用户名: 密码: 验证码:
新型稠化酸液的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足地层深部酸化的需要,降低稠化酸的地层伤害性、提高稠化酸的粘度,制得高性能酸液,开展了新型清洁稠化酸和高粘度稠化酸的研究工作。
     采用具有特殊结构的阳离子表面活性剂和助表面活性剂配制出了高粘度的盐酸溶液,研制出了与该体系具有优良配伍性的缓蚀剂,考察了酸液组成对酸液性能的影响。在此基础上提出了用于碳酸盐地层酸化作业的FL清洁稠化酸酸液配方,研究了基本性能。结果表明,FL清洁稠化酸具有良好的剪切稳定性,对钢材腐蚀性小,与大理石的反应速度慢,无残渣。组成为4%FL4-22+2%FL4-22A+20%盐酸溶液+2%缓蚀剂的酸液在90℃下粘度可达25mPa·s,在与地层岩石反应时具有粘度先升后降的特征,残酸粘度低易于返排,可用于碳酸盐地层的深部酸化作业。
     采用丙烯酰胺(AM)与阴离子单体丙烯酸(AA)和阳离子单体甲基丙烯酰氧乙基三甲基氯化铵(DMC)为共聚单体,用自由基水溶液聚合方法制备出了两性离子共聚物稠化剂P(AM-DMC-AA)。采用红外光谱、核磁共振~1H谱对共聚物结构和组成进行了表征;研究了聚合反应的pH值、温度、时间、引发剂浓度、不同单体配比以及单体浓度对共聚反应产物溶液性能的影响。研究结果表明,聚合反应条件对产物性能影响较大。酸性条件下制备的共聚物溶解性较好;随着单体浓度的增加,所得聚合物的特性粘数和溶液表观粘度先升高后下降;随着引发剂浓度的增加,共聚反应转化率提高,聚合物溶液的特性粘数和表观粘度先上升后下降;随着阳离子单体甲基丙烯酰氧乙基三甲基氯化铵(DMC)单元在共聚物中含量的减少,阴离子单体丙烯酸单元在共聚物中含量的增加,共聚物的特性粘数和表观粘度先上升后下降;当AM在共聚单体中的含量增大时,共聚物的特性粘数和表观粘度先升高后降低;随着反应温度升高,所得聚合物溶液的特性粘数先升高后下降。
     研究了共聚物P(AM-DMC-AA)的溶液性能,分别考察了共聚物结构及共聚物浓度、温度、剪切速率对共聚物溶液表观粘度的影响。研究结果表明,P(AM-DMC-AA)具有明显的两性离子共聚物特征,在水或盐酸中具有良好的溶解性、热稳定性、剪切稳定性,可用作酸液增粘剂。
     采用P(AM-DMC-AA)为增粘剂、具有1,5—二醛结构的化合物为交联剂配制出了交联稠化酸,研究了交联剂与共聚物P(AM-DMC-AA)交联作用机理。考察了P(AM-DMC-AA)结构与浓度、温度、交联剂用量对交联稠化酸性能的影响,在此基础上提出了交联稠化酸的酸液配方。研究结果表明,P(AM-DMC-AA)在酸液中参与交联反应的基团是丙烯酰胺结构单元的酰胺基团,交联作用可大幅度提高酸液粘度.交联剂加量及合成P(AM-DMC-AA)时AM加量对所制备的交联稠化酸的粘度及稳定性有显著影响,只有在适当加量下才能获得性能良好的交联稠化酸。交联稠化酸性能评价结果表明,交联酸液粘度高,缓速性能显著优于常规盐酸和稠化酸率,破胶后粘度低、残渣含量少,是一种具有优良综合性能的新型酸液。
Acid treatment is important measure to increase production, theperformance of acid working liquids directly affect the effect of acidtreatments. In order to prepare acid with good performance, new type ofpolymer-free acid and thickened acid has been researched.
     Polymer-free acid with high viscosity was formulated by 20%HCl, acationic surfactant (FL4-22),and an organic metal surfactant (FL4—22A)with special chemical structure. The corrosion inhibitor(FL4—22B)which is of good compatibility with the retarded acid was prepared. Theeffect of acid composing on performance was studied, and the formulationof the acid (FL polymer—free viscous acid)suitable for formationacidization was recommended. The proterties of FL polymer—freeviscous acid were systematically investigated. It is concluded that thisacid system have good properties in shear stability, corrosioninhibition, and retardance performance. The viscosity of FL polymer—free viscous acid(4%FL4-22+2% FL4-22A+20%HC1+2%FL4-22B) is25mPa·s at 90℃, and rheological studies showed that the acid rapidlydeveloped viscosity as the acid was spent with carbonate minerals, Thishigh viscosity will help in diverting the live acid into otherun-stimulated zones. Once the acid stimulation is complete, the high viscosity of spent acid can be broken either by dilution with theinjection water or crude oil in the reservoir. So this new type of acidsystem can be applied in carbonate acidizing treatments.
     The water-soluble copolymer P(AM-DMC-AA) of acrylamide (AM),methacryloyloxyethyl trimethyl ammonium chloride (DMC), and acrylicacid (AA) were synthesized by free radical aqueous solutioncopolymerization. The copolymer structures were characterized via IRSpectrum and ~1H-NMR Spectrum. The effects of the reaction conditions suchas pH value, reaction temperature, time, initiator concentration andvarious monomers concentrations on the performance of the copolymersolution were studied.
     The results show that the conditions of polymerization reaction havenotable effect on the performance of the product. Dissolvability ofcopolymer synthesized in acidity is better than alkalescence. Theintrinsic viscosity and apparent viscosity of copolymer increases atfirst then decreases with monomer concentration, initiatorconcentration increasing and temperature rising. When the AM monomeramount in the copolymer increases, the intrinsic viscosity and apparentviscosity of copolymer increases at first then decreases. IR and ~1H-NMRstructural symptom have been confirmed the copolymer structure unitinclude acrylamide (AM), methacryloyloxyethyl trimethyl ammoniumchloride (DMC), and acrylic acid (AA).
     The influence factors(water soluble time, copolymer concentration,temperature, shear rate) on Apparent viscosity of the copolymer solutionwere studied. The transmittance at various pH has also been studied, Theshow that P (AM-DMC-AA) has the good water dissolubility and thicknessability; The apparent viscosity of copolymer solution decreased withshear rate and temperature increase. Iransmittance study showed that P(AM-DMC-AA) has distinct characteristic of zwitterion copolymer.
     The rheology, heat stability, shear stability of copolymerP(AM-DMC-AA) as viscosifier also were evaluated. The results show that the thickened acid has good properties of acid dissolubility, heatstability, shear stability, can be applied in acidizing treatments.
     Crosslinked acid has been prepared by cross-linker; The mechanismof cross-linker and P(AM-DMC-AA)has been studied; The apparent viscositychanges of crosslinked acid in different temperature, cross-linkerconcentration, copolymer concentration and AMcontent in P (AM-DMC-AA)were investigated. Characteristic evaluate of Crosslinked acid indicatethat crosslinked acid has good propertis of retardance performance. Theapparent viscosity and residue content of liquids after gel-breakingaccord with pertinent standard.
引文
[1] 郭建春 陈朝刚.酸化工作液发展现状.河南石油.2004.11 18(6):40~42
    [2] 王宝锋.90年代国外酸化工作液的研究与发展.钻井液与完井液.1998.15(5):37~39
    [3] 四川石油管理局、西南石油学院油气井酸化读本编写组.油、气井酸化读本.石油化学工业出版社.1976
    [4] 佟曼丽.油田化学.石油大学出版社.1996
    [5] SLBryant. An Improved Model of Mud Acid/Sandstone Chemistry. SPE22855, 1991
    [6] Chavanne, Christophe, Perthuis, H. G. A Fluid Selection Expert System for Matrix Treatments. SPE 24995, 1992
    [7] Shuchart, C. E., Gdanski, R. D. Improved Success in Acid Stimulations with a New Organic-HF System. SPE 36907, 1996
    [8] Shuchart, Chris E. Chemical Study of Organic-HF Blends Leads to Improved Fluids. SPE 37281, 1997
    [9] Di Lullo, Gino, Rae, Phil. A New Acid for True Stimulation of Sandstone Reservoirs. SPE 37015, 1996
    [10] Knox J A, et al. Journal of canadian petroleum Technology. 1979. 10-12:77~90
    [11] 陈赓良 黄瑛.酸化工作液缓速作用的理论与实践.钻井液与完井液.2004.21(1):50~54
    [12] Woo, George Tso-chih(Houston, TX), Boles, Joel Lynn(Spring, TX), Lopez, Enrique(Midland, TX). Acid gels for fracturing subterranean formations. USP 5975206. 1999
    [13] Woo, George Tso-chih(Houston, TX), Boles, Joel Lynn(Spring, TX), Lopez, Enrique(Midland, TX). Acid gels for fracturing subterranean formations. USP 6046140. 2000
    [14] Dawson, Jeffrey C. (Spring, TX), Kesavan, Subramanian(Woodlands, TX), Lw, Hoang V. (Houston, TX). USP 638?853. 2002
    [15] 原青民.近期压裂酸化添加剂研究情况简介.石油与天然气化工.1992.21(1):14—21
    [16] 黄瑛.国内外酸化技术发展近况.钻井液与完井液.2000.17(1):31~34,38
    [17] 石永忠.乳化酸配方及其工艺技术的研究与应用.石油与天然气化工.1996.25(4):222
    [18] SPE production Engineering, 1996, 11.
    [19] Buijse, M. A., van Domelen, M. S. Novel Application of Emulsified Acids to Matrix Stimulation of Heterogeneous Formations. SPE 39583. 1998
    [20] 石油与天然气文摘.9797394
    [21] 唐永凡等.酸化胶束剂CT5—5和CT5—6的研制与应用.石油与天然气化工.1995.24(3):185~192
    [22] 马喜平.提高酸化效果的缓速酸.钻采工艺.1996.19(1):55~62
    [23] Scheuerman, et al. Acidizing carbonate reservoirs with chlorocarboxylic acid salt solutions. Us 4122896. 1978
    [24] Watanabe. Method for acidizing high temperature subterranean formations. Us 4148360. 1979
    [25] Zeeney. Method of and composition for acidizing subterranean formations. Us 4371443. 1983
    [26] 郑延成 郭稚弧 赵修太.低渗透地层酸化改造进展.河南化工.2000.(4):3~5,10
    [27] JPT 1997,49(3):50~51
    [28] 吴太平.一种新型砂岩地层增产措施用酸—砂岩酸.国外油田工程.1998.(1):14~15
    [29] SPE 36182, 1996
    [30] Gary Frisch, Larry O'Mahoney,; Bata Mandal. Dynamic Fluid-Loss Studies in Low-permeability Formations With Natural Fracture. SPE 37486, 1997
    [31] Johansen RT, Berg RI, Chemistry of oil recovery. American chemiscal society. Washington DC. 1979
    [32] 方娅 刘继延.酸液添加剂及发展趋势.钻井液与完井液.2000.17(5):26~27
    [33] 刘同斌 唐永帆.四川油气田压裂酸化液体技术新进展.石油与天然气化工.2002.31:48
    [34] 黄黎明等.酸液胶凝剂CT1K26的合成及其应用研究.四川试油.压裂酸化技术论文集(下篇)成都:电子科技大学出版社.1999
    [35] 陈国牛等.酸液稠化剂GD—112—6的研制.精细与专用化学品.2002.21:27~28
    [36] 修书志 杜成良.SCJ—1稠化酸的研究与应用.钻井液与完井液.1999.16(5):42~44
    [37] 高建村等.XP12—1系列高温酸化液胶凝剂的研制及其性能测试.新疆石油学院学报.2000.12(4):26~29
    [38] 黄志宇 何雁 冯英.HGA—1聚合物的酸液性质研究.江汉石油学院学报.2001.23(增):111~112
    [39] 谢彬强 蒲晓林 白小东.酸液胶凝剂丙烯酰胺/二甲基二烯丙基氯化铵的合成及性能评价.天津化工.2006.20(1):29~31
    [40] 张红静 赵金州.AM/DMDAAC/AA三元聚合物在酸化中的应用.石油地质与工程.2006.20(5):85~89
    [41] 方娅.油井酸化工作液增稠剂.1993.16(3):69~74
    [42] Wine J D, Debonis M P. The effect of guar and HPG crosslinked fracturing fluids on well performance:A case study. SPE 18969, 1989
    [43] Clark P E, Sundram L. Crosslinking of hydroxyproply guar with metalions. SPE:25208, 1993
    [44] 赵福麟等.锆冻胶压裂液的低温破胶体系.油田化学,1988;5(3):177~182
    [45] 赵福麟等.钛冻胶水基压裂液.油田化学.1985;2(4):278~286
    [46] Veatch R W. An Overview of Recent Advances in Hydraulic Fracturing Technology. SPE 14085, 1986
    [47] Lagrone C C, Baumgartner S A. Chemical Evolution of A High-temperature Fracturing Fluid. SPE 1985. 623
    [48] 陈显宽.聚丙烯酰胺凝胶堵水剂及延迟交联机理研究.油田化学.19918(1):26~31
    [49] Zaltoun A er al. Improved Polyacrylamide treatments for water control in production wells. J. Per. Sci. 1991:862-867
    [50] 刘翔鹗等.油田化学堵水剂的发展和应用.油田化学,1985.2(4):334~342
    [51] Zaltoun A et al. preparation of a water control polymer treatment at conditions of high temperature and salinity. J. Pet. Sci. 1992,; 7(1):65~75
    [52] Maitin B K. performance analysis of several polyarylaminde floods in north german oil fields. SPE/DOE 24118, 1992
    [53] cottrell I W. Sulfomethylated graft copolymers of xanthan gum and polyacrylamide. U. S. Pat 4105605, 1976
    [54] 郑晓宇 吴肇亮.油田化学品.北京:化学工业出版社,精细化工出版中心 2001
    [55] 佟曼丽.聚合反应原理.成都科技大学出版社.1997
    [56] 周效全.阳离子单体在油田化学的开发和应用.钻采工艺.1996.19(4):71~75
    [57] 王桂霞.新型酸液稠化剂的合成与评价.西南石油学院硕士论文.2002.4
    [58] 王槐三.高分子化学.科学出版社.2002
    [59] 赵华山 姜胶东 吴大诚等.高分子物理学.北京纺织工业出版社.1994
    [60] 刘玉鑫.波谱分析.四川大学出版社.
    [61] Iwawa H, Oodate M, Uyama Y, et al. J. Membtane Sci., 1991, 55:119
    [62] 臧庆达 李卓美.两性高分子的溶液性质.功能高分子学报.1994.7(1):90~102
    [63] G. Ehrich, D. Doty, J. Am. Chem. Sco., 1954, 76:3764
    [64] E. A. Bekturov, Z. Kh. Bakauova, synthetic water-soluble polymers in solution.
    [65] Huthig Wepf Verlag Basel. Heidlberg. New York, 1986
    [66] H. Kawaguchi, H. Hoshino, Y. Ohtsuka, J. Appl. Polym. Sci., 1981.26:2015
    [67] M. Kamachi, M. Kurihara, J. K. Stille, Macromolecules, 1972, 5(2):161
    [68] J. Furukawa, E. Kobayashi, J. Polym. Chem. Ed., 1979, 17:255。
    [69] 中华人民共和国石油天然气行业标准.酸液稠化剂评价方法.SY/T 6214~1996
    [70] 酸液稠化剂技术要求及试验方法.Q/SYTZ 0077—2002
    [71] 中华人民共和国石油天然气行业标准.水基压裂液性能评价方法.SY/T 5107—1995
    [72] 季鸿渐 刘杰民 谢德民 杨链军 孙占维.应用化学.1986.3(3):596
    [73] 彭晓春等.DMC/AM/AA三元水溶液共聚合(Ⅰ).吉首大学学报.1997.3.18(1):61~64
    [74] 彭晓春等.DMC/AM/AA三元水溶液共聚合(Ⅱ).吉首大学学报.1997.9.18(3):58~65
    [75] 吴全才.两性聚丙烯酰胺的合成及其溶解性的研究.精细石油化工2003 5(3):21~23
    [76] 郭睿威等.高等学校化学学报.2003.24(7):1311~1314
    [77] Kazuyuki Miyazawa, Francoise M. Winnnik. Macromolecules. 2002, 35:2440~2444
    [78] Xue Ming Liu, Li Shan Wang. Biomaterials. 2004, 25:1929~1936
    [79] Bekturov E A, Kudaibergenov S E. J Macromol Sci, Rev Macromol Chem Phys. 1990, C30: 233
    [80] E. A. Bekturov, S. E. Kudaibergenov, S. R. Rafikov, J. Macrolmol. Chem. Phys., 1990, C30(2):233
    [81] M. Hahn, J. Kotz, A. Ebert, Acta. Polym., 1989, 40:331
    [82] G. Ehrich, J. Am. Chem. Soc., 1954, 76:5263
    [83] 戴彩丽 葛际江.表面稠化酸的防砂作用研究.西南石油学院学报.2001,23(6):60~62
    [84] 胡佩.新型高温高粘酸液胶凝剂的合成及酸液体系的研究.西南石油学院博士论文.2005
    [85] F. Fraga, J. Blanco, A. Calorimetric Study of the System Clorhydrate of Chitosan/Glutaraldehyde (1, 5-pentanedial) Applied Polymer Science, Vol. 100. 3297~3301, 2006
    [86] 徐寿昌.有机化学.高等教育出版社.1997
    [87] John G. Frick, Jr. Robert J. Harper, Jr. reaction of dimethylurea and glyoxal. Ind. Eng. Chem. Prod. Res. Dev., vol. 21, No. 4, 1982
    [88] Rob Schoevaart. ect. Glutaraldehyde Cross-link Analogues from Carbohydrates. Starch. 2005 (57): 161~165
    [89] Rob Schoevaart. ect. Glutaraldehyde Cross-link Analogues from Carbohydrates. Starch. 2005 (57): 161~165
    [90] Verardo, G., Giumanini, A. G., Favret, G., and Strazzolini, P. (1991) Reductive one batch synthesis of N-arylpiperidines from primary amines and glutaraldehyde. Synthesis 447~450.
    [91] Lubig, R., Kusch, P., Ro"per, K., and Zahn, H. (1981) On the mechanism of protein cross-linking with glutaraldehyde. Monatsh. Chem. 112, 1313~1323.
    [92] H, Kaur and P. R. Chatterji. Interpenetrating Hydrogel Networks. 2. Swelling and Mechanical Properties of the Gelatin-Polyacrylamide Interpenetrating Networks. Macromolecules 1990, 23, 4868~4871

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700