中减弱,培养到24小时时,两组表达量都很微弱。结果表明:外源VEGF的加入,改变了卵母细胞和颗粒细胞中VEGF及其受体KDR/Flk-1和Flt-1 mRNA的表达。
     试验10:结合免疫细胞化学和激光共聚焦显微技术,研究KDR/Flk-1和Flt-1蛋白在卵母细胞成熟观过程中颗粒细胞和卵母细胞中的表达。结果显示:绵羊卵母细胞成熟培养过程中,无论是在卵母细胞膜表面还是在颗粒细胞膜表面都检测到KDR/Flk-1和Flt-1蛋白的表达。
To investigate the effect of vascular endothelial growth factor (VEGF) on the ovine oocytes maturation and the early development of embryo in vitro, a series of ten experiments were conducted with VEGF supplemented to the maturation medium、the fertilization medium and the culture medium respectively. To show the mechanism of VEGF on promoting ovine oocyte maturation in virto by evaluate cell cycle-dependent modifications in cell configuration, cell framework, the change of active MAPK/PKC/PTK in oocyte, the expression of VEGF and its receptors KDR/Flk-1 and Flt-1 in ovine oocytes undergoing in vitro maturation.
     1、The effect of VEGF on the ovine oocytes maturation and the early development of embryo in vitro
     Experimentation 1: Human recombinant VEGF165 was employed at 5 ng/ml and 10 ng/ml in maturation media(TCM199+fetal bovine serum, FBS), HSOF fertilization media and SOF culture media in this study. The results showed that the maturation rate was increased significantly (p <0.01) from 80.68% in the control(0 ng/ml VEGF) to 86.09% and 85.22% in the treatment groupⅠ(5 ng/ml VEGF)and the treatment groupⅡ(10 ng/ml VEGF) respectively. The cleavage rate was increased from 69.38% in the control group to 75.18% and 73.48% (p>0.05) in the treatment groupⅠand the treatment groupⅡrespectively. The development rates of morulae and blastocyst in the treatment groupⅠ(45.45% and 30.06%) were higher significantly (p <0.01)than that of the control group (37.61% and 23.65%). And the development rates of morulae and blastocyst in the treatment groupⅡ(40.25% and 27.80%)were lower than that of the treatment groupⅠ(P>0.05) and higher than that of the control group(P>0.05). These results indicated that maturation medium, fertilization medium and the culture medium with 5 ng/ml of recombinant human VEGF165 significantly improved the maturation and fertilization of ovine oocytes and consequently the rate of embryos development were markedly enhanced. VEGF may be one of the important regular factors in system of maturation and fertilization of ovine oocyte and the early development of ovine embryo in vitro.
     Experimentation 2: Human recombinant VEGF165 was employed at 5 ng/ml and 10 ng/ml in maturation media(TCM199+ bovine serum albumin, BSA), HSOF fertilization media and SOF culture media in this study. The results showed that the maturation rate was increased significantly (p <0.01) from 75.76% in the control (0 ng/ml VEGF) to 83.98% and 80.23% in the treatment groupⅠ(5 ng/ml VEGF)and the treatment groupⅡ(10 ng/ml VEGF) respectively. The cleavage rate was increased from 75.85% in the control group to 79.39%(p>0.05) in the treatment groupⅠ.The development rates of morulae and blastocyst in the treatment groupⅠ(45.03% and 23.54%) were higher significantly (p <0.01)than that of the control group (38.94% and 18.09%). And the development rates of morulae and blastocyst in the treatment groupⅡ(38.85% and 21.05%)were lower than that of the treatment groupⅠ(P>0.05) and higher than that of the control group(P>0.05). These results indicated that BSA maturation medium with 5 ng/ml of recombinant human VEGF165 significantly improved the maturation and fertilization of ovine oocytes and consequently the rate of embryos development were markedly enhanced also. VEGF may be one of the important regular factors in system of maturation and fertilization of ovine oocyte and the early development of ovine embryo in vitro.
     Experimentation 3: Human recombinant VEGF165 was employed at 5 ng/ml in maturation media(TCM199+ bovine serum albumin, BSA) in this study. The results showed that the fertilization rate was increased significantly (p <0.01) from 75.75% in the control (0 ng/ml VEGF) to 83.86% in the treatment group (5 ng/ml VEGF) and the polyspermy rate was decreased significantly (p <0.01)from 12.64% in the control to 7.68% in the treatment group. The no fertilization rate was decreased (p <0.05) from 11.60% in the control to 8.47% in the treatment group. These results indicated that VEGF obviously decreased the polyspermy rate and bated the phenomenon of polyspermy in the process of ovine oocytes IVF.
     1、The mechanism of VEGF on promoting ovine oocyte maturation in vitro
     1.1 The effect of VEGF on the nuclear and cytoplasmic maturation of ovine oocytes matured in vitro
     Experimentation 4: Human recombinant VEGF165 was employed at 5 ng/ml in maturation media (TCM199+ bovine serum albumin, BSA) in this study. Orcein staining was used to evaluate cell cycle-dependent modifications in nuclear configuration. The results showed that the percentages of oocytes displaying a normal configuration of chromosomes in metaphase II (MII) increased in the VEGF group (87.42%) compared to the control (83.89%). This result indicated that VEGF effectively improved the normal configuration of chromosomes.
     Experimentation 5: Human recombinant VEGF165 was employed at 5 ng/ml in maturation media (TCM199+ bovine serum albumin, BSA) in this study. Immunofluorescence and confocal microscopy were used to evaluate microtubule organizing centers (MTOCs) translocation and the temporal and spatially redistribution ofα-tubulin. The results showed that the percentages of oocytes displaying a normal distribution ofα-tubulin and chromosomes in metaphase II (MII) significantly increased in the VEGF group (77.50%) compared to the control (62.60%)(P<0.01). VEGF promoted the MTOCs domains to disappear from the cortex and stimulated assembly ofα-tubulin around chromosome domains when germinal vesicle breakdown (GVBD) was commencing. These results showed that VEGF may improve the quality of nuclear maturation of ovine oocytes in vitro by the effects on the temporal and spatial translocation or redistribution of MTOC andα-tubulin.
     Experimentation 6: Human recombinant VEGF165 was employed at 5 ng/ml in maturation media (TCM199+ bovine serum albumin, BSA) in this study. Immunofluorescence and confocal microscopy were used to evaluate the temporal and spatially redistribution of cortical granules (CGs). The results showed that the rate of oocytes with CGs transfering completely in cortex was significantly higher (79.24%) in the VEGF group than in the control group (60.97%)(P<0.01). VEGF may improve the quality of cytoplasmic maturation of ovine oocytes in vitro by the effects on the temporal and spatial translocation or redistribution of CGs.
     1.2 The effect of VEGF on the ultrastructure change of ovine oocytes matured in vitro
     Experimentation 7: Human recombinant VEGF165 was employed at 5 ng/ml in maturation media (TCM199+ bovine serum albumin, BSA) in this study. The results showed that the development and change of microvilli on the surface of oocytes could be affected with VEGF in the maturation media. VEGF could promote the oocytes absorbing nutrientsubstance and the communication. VEGF may effects the temporal and spatial translocation or redistribution of CGs. There were so many mitochondria with“cap”in the oocytes cytoplasm. The development and transfer of mitochondria was effected by VEGF. There were no remarkable effects of VEGF on the accumulation of cytoplasmic lipid droplet, but VEGF could avoide the integration of many droplets to bigger ones.
     1.3 The effect of VEGF on the change of P44/p42 MAP kinases, Protein Kinase C and Tyrosine kinases of ovine oocytes matured in vitro
     Experimentation 8: In this study, VEGF was supplied at 5 ng/ml in maturation media for determine the effect of it on the change of phosphorylation P44/p42 MAP kinases (ERKs), Protein Kinase C (PKC) and Tyrosine Kinases (PTKs) activity in ovine oocyte during maturation by ELISA in vitro. The results showed that: these three protein kinase took on fluctuant changes. The levels of phosphorylation ERKs in the VEGF treatment group were higher than that of the control group, especially at 16 hours and 20 hours (P<0.05). The levels of phosphorylation PTK in the VEGF treatment group were higher than that of the control group, especially at 16 hours 21 hours and 24 hours (P<0.05). The levels of phosphorylation PKC in the VEGF treatment group were higher than that of the control group too. VEGF was strongly enhanced the level of phosphorylation ERKs and PKC activity but reduced PTKs activity during the period of ovine oocyte maturation in vitro for improving the quality of oocytes.
     1.4 Expression of VEGF and its receptors (Flt-1 and KDR/ Flk-1) in ovine oocytes matured in vitro
     Experimentation 9: Human recombinant VEGF165 was employed at 5 ng/ml in maturation media (TCM199+ bovine serum albumin, BSA) in this study. Expression of VEGF and its receptors (Flt-1 and KDR/ Flk-1) mRNA in ovine oocytes matured in vitro by RT-PCR. The results showed that VEGF mRNA was expressed in cumulus cells and oocytes without cumulus cells at 0 hour、8hours and 24 hours, but it was highest in cumulus cells of the control group and in oocytes without cumulus cells of the treatment group at the 8 hours matured in vitro. Flt-1 mRNA was expressed in cumulus cells of the control group at 0 hour and 8 hours, and was not detect in the treatment group. Relative amount of Flt-1 mRNA for cumulus cells at 8 hours of control group was higher than that of 0 hour. Meanwhile, Flt-1 mRNA was expressed in oocytes without cumulus cells at 0 hour and 8 hours both in the control group and the treatment group. The Flt-1 mRNA expression at 0 hour was highest and took second place at 8 hours of the control group, the Flt-1 mRNA expression of the treatment at 8 hours was lowest. It was not detect Flt-1 mRNA expression in cumulus cells and oocytes without cumulus cells at 24 hours maturation. KDR/ Flk-1 mRNA was expressed in cumulus cells and oocytes without cumulus cells at 0 hour、8hours and 24 hours both in the control group and the treatment group. KDR/ Flk-1 mRNA expression was highest at both 8 hours in cumulus cells and 24 hours in oocytes without cumulus cells of the control group. There were weak KDR/ Flk-1 mRNA expression in cumulus cells of the treatment group at 8 hours and 24 hours.
     Experimentation 10: Human recombinant VEGF165 was employed at 5 ng/ml in maturation media (TCM199+ bovine serum albumin, BSA) in this study. In the present study, ovine cumulus-oocyte complexes (COC) were matured in vitro in the treatment group with 5 ng/ml human recombinant VEGF165 in maturation media and the control group without VEGF, confocal microscopy and immunohistochemical staining methods were used to assess the location and expression of Flt-1 and KDR/ Flk-1 in the plasma membranes of cumulus cells and oocytes without cumulus cells at different maturation time (0hour、8hours and 24hours). The results showed that Flt-1 and KDR/ Flk-1 were expressed in cell plasma membranes of maturation oocytes without cumulus cells and cumulus cells at 0 hour、8hours and 24hours. Flt-1 and KDR/ Flk-1 were mainly detected in the cytoplasm close to the membrane both in immature and mature oocytes without cumulus cells. The staining for Flt-1 slightly increased in the control group compared to the treatment group in maturation oocytes without cumulus cells and cumulus cells. However, the staining for Flt-1 and KDR/ Flk-1 was slightly weaker in cell plasma membranes of oocytes without cumulus cells than in that of cumulus cells.
引文
[1] Khamsi, F., Lacanna, I., Endman, M., et al. Recent advances in assisted reproductive technologies[J]. Endocrine. 1998, 9(1): p. 15-25.
    [2] Trounson, A., C. Wood, and A. Kausche. In vitro maturation and the fertilization and developmental competence of oocytes recovered from untreated polycystic ovarian patients[J]. Fertil Steril. 1994, 62(2): p. 353-362.
    [3] Hendriksen, P.J., Vos, P.L., Steenweg, W.N., et al. Bovine follicular development and its effect on the in vitro competence of oocytes[J]. Theriogenology. 2000, 53(1): p. 11-20.
    [4] Ono, Y., Shimozawa, N., Ito, M., et al. Cloned mice from fetal fibroblast cells arrested at metaphase by a serial nuclear transfer[J]. Biol Reprod. 2001, 64(1): p. 44-50.
    [5] Downs, S.M. and A.M. Mastropolo. Culture conditions affect meiotic regulation in cumulus cell-enclosed mouse oocytes[J]. Mol Reprod Dev. 1997, 46(4): p. 551-566.
    [6] Fair, T., P. Hyttel, and T. Greve. Bovine oocyte diameter in relation to maturational competence and transcriptional activity[J]. Mol Reprod Dev. 1995, 42(4): p. 437-442.
    [7] Brevini, T.A., Lonergan, P., Cillo, F., et al. Evolution of mRNA polyadenylation between oocyte maturation and first embryonic cleavage in cattle and its relation with developmental competence[J]. Mol Reprod Dev. 2002, 63(4): p. 510-517.
    [8] Dell'Aquila, M.E., Cho, Y.S., Minoia, P., et al. Effects of follicular fluid supplementation of in-vitro maturation medium on the fertilization and development of equine oocytes after in-vitro fertilization or intracytoplasmic sperm injection[J]. Hum Reprod. 1997, 12(12): p. 2766-2772.
    [9] Naito, K., Y. Fukuda, and Y. Toyoda. Effects of porcine follicular fluid on male pronucleus formation in porcine oocytes matured in vitro[J]. Gamete Res. 1988, 21(3): p. 289-295.
    [10] Khatir, H., Lonergan, P., Carolan, C., et al. Prepubertal bovine oocyte: a negative model for studying oocyte developmental competence[J]. Mol Reprod Dev. 1996, 45(2): p. 231-239.
    [11] Lonergan, P., Carolan, C., Van Langendonckt, A., et al. Role of epidermal growth factor in bovine oocyte maturation and preimplantation embryo development in vitro[J]. Biol Reprod. 1996, 54(6): p. 1420-1429.
    [12] Tsafriri, A. and C.P. Channing, Influence of follicular maturation and culture conditions on the meiosis of pig oocytes in vitro[J]. J Reprod Fertil. 1975, 43(1): p. 149-152.
    [13] Sirard, M.A. and S. Bilodeau. Effects of granulosa cell co-culture on in-vitro meiotic resumption of bovine oocytes[J]. J Reprod Fertil. 1990, 89(2): p. 459-465.
    [14] Kirkpatrick, M. and C.D. Jenkins. Genetic segregation and the maintenance of sexual reproduction[J]. Nature. 1989, 339(6222): p. 300-301.
    [15] Kotsuji, F., M. Kubo, and T. Tominaga. Effect of interactions between granulosa and thecal cells on meiotic arrest in bovine oocytes[J]. J Reprod Fertil. 1994, 100(1): p. 151-156.
    [16] Kotsuji, F. and T. Tominaga. The role of granulosa and theca cell interactions in ovarian structure and function[J]. Microsc Res Tech. 1994, 27(2): p. 97-107.
    [17] Tsafriri, A., N. Dekel, and S. Bar-Ami. The role of oocyte maturation inhibitor in follicular regulation of oocyte maturation[J]. J Reprod Fertil. 1982, 64(2): p. 541-551.
    [18]刘素娟.卵泡发育和卵母细胞成熟[J].国外兽医学-畜禽疾病. 1995, 16(3): p. 5-9.
    [19] Strong, T.V., Wilkinson, D.J., Mansoura, M.K., et al. Expression of an abundant alternatively spliced form of the cystic fibrosis transmembrane conductance regulator (CFTR) gene is not associated with a cAMP-activated chloride conductance[J]. Hum Mol Genet. 1993, 2(3): p. 225-230.
    [20] Yazigi, R.A., Chi, M.M., Mastrogiannis, D.S., et al. Enzyme activities and maturation in unstimulated and exogenous gonadotropin-stimulated human oocytes[J]. Am J Physiol. 1993, 264(4 Pt 1): p. C951-955.
    [21] Downs, S.M. Involvement of purine nucleotide synthetic pathways in gonadotropin-induced meiotic maturation in mouse cumulus cell-enclosed oocytes[J]. Mol Reprod Dev. 1997, 46(2): p. 155-167.
    [22] Aktas, H., Wheeler, M.B., First, N.L., et al. Maintenance of meiotic arrest by increasing [cAMP]i may have physiological relevance in bovine oocytes[J]. J Reprod Fertil. 1995, 105(2): p. 237-245.
    [23] Sirard, M.A. Temporary inhibition of meiosis resumption in vitro by adenylate cyclase stimulation in immature bovine oocytes[J]. Theriogenology. 1990, 33(4): p. 757-767.
    [24] Aktas, H., Wheeler, M.B., Rosenkrans, CF, Jr., et al. Maintenance of bovine oocytes in prophase of meiosis I by high [cAMP]i[J]. J Reprod Fertil. 1995, 105(2): p. 227-235.
    [25] Dostal, J. and A. Pavlok. Isolation and characterization of maturation inhibiting compound in bovine follicular fluid[J]. Reprod Nutr Dev.1996, 36(6): p. 681-690.
    [26] Whitaker, M. Control of meiotic arrest[J]. Rev Reprod. 1996, 1(2): p. 127-135.
    [27]孙青原,秦鹏春.哺乳动物的卵母细胞成熟机理[J].黑龙江动物繁殖. 1995, 3: p. 41-43.
    [28] Masui, Y. and C.L. Markert[J]. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool. 1971, 177(2): p. 129-145.
    [29] Yamaguchi, A., Katsu, Y., Matsuyama, M., et al.Phosphorylation of the p34(cdc2) target site on goldfish germinal vesicle lamin B3 before oocyte maturation[J]. Eur J Cell Biol. 2006, 85(6): p. 501-517.
    [30] Endo, T., Naito, K., Kume, S., et al. Activities of maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK) are not required for the global histone deacetylation observed after germinal vesicle breakdown (GVBD) in porcine oocytes[J]. Reproduction. 2006, 131(3): p. 439-447.
    [31] Salaun, P., Le Breton, M., Morales, J., et al. Signal transduction pathways that contribute to CDK1/cyclin B activation during the first mitotic division in sea urchin embryos[J]. Exp Cell Res. 2004, 296(2): p. 347-357.
    [32] Voronina, E., W.F. Marzluff, and G.M. Wessel. Cyclin B synthesis is required for sea urchin oocyte maturation[J]. Dev Biol. 2003, 256(2): p. 258-275.
    [33] Anger, M., Klima, J., Kubelka, M., et al. Timing of Plk1 and MPF activation during porcine oocyte maturation[J]. Mol Reprod Dev. 2004, 69(1): p. 11-6.
    [34] Nakajo, N., Yoshitome, S., Iwashita, J., et al. Absence of Wee1 ensures the meiotic cell cycle in Xenopus oocytes[J]. Genes Dev. 2000, 14(3): p. 328-338.
    [35] Lee, J.H. and K.H. Campbell. Effects of enucleation and caffeine on maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK) activities in ovine oocytes used as recipient cytoplasts for nuclear transfer[J]. Biol Reprod. 2006, 74(4): p. 691-698.
    [36] Sun, L., Chai, Y., Hannigan, R., et al. Zinc regulates the ability of Cdc25C to activate MPF/cdk1[J]. J Cell Physiol. 2007, 213(1): p. 98-104.
    [37] Xu, Z., Abbott, A., Kopf, G.S., et al. Spontaneous activation of ovulated mouse eggs: time-dependent effects on M-phase exit, cortical granule exocytosis, maternal messenger ribonucleic acid recruitment, and inositol 1,4,5-trisphosphate sensitivity[J]. Biol Reprod. 1997, 57(4): p. 743-750.
    [38] Kikuchi, K., Naito, K., Noguchi, J., et al. Maturation/M-phase promoting factor: a regulator of aging in porcine oocytes[J]. Biol Reprod. 2000, 63(3): p. 715-722.
    [39] Levesque, J.T. and M.A. Sirard. Resumption of meiosis is initiated by the accumulation of cyclin B in bovine oocytes[J]. Biol Reprod. 1996, 55(6): p. 1427-1436.
    [40] de Moor, C.H. and J.D. Richter. Cytoplasmic polyadenylation elements mediate masking and unmasking of cyclin B1 mRNA[J]. Embo J. 1999, 18(8): p. 2294-2303.
    [41] Bogliolo, L., Ledda, S., Leoni, G., et al. Activity of maturation promoting factor (MPF) and mitogen-activated protein kinase (MAPK) after parthenogenetic activation of ovine oocytes[J]. Cloning. 2000, 2(4): p. 185-196.
    [42] Bogliolo, L., Leoni, G., Ledda, S., et al., M-phase promoting factor (MPF) and mitogen activated protein kinases (MAPK) activities of domestic cat oocytes matured in vitro and in vivo[J]. Cloning Stem Cells, 2004, 6(1): p. 15-23.
    [43] Goudet, G., Belin, F., Bezard, J., et al. Intrafollicular content of luteinizing hormone receptor, alpha-inhibin, and aromatase in relation to follicular growth, estrous cycle stage, and oocyte competence for in vitro maturation in the mare[J]. Biol Reprod. 1999, 60(5): p. 1120-1127.
    [44] Goudet, G., Leclercq, L., Bezard, J., et al. Chorionic gonadotropin secretion isassociated with an inhibition of follicular growth and an improvement in oocyte competence for in vitro maturation in the mare[J]. Biol Reprod. 1998, 58(3): p. 760-768.
    [45] Johnson, G.L. and R. Lapadat. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases[J]. Science. 2002, 298(5600): p. 1911-1912.
    [46] Bogre, L., Meskiene, I., Heberle-Bors, E., et al. Stressing the role of MAP kinases in mitogenic stimulation[J]. Plant Mol Biol. 2000, 43(5-6): p. 705-718.
    [47] Jimenez-Macedo, A.R., Izquierdo, D., Urdaneta, A., et al. Effect of roscovitine on nuclear maturation, MPF and MAP kinase activity and embryo development of prepubertal goat oocytes[J]. Theriogenology. 2006, 65(9): p. 1769-1782.
    [48] Nanassy, L., Lee, K., Javor, A., et al. Changes in MPF and MAPK activities in porcine oocytes activated by different methods[J]. Theriogenology. 2007, 68(2): p. 146-152.
    [49] English, J.M. and M.H. Cobb. Pharmacological inhibitors of MAPK pathways[J]. Trends Pharmacol Sci. 2002, 23(1): p. 40-45.
    [50] Gordo, A.C., He, C.L., Smith, S., et al. Mitogen activated protein kinase plays a significant role in metaphase II arrest, spindle morphology, and maintenance of maturation promoting factor activity in bovine oocytes[J]. Mol Reprod Dev. 2001, 59(1): p. 106-114.
    [51] Atkins, C.M., Yon, M., Groome, N.P., et al. Regulation of myelin basic protein phosphorylation by mitogen-activated protein kinase during increased action potential firing in the hippocampus[J]. J Neurochem. 1999, 73(3): p. 1090-1097.
    [52] Sagata, N. The roles of the Mos-MAPK pathway in oocyte meiosis and cellular transformation[J]. Tanpakushitsu Kakusan Koso. 1996, 41(12 Suppl): p. 1847-1855.
    [53] Radziwill, G., Steinhusen, U., Aitken, A., et al. Inhibition of Raf/MAPK signaling in Xenopus oocyte extracts by Raf-1-specific peptides[J]. Biochem Biophys Res Commun. 1996, 227(1): p. 20-26.
    [54]钱云,刘嘉茵.卵子成熟的基础和临床应用研究[J].国外畜牧科技. 2002, 18: p. 663-664.
    [55] Adachi, T., Kar, S., Wang, M., et al. Transient and sustained ERK phosphorylation and nuclear translocation in growth control[J]. J Cell Physiol. 2002, 192(2): p. 151-159.
    [56] Shonai, T., Adachi, M., Sakata, K., et al. MEK/ERK pathway protects ionizing radiation-induced loss of mitochondrial membrane potential and cell death in lymphocytic leukemia cells[J]. Cell Death Differ. 2002, 9(9): p. 963-971.
    [57] Ishino, K., Fukazawa, H., Shikano, M., et al. Enhancement of anchorage-independent growth of human pancreatic carcinoma MIA PaCa-2 cells by signaling from protein kinase C to mitogen-activated protein kinase[J]. Mol Carcinog. 2002, 34(4): p. 180-186.
    [58] Nishizuka, Y. Studies and prospectives of protein kinase C in signaltransduction[J]. Nippon Ketsueki Gakkai Zasshi. 1988, 51(8): p. 1321-1326.
    [59] Nishizuka, Y. The heterogeneity and differential expression of multiple species of the protein kinase C family[J]. Biofactors. 1988, 1(1): p. 17-20.
    [60] Kikkawa, U., Ogita, K., Go, M., et al. Protein kinase C in transmembrane signaling[J]. Adv Second Messenger Phosphoprotein Res. 1988, 21: p. 67-74.
    [61] Osada, S., Mizuno, K., Saido, T.C., et al. A phorbol ester receptor/protein kinase, nPKC eta, a new member of the protein kinase C family predominantly expressed in lung and skin[J]. J Biol Chem. 1990, 265(36): p. 22434-2240.
    [62] Fan, H.Y., Li, M.Y., Tong, C., et al. Inhibitory effects of cAMP and protein kinase C on meiotic maturation and MAP kinase phosphorylation in porcine oocytes[J]. Mol Reprod Dev. 2002, 63(4): p. 480-487.
    [63] Lu, Q., Smith, G.D., Chen, D.Y., et al. Activation of protein kinase C induces mitogen-activated protein kinase dephosphorylation and pronucleus formation in rat oocytes[J]. Biol Reprod, 2002, 67(1): p. 64-69.
    [64] Qian, Y.W., Erikson, E., Taieb, F.E., et al., The polo-like kinase Plx1 is required for activation of the phosphatase Cdc25C and cyclin B-Cdc2 in Xenopus oocytes[J]. Mol Biol Cell. 2001, 12(6): p. 1791-1799.
    [65] Iwabuchi, M., Ohsumi, K., Yamamoto, T.M., et al. Residual Cdc2 activity remaining at meiosis I exit is essential for meiotic M-M transition in Xenopus oocyte extracts[J]. Embo J. 2000, 19(17): p. 4513-4523.
    [66] Tosti, E., R. Boni, and A. Cuomo. Ca(2+) current activity decreases during meiotic progression in bovine oocytes[J]. Am J Physiol Cell Physiol. 2000, 279(6): p. C1795-1800.
    [67] Homaidan, F.R., G.W. Sharp, and L.M. Nowak. Galanin inhibits a dihydropyridine-sensitive Ca2+ current in the RINm5f cell line[J]. Proc Natl Acad Sci U S A. 1991, 88(19): p. 8744-8748.
    [68]董德利,孙建平,罗大力等.小甓碱对豚鼠心室肌细胞胞浆内游离钙离子浓度的影响[J].中华血液学杂志. 2004, 25(10): p. 600-604.
    [69] Guille JG, O.B.C., Fitzer CJ. Altered level of protein kinase C and Ca2+-dependent protein kinases in human colon carcinoma[J]. Cancer Res. 1987, 47: p. 2036-2041.
    [70] Varadi, G., Mori, Y., Mikala, G., et al. Molecular determinants of Ca2+ channel function and drug action[J]. Trends Pharmacol Sci. 1995, 16(2): p. 43-49.
    [71] Trad, F.S., M. Toner, and J.D. Biggers. Effects of cryoprotectants and ice-seeding temperature on intracellular freezing and survival of human oocytes[J]. Hum Reprod. 1999, 14(6): p. 1569-1577.
    [72]高志花,周虚,高庆华.哺乳动物卵泡发育过程中的超微结构变化[J].黑龙江动物繁殖. 2002, 10: p. 7-10.
    [73]刘吉吉,李荣凤.旭日干.体外培养绵羊卵母细胞超微结构的变化[J].内蒙古大学学报(自然科学版). 2000, 2: p. 223-227.
    [74] Patel, M.K., Mistry, D., John, J.E., et al. Sodium channel isoform-specific effects of halothane: protein kinase C co-expression and slow inactivation gating[J]. Br J Pharmacol. 2000, 130(8): p. 1785-1792.
    [75] Magerkurth, C., Topfer-Petersen, E., Schwartz, P., et al. Scanning electron microscopy analysis of the human zona pellucida: influence of maturity and fertilization on morphology and sperm binding pattern[J]. Hum Reprod. 1999, 14(4): p. 1057-1066.
    [76] Chang, W., Pratt, S., Chen, T.H., et al. Protein kinase C activation blocks calcium receptor signaling in Xenopus laevis oocytes[J]. Mol Cell Endocrinol. 1999, 158(1-2): p. 13-23.
    [77]金海霞.人类卵母细胞超微结构的研究进展.国外医学计划生育分册.2004, 3: p. 137-140.
    [78]李镅,杨利国.卵母细胞微绒毛形态与机能研究进展[J].黑龙江畜牧科技. 1998,4: p. 31-32.
    [79]谭景和.山羊卵母细胞发育的超微结构研究[J].解剖学报. 1992, 23: p. 106-110.
    [80]钱云,丁家桐,刘红林.卵母细胞成熟的形态学特征及其调控[J]. Animal Science Abroad. Dec. 1999, 6: p. 26-30.
    [81] Fair, T., Hulshof SC, Hyttel, P., et al. Nucleus ultrastructure and transcriptional activity of bovine oocytes in preantral and early antral follicles[J]. Mol Reprod Dev. 1997, 46(2): p. 208-215.
    [82] Fair, T., Hyttel, P., Greve, T., et al. Nucleus structure and transcriptional activity in relation to oocyte diameter in cattle[J]. Mol Reprod Dev. 1996, 43(4): p. 503-512.
    [83]孙青原,秦鹏春.牛卵母细胞发育的超微结构研究[J].山东农业大学学报. 1989, 4: p. 9-16.
    [84] GS, G., Isolation and preliminary charcterization of pig primordial follicles[J]. J. Reprod Fert, 1989, 87: p. 561-571.
    [85]孙青原,秦鹏春.牛卵丘-卵母细胞复合体体外成熟前后超微结构[J].东北农业大学学报. 1996, 27: p. 158-164.
    [86]孙青原,秦鹏春.牛卵母细胞发育过程中的细胞核变化[J].东北农学院学报. 1990, 21: p. 234-248.
    [87]李云龙.猪卵母细胞发育的超微结构研究[J].东北农学院学报. 1983, 14: p. 69-75.
    [88] Assey, R.J., Hyttel, P., Roche, J.F., et al. Infrequent structures in cattle oocytes[J]. Anat Embryol (Berl). 1994, 190(3): p. 263-271.
    [89]谭景和,秦鹏春.体外培养前黄牛卵母细胞的分类、形态结构及成熟能力的研究[J].中国农业科学. 1987, 22: p. 83-88.
    [90] Motlik, J., N. Crozet, and J. Fulka. Meiotic competence in vitro of pig oocytes isolated from early antral follicles[J]. J Reprod Fertil. 1984, 72(2): p. 323-328.
    [91] Fair, T., Hulshof SC, Hyttel, P., et al. Oocyte ultrastructure in bovine primordial to early tertiary follicles[J]. Anat Embryol (Berl). 1997, 195(4): p. 327-336.
    [92] Vanroose, G., A. Van Soom, and A. de Kruif. From co-culture to defined medium: state of the art and practical considerations[J]. Reprod Domest Anim. 2001, 36(1): p. 25-28.
    [93] Dobrinsky, J.R., L.A. Johnson, and D. Rath. Development of a culturemedium (BECM-3) for porcine embryos: effects of bovine serum albumin and fetal bovine serum on embryo development[J]. Biol Reprod. 1996, 55(5): p. 1069-1074.
    [94] Patsoula, E., Loutradis, D., Drakakis, P., et al. Messenger RNA expression for the follicle-stimulating hormone receptor and luteinizing hormone receptor in human oocytes and preimplantation-stage embryos[J]. Fertil Steril. 2003, 79(5): p. 1187-1193.
    [95] Abbas, M.M., Evans, J.J., Sin, I.L., et al. Vascular endothelial growth factor and leptin: regulation in human cumulus cells and in follicles[J]. Acta Obstet Gynecol Scand. 2003, 82(11): p. 997-1003.
    [96] Otani, N., Minami, S., Yamoto, M., et al. The vascular endothelial growth factor/fms-like tyrosine kinase system in human ovary during the menstrual cycle and early pregnancy[J]. J Clin Endocrinol Metab. 1999, 84(10): p. 3845-3851.
    [97] Obermair, A., Obruca, A., Pohl, M., et al. Vascular endothelial growth factor and its receptors in male fertility[J]. Fertil Steril. 1999, 72(2): p. 269-275.
    [98] Einspanier, R., Schonfelder, M., Muller, K., et al. Expression of the vascular endothelial growth factor and its receptors and effects of VEGF during in vitro maturation of bovine cumulus-oocyte complexes (COC) [J]. Mol Reprod Dev. 2002, 62(1): p. 29-36.
    [99] Luo, H., Kimura, K., Aoki, M., et al. Vascular endothelial growth factor (VEGF) promotes the early development of bovine embryo in the presence of cumulus cells[J]. J Vet Med Sci. 2002, 64(11): p. 967-971.
    [100] Luo, H., Kimura, K., Aoki, M., et al. Effect of vascular endothelial growth factor on maturation, fertilization and developmental competence of bovine oocytes[J]. J Vet Med Sci. 2002, 64(9): p. 803-806.
    [101] Kawano, Y., Zeineh Hasan, K., Fukuda, .J, et al. Production of vascular endothelial growth factor and angiogenic factor in human follicular fluid[J]. Mol Cell Endocrinol. 2003, 202(1-2): p. 19-23.
    [102] Senger, D.R., Galli, S.J., Dvorak, A.M., et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid[J]. Science. 1983, 219(4587): p. 983-985.
    [103] Ferrara, N. and T. Davis-Smyth. The biology of vascular endothelial growth factor[J]. Endocr Rev. 1997, 18(1): p. 4-25.
    [104] Ferrara, N. and B. Keyt. Vascular endothelial growth factor: basic biology and clinical implications[J]. Exs. 1997, 79: p. 209-232.
    [105] Plouet, J., Moro, F., Bertagnolli, S., et al. Extracellular cleavage of the vascular endothelial growth factor 189-amino acid form by urokinase is required for its mitogenic effect[J]. J Biol Chem. 1997, 272(20): p. 13390-13396.
    [106] Shen, B.Q., D.Y. Lee, and T.F. Zioncheck. Vascular endothelial growth factor governs endothelial nitric-oxide synthase expression via a KDR/Flk-1 receptor and a protein kinase C signaling pathway[J]. J Biol Chem. 1999, 274(46): p. 33057-33063.
    [107] Keyt, B.A., Nguyen, H.V., Berleau, L.T., et al. Identification of vascular endothelial growth factor determinants for binding KDR and FLT-1 receptors. Generation of receptor-selective VEGF variants by site-directed mutagenesis[J]. J Biol Chem. 1996, 271(10): p. 5638-5646.
    [108] Park, J.E., G.A. Keller, and N. Ferrara. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF[J]. Mol Biol Cell. 1993, 4(12): p. 1317-1326.
    [109] Houck, K.A., Leung, D.W., Rowland, A.M., et al. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms[J]. J Biol Chem. 1992, 267(36): p. 26031-26037.
    [110] Houck, K.A., Ferrara, N., Winer, J., et al. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA[J]. Mol Endocrinol. 1991, 5(12): p. 1806-1814.
    [111] Ferrara, N., Houck, K., Jakeman, L., et al. Molecular and biological properties of the vascular endothelial growth factor family of proteins[J]. Endocr Rev. 1992, 13(1): p. 18-32.
    [112] Kim, K.J., Li, B., Winer, J., et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo[J]. Nature. 1993, 362(6423): p. 841-844.
    [113] Kondo, S., Matsumoto, T., Yokoyama, Y., et al. The shortest isoform of human vascular endothelial growth factor/vascular permeability factor (VEGF/VPF121) produced by Saccharomyces cerevisiae promotes both angiogenesis and vascular permeability[J]. Biochim Biophys Acta. 1995, 1243(2): p. 195-202.
    [114] Gengrinovitch, S., Greenberg, SM., Cohen, T., et al. Platelet factor-4 inhibits the mitogenic activity of VEGF121 and VEGF165 using several concurrent mechanisms[J]. J Biol Chem. 1995, 270(25): p. 15059-15065.
    [115] Soker, S., Fidder, H., Neufeld, G., et al. Characterization of novel vascular endothelial growth factor (VEGF) receptors on tumor cells that bind VEGF165 via its exon 7-encoded domain[J]. J Biol Chem. 1996, 271(10): p. 5761-5767.
    [116] de Vries, C., Escobedo, J.A., Ueno, H., et al. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor[J]. Science. 1992, 255(5047): p. 989-991.
    [117] Barleon, B., Sozzani. S., Zhou, D., et al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1[J]. Blood. 1996, 87(8): p. 3336-3343.
    [118] Jiang, C.Q., Fan, L.F., Liu, Z.S., et al. Expression levels and significance of hypoxia inducible factor-1 alpha and vascular endothelial growth factor in human colorectal adenocarcinoma[J]. Chin Med J (Engl). 2004, 117(10): p. 1541-1546.
    [119] Jiang, D.Y., Fu, X.B., Chen, W., et al. Relationship of overexpression of angiogenesis factors and their receptors with invasive growth of keloid[J].Zhonghua Zheng Xing Wai Ke Za Zhi. 2004, 20(2): p. 128-131.
    [120] Levy, N.S., Chung, S., Furneaux, H., et al. Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR[J]. J Biol Chem. 1998, 273(11): p. 6417-6423.
    [121] Goldman, C.K., Kim, J., Wong, W.L., et al. Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: a model of glioblastoma multiforme pathophysiology[J]. Mol Biol Cell. 1993, 4(1): p. 121-133.
    [122]朱士恩,安晓荣等.绵羊体内外受精胚胎玻璃化冷冻保存[J].中国兽医学报. 2000, 3: p. 302-305.
    [123]陈大元.受精生物学-受精机制与生殖工程.北京:科学出版社, 2000,8.
    [124] Schalkoff, M.E., R.D. Powers, and S.P. Oskowitz. An ultrastructural analysis of an oocyte from an in vitro fertilization patient with repeated polyspermic fertilization[J]. J Assist Reprod Genet. 1996, 13(6): p. 477-484.
    [125] Bongso., A. The art laboratory. Lecture notes on Assisted Reproductive techniques. 2001,5.
    [126]叶英辉,金帆,徐晨明,多精受精与体外受精--胚胎移植结局的关系[J].浙江大学学报. 2002, 31,3: p. 171-173.
    [127] Gabler, C., Einspanier, A., Schams, D., et al. Expression of vascular endothelial growth factor (VEGF) and its corresponding receptors (flt-1 and flk-1) in the bovine oviduct[J]. Mol Reprod Dev. 1999, 53(4): p. 376-383.
    [128] Albertini, D.F. Regulation of meiotic maturation in the mammalian oocyte: interplay between exogenous cues and the microtubule cytoskeleton[J]. Bioessays. 1992, 14(2): p. 97-103.
    [129] Eppig, J.J., M. O'Brien, and K. Wigglesworth. Mammalian oocyte growth and development in vitro[J]. Mol Reprod Dev. 1996, 44(2): p. 260-273.
    [130] Mattson, B.A. and D.F. Albertini. Oogenesis: chromatin and microtubule dynamics during meiotic prophase[J]. Mol Reprod Dev. 1990, 25(4): p. 374-383.
    [131] Combelles, C.M., Cekleniak, N.A., Racowsky, C., et al. Assessment of nuclear and cytoplasmic maturation in in-vitro matured human oocytes[J]. Hum Reprod. 2002, 17(4): p. 1006-1016.
    [132] Schramm, R.D., Tennier, M.T., Boatman, D.E., et al. Chromatin configurations and meiotic competence of oocytes are related to follicular diameter in nonstimulated rhesus monkeys[J]. Biol Reprod. 1993, 48(2): p. 349-356.
    [133] Wickramasinghe, D. and D.F. Albertini. Centrosome phosphorylation and the developmental expression of meiotic competence in mouse oocytes[J]. Dev Biol. 1992, 152(1): p. 62-74.
    [134] Wickramasinghe, D., K.M. Ebert, and D.F. Albertini. Meiotic competence acquisition is associated with the appearance of M-phase characteristics in growing mouse oocytes[J]. Dev Biol. 1991, 143(1): p. 162-172.
    [135] Zhou, J., Panda, D., Landen, J.W., et al. Minor alteration of microtubule dynamics causes loss of tension across kinetochore pairs and activates thespindle checkpoint[J]. J Biol Chem. 2002, 277(19): p. 17200-17208.
    [136] Zhou, J., H.B. Shu, and H.C. Joshi. Regulation of tubulin synthesis and cell cycle progression in mammalian cells by gamma-tubulin-mediated microtubule nucleation[J]. J Cell Biochem. 2002, 84(3): p. 472-483.
    [137] Chen, S.U., Lien, Y.R., Chao, K.H., et al. Effects of cryopreservation on meiotic spindles of oocytes and its dynamics after thawing: clinical implications in oocyte freezing--a review article[J]. Mol Cell Endocrinol. 2003, 202(1-2): p. 101-107.
    [138] Ducibella, T., Kurasawa, S., Rangarajan, S., et al. Precocious loss of cortical granules during mouse oocyte meiotic maturation and correlation with an egg-induced modification of the zona pellucida[J]. Dev Biol. 1990, 137(1): p. 46-55.
    [139] Herrick, S.P., Waters, E.M., Drake, C.T., et al. Extranuclear estrogen receptor beta immunoreactivity is on doublecortin-containing cells in the adult and neonatal rat dentate gyrus[J]. Brain Res. 2006, 1121(1): p. 46-58.
    [140] Yoshida, M., D.G. Cran, and V.G. Pursel. Confocal and fluorescence microscopic study using lectins of the distribution of cortical granules during the maturation and fertilization of pig oocytes[J]. Mol Reprod Dev. 1993, 36(4): p. 462-468.
    [141] Yoshida, M., Ishigaki, K., Nagai, T., et al. Glutathione concentration during maturation and after fertilization in pig oocytes: relevance to the ability of oocytes to form male pronucleus[J]. Biol Reprod. 1993, 49(1): p. 89-94.
    [142] Ducibella, T., Duffy, P., Reindollar, R., et al. Changes in the distribution of mouse oocyte cortical granules and ability to undergo the cortical reaction during gonadotropin-stimulated meiotic maturation and aging in vivo[J]. Biol Reprod. 1990, 43(5): p. 870-876.
    [143] Hoodbhoy, T. and P. Talbot. Mammalian cortical granules: contents, fate, and function[J]. Mol Reprod Dev. 1994, 39(4): p. 439-448.
    [144] Miyara, F., Migne, C., Dumont-Hassan, M., et al. Chromatin configuration and transcriptional control in human and mouse oocytes[J]. Mol Reprod Dev. 2003, 64(4): p. 458-470.
    [145] Cran, D.G. and C.R. Esper. Cortical granules and the cortical reaction in mammals[J]. J Reprod Fertil Suppl. 1990, 42: p. 177-188.
    [146] Berg, L.K. and G.M. Wessel. Cortical granules of the sea urchin translocate early in oocyte maturation[J]. Development. 1997, 124(9): p. 1845-1850.
    [147] Miyara, F., Aubriot, F.X., Glissant, A., et al. Multiparameter analysis of human oocytes at metaphase II stage after IVF failure in non-male infertility[J]. Hum Reprod. 2003, 18(7): p. 1494-1503.
    [148] Tsaadon, A., Eliyahu, E., Shtraizent, N., et al. When a sperm meets an egg: block to polyspermy[J]. Mol Cell Endocrinol. 2006, 252(1-2): p. 107-114.
    [149] Wolfe, H.G. Effects on sperm morphology by alleles at the pink-eyed dilution locus in mice[J]. Genetics. 1977, 85(2): p. 303-308.
    [150] Yanagimachi, R.. Fertility of mammalian spermatozoa: its development and relativity[J]. Zygote. 1994, 2(4): p. 371-372.
    [151] Lane, M. and D.K. Gardner. Regulation of ionic homeostasis by mammalian embryos[J]. Semin Reprod Med. 2000, 18(2): p. 195-204.
    [152] Sutton-McDowall, M.L., R.B. Gilchrist, and J.G. Thompson. Cumulus expansion and glucose utilisation by bovine cumulus-oocyte complexes during in vitro maturation: the influence of glucosamine and follicle-stimulating hormone[J]. Reproduction. 2004, 128(3): p. 313-319.
    [153] Kanno, S., Oda, N., Abe, M., et al. Roles of two VEGF receptors, Flt-1 and KDR, in the signal transduction of VEGF effects in human vascular endothelial cells[J]. Oncogene. 2000, 19(17): p. 2138-2146.
    [154] Sato, Y., Kanno, S., Oda, N., et al. Properties of two VEGF receptors, Flt-1 and KDR, in signal transduction[J]. Ann N Y Acad Sci. 2000, 902: p. 201-205; discussion 205-207.
    [155] Quinn, T.P., Peters, K.G., De Vries, C., et al. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium[J]. Proc Natl Acad Sci U S A. 1993, 90(16): p. 7533-7537.
    [156] Artini, P.G., Fasciani, A., Monti, M., et al. Changes in vascular endothelial growth factor levels and the risk of ovarian hyperstimulation syndrome in women enrolled in an in vitro fertilization program[J]. Fertil Steril. 1998, 70(3): p. 560-564.
    [157] Ferrara, N., H.P. Gerber, and J. LeCouter. The biology of VEGF and its receptors[J]. Nat Med. 2003, 9(6): p. 669-676.
    [158] Tille, J.C., Wang, X., Lipson, K.E., et al. Vascular endothelial growth factor (VEGF) receptor-2 signaling mediates VEGF-C(deltaNdeltaC)- and VEGF-A-induced angiogenesis in vitro[J]. Exp Cell Res. 2003, 285(2): p. 286-298.
    [159] McKeeman, G.C., Ardill, J.E., Caldwell, C.M., et al. Soluble vascular endothelial growth factor receptor-1 (sFlt-1) is increased throughout gestation in patients who have preeclampsia develop[J]. Am J Obstet Gynecol. 2004, 191(4): p. 1240-1246.
    [160] diZerega, G.S. and G.D. Hodgen. Fluorescence localization of luteinizing hormone/human chorionic gonadotropin uptake in the primate ovary. II. Changing distribution during selection of the dominant follicle[J]. J Clin Endocrinol Metab. 1980, 51(4): p. 903-907.
    [161] Gordon, J.D., Mesiano, S., Zaloudek, C.J., et al. Vascular endothelial growth factor localization in human ovary and fallopian tubes: possible role in reproductive function and ovarian cyst formation[J]. J Clin Endocrinol Metab. 1996, 81(1): p. 353-359.
    [162] Lonergan, P., Rizos, D., Gutierrez-Adan, A., et al. Effect of culture environment on embryo quality and gene expression - experience from animal studies[J]. Reprod Biomed Online. 2003, 7(6): p. 657-663.
    [163] Bishonga, C., Takahashi, Y., Katagiri, S., et al. In vitro growth of mouse ovarian preantral follicles and the capacity of their oocytes to develop to the blastocyst stage[J]. J Vet Med Sci. 2001, 63(6): p. 619-624.
    [164] Lawson, N.D., Mugford, J.W., Diamond, B.A., et al. phospholipase C gamma-1 isrequired downstream of vascular endothelial growth factor during arterial development[J]. Genes Dev. 2003, 17(11): p. 1346-1351.
    [165] Cowley, S., Paterson, H., Kemp, P., et al. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells[J]. Cell. 1994, 77(6): p. 841-852.
    [166] Keady, B.T., Kuo, P., Martinez, S.E., et al. MAPK interacts with XGef and is required for CPEB activation during meiosis in Xenopus oocytes[J]. J Cell Sci. 2007, 120(Pt 6): p. 1093-1103.
    [167] Alessi, D.R., Cohen, P., Ashworth, A., et al. Assay and expression of mitogen-activated protein kinase, MAP kinase kinase, and Raf[J]. Methods Enzymol. 1995, 255: p. 279-290.
    [168] Marshall, C.J. and S.J. Leevers. Mitogen-activated protein kinase activation by scrape loading of p21ras[J]. Methods Enzymol. 1995, 255: p. 273-279.
    [169] Alessi, D.R., Saito, Y., Campbell, D.G., et al. Identification of the sites in MAP kinase kinase-1 phosphorylated by p74raf-1[J]. Embo J. 1994, 13(7): p. 1610-1619.
    [170] Choi, T., Fukasawa, K., Zhou, R., et al. The Mos/mitogen-activated protein kinase (MAPK) pathway regulates the size and degradation of the first polar body in maturing mouse oocytes[J]. Proc Natl Acad Sci U S A. 1996, 93(14): p. 7032-7035.
    [171] Colonna, R., Tatone, C., Francione, A., et al. Protein kinase C is required for the disappearance of MPF upon artificial activation in mouse eggs[J]. Mol Reprod Dev. 1997, 48(2): p. 292-299.
    [172] Fan, H.Y., Huo, L.J., Chen, D.Y., et al. Protein kinase C and mitogen-activated protein kinase cascade in mouse cumulus cells: cross talk and effect on meiotic resumption of oocyte[J]. Biol Reprod. 2004, 70(4): p. 1178-1187.
    [173] Bruce, J.N., Criscuolo, G.R., Merrill, M.J., et al. Vascular permeability induced by protein product of malignant brain tumors: inhibition by dexamethasone[J]. J Neurosurg. 1987, 67(6): p. 880-884.
    [174] Pokrywka, N.J. RNA localization and the cytoskeleton in Drosophila oocytes[J]. Curr Top Dev Biol. 1995, 31: p. 139-166.
    [175] Gonzalez-Bulnes, A., Berlinguer, F., Cocero, M.J., et al. Induction of the presence of corpus luteum during superovulatory treatments enhances in vivo and in vitro blastocysts output in sheep[J]. Theriogenology. 2005, 64(6): p. 1392-1403.
    [176] Brunet, S. and B. Maro. Cytoskeleton and cell cycle control during meiotic maturation of the mouse oocyte: integrating time and space[J]. Reproduction. 2005, 130(6): p. 801-811.
    [177] Barboni, B., Turriani, M., Galeati, G., et al. Vascular endothelial growth factor production in growing pig antral follicles[J]. Biol Reprod. 2000, 63(3): p. 858-864.
    [178] Einspanier, R., Gabler, C., Bieser, B., et al. Growth factors and extracellular matrix proteins in interactions of cumulus-oocyte complex, spermatozoa andoviduct[J]. J Reprod Fertil Suppl. 1999, 54: p. 359-365.
    [179] Warzych, E., Peippo, J., Szydlowski, M., et al. Supplements to in vitro maturation media affect the production of bovine blastocysts and their apoptotic index but not the proportions of matured and apoptotic oocytes[J]. Anim Reprod Sci. 2007, 97(3-4): p. 334-343.
    [180] Warzych, E., Wrenzycki, C., Peippo, J., et al. Maturation medium supplements affect transcript level of apoptosis and cell survival related genes in bovine blastocysts produced in vitro[J]. Mol Reprod Dev. 2007, 74(3): p. 280-289.
    [181] Buccione, R., A.C. Schroeder, and J.J. Eppig. Interactions between somatic cells and germ cells throughout mammalian oogenesis[J]. Biol Reprod. 1990, 43(4): p. 543-547.
    [182] Buccione, R., Vanderhyden, B.C., Caron, P.J., et al. FSH-induced expansion of the mouse cumulus oophorus in vitro is dependent upon a specific factor(s) secreted by the oocyte[J]. Dev Biol. 1990, 138(1): p. 16-25.
    [183] Morgavi, D.P., Newbold, C.J., Beever, D.E., et al. Stability and stabilization of potential feed additive enzymes in rumen fluid[J]. Enzyme Microb Technol. 2000, 26(2-4): p. 171-177.
    [184] Ye, J., Coleman, J., Hunter, M.G., et al. Physiological temperature variants and culture media modify meiotic progression and developmental potential of pig oocytes in vitro[J]. Reproduction. 2007, 133(5): p. 877-886.
    [185] Battaglia, D.E., Goodwin, P. Klein, N.A., et al. Influence of maternal age on meiotic spindle assembly in oocytes from naturally cycling women[J]. Hum Reprod. 1996, 11(10): p. 2217-2222.
    [186] Battaglia, D.E., N.A. Klein, and M.R. Soules. Changes in centrosomal domains during meiotic maturation in the human oocyte[J]. Mol Hum Reprod.1996, 2(11): p. 845-851.
    [187] Howlett, S.K., Webb, M., Maro, B., et al. Meiosis II, mitosis I and the linking interphase: a study of the cytoskeleton in the fertilised mouse egg[J]. Cytobios. 1985, 43(174S): p. 295-305.
    [188] Hyman, A. and E. Karsenti. The role of nucleation in patterning microtubule networks[J]. J Cell Sci. 1998, 111 ( Pt 15): p. 2077-2083.
    [189] Albertini, D.F. Cytoplasmic microtubular dynamics and chromatin organization during mammalian oogenesis and oocyte maturation[J]. Mutat Res.1992, 296(1-2): p. 57-68.
    [190] Damiani, P., Fissore, R.A., Cibelli, J.B., et al. Evaluation of developmental competence, nuclear and ooplasmic maturation of calf oocytes[J]. Mol Reprod Dev. 1996, 45(4): p. 521-534.
    [191] Beker-van Woudenberg, A.R., Zeinstra, E.C., Roelen, B.A. ,et al. Developmental competence of bovine oocytes after specific inhibition of MPF kinase activity: effect of estradiol supplementation and follicle size[J]. Anim Reprod Sci. 2006, 92(3-4): p. 231-240.
    [192] Kim, K.J., Li, B., Houck, K., et al. The vascular endothelial growth factor proteins: identification of biologically relevant regions by neutralizing monoclonal antibodies[J]. Growth Factors. 1992, 7(1): p. 53-64.
    [193] Abeydeera, L.R., Wang, W.H., Cantley, T.C., et al. Development and viability of pig oocytes matured in a protein-free medium containing epidermal growth factor[J]. Theriogenology. 2000, 54(5): p. 787-797.
    [194] Viana, K.S., Caldas-Bussiere, M.C., Matta, S.G., et al. Effect of sodium nitroprusside, a nitric oxide donor, on the in vitro maturation of bovine oocytes[J]. Anim Reprod Sci. 2007, 102(3-4): p. 217-227.
    [195] Assey, R.J., P. Hyttel, and N. Kanuya. Oocyte structure in dominant and subordinate follicles in zebu cattle (Bos indicus) [J]. Anat Embryol (Berl). 1994, 190(5): p. 461-468.
    [196] Assey, R.J., Hyttel, P., Roche, J.F., et al. Oocyte structure and follicular steroid concentrations in superovulated versus unstimulated heifers[J]. Mol Reprod Dev. 1994, 39(1): p. 8-16.
    [197] Szollosi, D. Development of cortical granules and the cortical reaction in rat and hamster eggs[J]. Anat Rec. 1967, 159(4): p. 431-446.
    [198] Spector, A.A. and D.E. Brenneman. Effect of free fatty acid structure on binding to rat liver mitochondria[J]. Biochim Biophys Acta. 1972, 260(3): p. 433-438.
    [199] Edwards, R.G. Maturation in vitro of human ovarian oocytes[J]. Lancet. 1965, 2(7419): p. 926-929.
    [200] Edwards, R.G. Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes[J]. Nature. 1965, 208(5008): p. 349-351.
    [201] Cheng, Y., Lei, L., Wen, D.C., et al. Development of mouse embryos derived from oocytes reconstructed by metaphase I spindle transfer[J]. Zygote. 2003, 11(1): p. 53-59.
    [202] Goto, K., Kajihara, Y., Kosaka, S., et al. Pregnancies after co-culture of cumulus cells with bovine embryos derived from in-vitro fertilization of in-vitro matured follicular oocytes[J]. J Reprod Fertil. 1988, 83(2): p. 753-758.
    [203] Mattioli, M., Bacci, M.L., Galeati, G., et al. Developmental competence of pig oocytes matured and fertilized in vitro[J]. Theriogenology. 1989, 31(6): p. 1201-1207.
    [204] Funahashi, H. and B.N. Day. Advances in in vitro production of pig embryos[J]. J Reprod Fertil Suppl. 1997, 52: p. 271-283.
    [205]牧仁,张锁链,旭日干.羔山羊卵巢卵母细胞超微结构及核质成熟分析[J].内蒙古大学学报(自然科学版). 1996, 27: p. 250-255.
    [206] Meyer-Lehnert, H., Wanning, C., Predel, H.G., et al. Effects of endothelin on sodium transport mechanisms: potential role in cellular Ca2+ mobilization[J]. Biochem Biophys Res Commun.1989, 163(1): p. 458-465.
    [207] Carmeliet, P. VEGF gene therapy: stimulating angiogenesis or angioma-genesis? [J]. Nat Med. 2000, 6(10): p. 1102-1103.
    [208] Waltenberger, J., Claesson-Welsh, L., Siegbahn, A., et al. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor[J]. J Biol Chem. 1994, 269(43): p. 26988-26995.
    [209] Koyama, S., Takagi, H., Otani, A., et al. Tranilast inhibits protein kinase C-dependent signalling pathway linked to angiogenic activities and geneexpression of retinal microcapillary endothelial cells[J]. Br J Pharmacol. 1999, 127(2): p. 537-545.
    [210] Spyridopoulos, I., Luedemann, C., Chen, D., et al. Divergence of angiogenic and vascular permeability signaling by VEGF: inhibition of protein kinase C suppresses VEGF-induced angiogenesis, but promotes VEGF-induced, NO-dependent vascular permeability[J]. Arterioscler Thromb Vasc Biol. 2002, 22(6): p. 901-906.
    [211] Gangeswaran, R. and K.T. Jones. Unique protein kinase C profile in mouse oocytes: lack of calcium-dependent conventional isoforms suggested by rtPCR and Western blotting[J]. FEBS Lett. 1997, 412(2): p. 309-312.
    [212] Luria, A., Tennenbaum, T., Sun, Q.Y., et al. Differential localization of conventional protein kinase C isoforms during mouse oocyte development[J]. Biol Reprod. 2000, 62(6): p. 1564-1570.
    [213] Downs, S.M., J. Cottom, and M. Hunzicker-Dunn. Protein kinase C and meiotic regulation in isolated mouse oocytes[J]. Mol Reprod Dev. 2001, 58(1): p. 101-115.
    [214] Bornslaeger, E.A., Poueymirou, W.T., Mattei, P., et al. Effects of protein kinase C activators on germinal vesicle breakdown and polar body emission of mouse oocytes[J]. Exp Cell Res. 1986, 165(2): p. 507-517.
    [215] Lefevre, B., Pesty, A., Koziak, K., et al. Protein kinase C modulators influence meiosis kinetics but not fertilizability of mouse oocytes[J]. J Exp Zool. 1992, 264(2): p. 206-213.
    [216] Adler, V., Qu, Y., Smith, S.J., et al. Functional interactions of Raf and MEK with Jun-N-terminal kinase (JNK) result in a positive feedback loop on the oncogenic Ras signaling pathway[J]. Biochemistry. 2005, 44(32): p. 10784-10795.
    [217] Huang, C.Y. and J.E. Ferrell, Jr. Ultrasensitivity in the mitogen-activated protein kinase cascade[J]. Proc Natl Acad Sci U S A. 1996, 93(19): p. 10078-10083.
    [218] Matsuda, S., Y. Gotoh, and E. Nishida. Phosphorylation of Xenopus mitogen-activated protein (MAP) kinase kinase by MAP kinase kinase kinase and MAP kinase[J]. J Biol Chem. 1993, 268(5): p. 3277-3281.
    [219] Clark, G.F., S. Oehninger, and M. Seppala. Role for glycoconjugates in cellular communication in the human reproductive system[J]. Mol Hum Reprod.1996, 2(7): p. 513-517.
    [220] Inoue, D., Ohe, M., Kanemori, Y., et al. A direct link of the Mos-MAPK pathway to Erp1/Emi2 in meiotic arrest of Xenopus laevis eggs[J]. Nature. 2007, 446(7139): p. 1100-1104.
    [221] Tarin, J.J., Gomez-Piquer, V., Pertusa, J.F., et al. Association of female aging with decreased parthenogenetic activation, raised MPF, and MAPKs activities and reduced levels of glutathione S-transferases activity and thiols in mouse oocytes[J]. Mol Reprod Dev. 2004, 69(4): p. 402-410.
    [222] Zhang, W.L., Huitorel, P., Geneviere, A.M., et al. Inactivation of MAPK in mature oocytes triggers progression into mitosis via a Ca2+ -dependentpathway but without completion of S phase[J]. J Cell Sci. 2006, 119(Pt 17): p. 3491-501.
    [223] Asano, M., Yukita, A., Matsumoto, T., et al. Isolation and characterization of neutralizing monoclonal antibodies to human vascular endothelial growth factor/vascular permeability factor121 (VEGF/VPF121) [J]. Hybridoma. 1995, 14(5): p. 475-480.
    [224] Kamat, B.R., Brown, L.F., Manseau, E.J., et al. Expression of vascular permeability factor/vascular endothelial growth factor by human granulosa and theca lutein cells. Role in corpus luteum development[J]. Am J Pathol. 1995, 146(1): p. 157-165.
    [225] Ortega, N., Jonca, F., Vincent, S., et al. Systemic activation of the vascular endothelial growth factor receptor KDR/flk-1 selectively triggers endothelial cells with an angiogenic phenotype[J]. Am J Pathol. 1997, 151(5): p. 1215-1224.
    [226] Shalaby, F., Rossant, J., Yamaguchi, T.P., et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice[J]. Nature. 1995, 376(6535): p. 62-66.
    [227] Hiratsuka, S., Minowa, O., Kuno, J., et al. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice[J]. Proc Natl Acad Sci U S A.1998, 95(16): p. 9349-9354.
    [228] Rousseau, P., Meda, P., Lecart, C., et al. Cortical granule release in human follicular oocytes[J]. Biol Reprod. 1977, 16(1): p. 104-111.
    [229] Licht, P., Neuwinger, J., Fischer, O., et al. Peripheral levels of vascular endothelial growth factor (VEGF) are higher in gonadotropin stimulated as compared to natural ovarian cycles[J]. Exp Clin Endocrinol Diabetes. 2001, 109(6): p. 345-349.
    [230] Toi, M., Inada, K., Hoshina, S., et al. Vascular endothelial growth factor and platelet-derived endothelial cell growth factor are frequently coexpressed in highly vascularized human breast cancer[J]. Clin Cancer Res. 1995, 1(9): p. 961-964.
    [231] Berisha, B., Schams, D., Kosmann, M., et al. Expression and tissue concentration of vascular endothelial growth factor, its receptors, and localization in the bovine corpus luteum during estrous cycle and pregnancy[J]. Biol Reprod. 2000, 63(4): p. 1106-1114.
    [232] Gitay-Goren, H. Cohen, T., Tessler, S., et al., Selective binding of VEGF121 to one of the three vascular endothelial growth factor receptors of vascular endothelial cells[J]. J Biol Chem. 1996, 271(10): p. 5519-5523.
    [233] Fujisawa, T., Watanabe, J., Kamata, Y., et al. VEGF expression and its reguration by p53 gene transfection in endometrial carcinoma cells[J]. Hum Cell. 2003, 16(1): p. 47-54.
    [234] Fasouliotis, S.J., Spandorfer, S.D., Witkin, S.S., et al. Maternal serum vascular endothelial growth factor levels in early ectopic and intrauterine pregnancies after in vitro fertilization treatment[J]. Fertil Steril. 2004, 82(2): p. 309-313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700