用户名: 密码: 验证码:
导电聚合物/贵金属复合材料的制备及其应用于有机小分子的电催化氧化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温燃料电池作为一种新型的能源装置,具有能量转换效率高、工作温度低、无污染、液体燃料处理简单、启动迅速等诸多优点,已成为世界各国竞相研究的热点。有机小分子的高效电催化氧化直接关系到低温燃料电池的发展和应用。低温燃料电池的电极材料主要是碳/贵金属复合材料,碳载体易导致贵金属粒子团聚、且易发生电氧化腐蚀等缺点降低了贵金属的利用率和电池的使用寿命。导电聚合物/贵金属复合材料具有高的抗腐蚀性、电子/质子双重导电性和协同作用,目前其应用于有机小分子的电催化氧化主要集中于聚苯胺、聚吡咯和聚噻吩及其衍生物与贵金属复合材料的研究。电化学方法是制备导电聚合物/贵金属复合材料的方法之一。随着导电聚合物的发展,许多性能优良的导电聚合物相继出现。本论文利用电化学方法制备一系列新型导电聚合物/贵金属复合材料(聚吲哚及其衍生物/铂、聚咔唑/铂-钌、聚对苯/钯-金等复合材料),以其对有机小分子(甲酸、甲醇和异丙醇等)的电催化氧化活性进行评价,同时,探讨了导电聚合物与贵金属纳米粒子之间的协同作用和影响因素。本文还研究了吲哚小分子修饰铂催化剂对甲酸的高效电催化氧化。结果简述如下:
     1.在三氟化硼乙醚及其混合电解质中分别电化学制备聚吲哚、聚(5-甲氧基吲哚)、聚(5-硝基吲哚)、聚(5-氰基吲哚)等导电聚合物,首次以这些聚合物作为铂催化剂载体。制备的聚吲哚衍生物/铂复合材料通过SEM、XRD及其电化学方法进行了表征。相比于传统的聚吡咯/铂复合催化剂,所制备的四种聚吲哚/铂复合催化剂对甲酸具有更高的电催化活性和和抗毒化能力。这种提高的效果主要来自于聚吲哚及其衍生物与铂之间的协同作用和铂的电化学活性位点的增加,这种协调作用促进了甲酸的直接电化学氧化。另一方面,相比于聚吡咯/铂复合催化剂,聚吲哚/Pt和聚(5-甲氧基吲哚)/Pt复合材料对甲醇具有更高的电催化氧化能力和抗毒化能力。
     2.在三氟化硼乙醚+ 50%乙醚混合电解质中电化学制备了聚咔唑,首次以聚咔唑为载体负载铂、铂-钌双金属催化剂,详细研究了酸性介质中聚咔唑/铂、聚咔唑/铂-钌复合催化剂对甲酸和甲醇的电化学氧化。聚咔唑在0.5M H2SO4溶液中具有很好的导电性和电化学活性。制备的复合材料通过SEM、EDS和电化学方法进行了表征。相比于电沉积在裸玻碳电极上的铂-钌双金属催化剂,聚咔唑/铂和聚咔唑/铂-钌复合催化剂对甲醇的电化学氧化的促进效果较弱,然而,聚咔唑/铂和聚咔唑/铂-钌复合催化剂对甲酸具有更高的电催化活性和稳定性。这种促进效果可能来自于金属与聚咔唑之间的协同作用。CO的剥离实验结果表明,CO在聚咔唑/铂和聚咔唑/铂-钌复合催化剂上的吸附强度大大减弱、且CO更容易氧化去除。
     3.我们发现聚(5-硝基吲哚)在碱性溶液中具有良好的电化学活性和稳定性,因此,我们首次研究了聚(5-硝基吲哚)负载铂催化剂在碱性介质中对甲醇的电化学氧化。详细考察了不同参数对甲醇的电催化氧化的影响,例如:膜的量、铂的载量、KOH和甲醇的浓度、扫描速率和不同的碱性电解质等等。相比于电沉积在裸玻碳电极上的铂催化剂,所制备的聚(5-硝基吲哚)/铂复合催化剂在碱性下对甲醇具有更高的电催化活性和稳定性。
     4.在纯三氟化硼乙醚电解质中,以联苯为单体低电位电化学制备了聚对苯,首次以聚对苯为载体成功地负载钯-金双金属催化剂,分别详细研究了聚对苯/钯-金复合催化剂在酸性介质中对甲酸的电化学氧化和碱性介质中对异丙醇的电催化氧化。复合材料通过SEM和EDX以及电化学方法进行了表征。相比于电沉积在裸玻碳电极上的钯-金双金属催化剂,所制备的聚对苯/钯-金复合催化剂对异丙醇具有更高的电催化活性和稳定性。另一方面,聚对苯/钯-金复合催化剂对甲酸的电催化活性也得到了很大提高。
     5.为了进一步验证聚吲哚对铂催化剂的电催化氧化的促进作用及弄清其促进机理。我们在3.0 mM H2PtCl6 + 0.1 mM吲哚水溶液中通过电化学自组装法一步制备新型的Pt-吲哚复合催化剂。所制备的复合催化剂通过SEM, XPS和电化学方法进行了表征。相比于商业化的JM Pt/C,Pt-吲哚复合催化剂对甲酸的电化学氧化具有更高的催化活性和更强的抗毒化能力。CO的剥离实验结果表明,CO在Pt-吲哚复合催化剂上的吸附强度大大减弱。这可能是因为富电子的吲哚能增加Pt表面的电子结合能和吲哚的吸附使铂表面微结构发生变化所致。
Low-temperature fuel cells as new-style energy devices have attracted great attention because of their high-energy conversion efficiency, low operating temperature, low pollutant emission, the simplicity of handling liquid fuel and quick startup. High efficient electrochemical oxidation of small organic molecules will be directly related to the development and application of low-temperature fuel cells. The current state of the art employs carbon-supported platinum and platinum alloys as anode and cathode catalysts in low-temperature fuel cells. However, carbon material may cause easily Pt particle aggregation and carbon corrosion occurred by electrochemical oxidation, which lower the utilization rate of Pt and the lifetime of fuel cell. Compositing of conducting polymers (CPs) with precious metal possesses some advantages, such as high anti-corrosion, good electron and proton conductivities, and synergistic effect. For the electrooxidation of small organic molecules, presently, CPs as host material of precious metals were centered on the polyaniline, polypyrrole, polythiophene and their derivatives. Electrodepositon had been proved to be one of the most useful approaches for the preparation of conducting polymer and its composites. Other CPs with excellent performances has been developed. Therefore, it would be quite significant to extend such studies to other CPs which might be more suitable as host materials of precious metals in low-temperature fuel cells. In this dissertation, we fabricated a series of novel CPs/metal composites such as Polyindoles/Pt, Polycarbazole/Pt-Ru and Poly(p-phenylene)/Pd-Au, and evaluated the electrooxidation activities of small organic molecules (for example: formic acid, methanol and isopropanol) on the different composite catalysts. Additionally, we systematically studied different parameters affecting the electrooxidation of small organic molecules and the nature of synergistic effect between CP and metal. We also prepared Pt catalyst modified with indole for the high efficient electrooxidation of formic acid. They were briefly described as follows.
     1. Four novel composite catalysts have been developed by the electrodeposition of Pt onto glassy carbon electrode (GC) modified with polyindoles: polyindole, poly(5-methoxyindole), poly(5-nitroindole) and poly(5-cyanoindole), which were prepared from boron trifluoride diethyl etherate and its mixed electrolyte. As-formed composite catalysts were characterized by SEM, XRD and electrochemical analysis. Compared with Pt nanoparticles deposited on the GC modified with polypyrrole, the four newly developed composite catalysts exhibited higher catalytic activity towards formic acid electrooxidation by improving selectivity of the reaction via dehydrogenation pathway and thus mostly suppressing the generation of poisonous COads species. The enhanced performance was proposed to come from the synergetic effect between Pt and polyindoles and the increase of electrochemical active surface area (EASA) of Pt on polyindoles. On the other hand, the results of the catalytic activity for methanol oxidation showed that the Pt/PIn/GC and Pt/PMI/GC exhibited higher catalytic activity and stronger poisoning-tolerance than Pt/PPy/GC.
     2. Polycarbazole (PCZ) was obtained by the electropolymerization of carbazole in boron trifluoride diethyl etherate + 20% ethyl ether on glassy carbon electrode (GC). The monometallic Pt and bimetallic Pt-Ru nanoparticles firstly dispersed onto PCZ (Pt/PCZ/GC, Pt-Ru/PCZ/GC) and their electro-catalytic activities towards formic acid and methanol oxidation have been investigated. PCZ had good conductibility and electrochemical activity in 0.5 M H2SO4. As-formed electrodes were characterized by SEM, EDS and electrochemical analysis. Relative to Pt and Pt-Ru deposited on the bare GC (Pt/GC, Pt-Ru/GC), Pt/PCZ/GC and Pt-Ru/PCZ/GC had a somewhat enhanced efficiency for the methanol oxidation, however, they exhibited higher catalytic activity and stronger poisoning-tolerance ability towards formic acid electro-oxidation. The enhanced performance was proposed to come from the synergetic effect between metal particles (Pt, Pt-Ru) and PCZ. At the same time, the results of the stripping voltammograms of CO show that PCZ can weaken largely the adsorption strength of CO on catalysts and electro-oxidize COads easily on catalysts.
     3. We found that as-prepared poly(5-nitroindole) (PNI) in alkaline solutions had also good electrochemical activity and stability in the potential range from -0.6 to 0.5 V versus SCE. Therefore, we firstly studied the electrooxidation of methanol on Pt/poly(5-nitroindole) (Pt/PNI) in alkaline media. The effects of different parameters related to the methanol oxidation reaction kinetics, such as Pt loading, mass of PNI film, concentration of methanol and KOH, potential scan rate, have been investigated in detail. The results of the catalytic activity for methanol oxidation showed that Pt/PNI had higher catalytic activity and stronger poisoning-tolerance than Pt/GC electrode.
     4. Poly(p-phenylene) (PPP) films were synthesized by a low-potential electrochemical polymerization of biphenyl in pure boron trifluoride diethyl etherate. As-formed PPP film was firstly used as a catalyst support. Pd-Au nanoparticles were successfully electro-deposited on PPP films (namely, Pd-Au/PPP) and used for the electrooxidation of isopropanol in alkaline media and the electrooxidation of formic acid in acidic media. As-prepared Pd-Au/PPP composite catalyst was characterized by SEM, EDX and electrochemical methods. The results for isopropanol oxidation indicated that Pd-Au/PPP had higher catalytic activity and stronger poisoning resistance than the Pd-Au deposited on the bare electrode. On the other hand, the electrocatalytic activity of formic acid oxidation on Pd-Au/PPP composite catalyst was also enhanced relative to Pd-Au/GC.
     5. In order to further prove the synergistic effect of polyindole and Pt, self-assembly of Pt and indole into a novel composite catalyst on a glassy carbon electrode (GC) has been developed by a one-step electrodeposition in the presence of 3.0 mM H2PtCl6 and 0.1 mM indole. As-formed Pt-indole composite catalyst was characterized by SEM, XPS and the electrochemical methods. Compared to Pt/GC and Pt/C, the novel Pt-indole composite catalyst exhibited higher catalytic activity and stronger poisoning-tolerance for electrooxidation of formic acid. The adsorption strength of CO on Pt-indole composite catalyst was greatly weakened as demonstrated by CO stripping voltammograms. This was due to indole with an abundant amount of electrons may generate an electronic effect when it adsorbs onto Pt surface and the adsorbed indole on Pt surface will modify the Pt surface microstructure. At the same time, the effects of different parameters related to the formic acid oxidation reaction kinetics, such as Pt loading, concentration of formic acid, potential scan rate, have also been investigated in detail.
引文
[1] Thavasi V, Singh G, Ramakrishna S. Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 2008;1:205-221.
    [2] Xie J, Wood DL, More KL, Atanassov P, Borup RL. Microstructural Changes of Membrane Electrode Assemblies during PEFC Durability Testing at High Humidity Conditions. J Electrochem Soc 2005;152: A1011-A1020.
    [3] Roth C, Martz N, Buhrmester T, Scherer J, Fuess H. In-situ XAFS fuel cell measurements of a carbon-supported Pt-Ru anode electrocatalyst in hydrogen and direct methanol operation. Phys Chem Chem Phys 2002;4:3555-3557.
    [4] Liu JG, Zhou ZH, Zhao XS, Xin Q, Sun GQ, Yi BL. Studies on performance degradation of a direct methanol fuel cell (DMFC) in life test. Phys Chem Chem Phys 2004;6:134-137.
    [5] Mu YY, Liang HP, Hu JS, Jiang L, Wan LJ. Controllable Pt Nanoparticle Deposition on Carbon Nanotubes as an Anode Catalyst for Direct Methanol Fuel Cells. J Phys Chem B 2005;109:22212-22216.
    [6] Niebling J, Gorgos K. High utilization supported catalytic metal-containing gas-diffusion electrode, process for making it, and cells utilizing it. US Pat. 5084144, 1992.
    [7] Golabi SM, Nozad A. Electrocatalytic oxidation of methanol on electrodes modified by platinum microparticles dispersed into poly(o-phenylenediamine) film. J Electroanal Chem 2002;521:161-167.
    [8] Selvaraj V, Alagar M, Kumar SK. Synthesis and characterization of metal nanoparticles-decorated PPY–CNT composite and their electrocatalytic oxidation of formic acid and formaldehyde for fuel cell applications. Appl Catal B: Environ 2007;75:129-138.
    [9] Kuo CW, Huang LM, Wen TC, Gopalan A. Enhanced electrocatalytic performance for methanol oxidation of a novel Pt-dispersed poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) electrode. J PowerSources 2006;160:65-72.
    [10]石高全,李春,梁映秋.高性能导电高分子材料[J],大学化学1998;(1): 1-5.
    [11]朱道本,王佛松,有机固体[M].上海:上海科学技术出版社, 1999;89-136, 274-296.
    [12]李永舫.导电聚合物[J],化学进展2002;14:207-211.
    [13]何天白,胡汉杰.功能高分子与新技术[M],北京:化学工业出版社, 2001;63-85.
    [14] Chiang CK, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Macdiarmid AG. Conducting polymers: Halogen doped polyacetylene. J Chem Phys 1978;69:5098-5104.
    [15] Kobayashi M, Chen J, Chung TC, Moraes F, Heeger AJ, Wudl F. Synthesis and properties of chemically coupled poly(thiophene). Synth Met 1984;9:77-86.
    [16] Macdiarmid AG, Chiang JC, Richter AF, Epstein AJ. Polyaniline: a new concept in conducting polymers. Synth Met 1987;18:285-290.
    [17] Walton DJ. Electrically conducting polymers. Mater Des 1990;11:142-152.
    [18] Marque P, Roncali J, Garnier F. Electrolyte effect on the electrochemical properties of poly(3-methylthiophene) thin films. J Electroanal Chem 1987;218:107-118.
    [19] Topchiev AV, Zavgorodnii SV, Paushkin YM. Boron fluoride and its compounds as catalysis in organic chemistry. New York: Pergamon Press, 1959.
    [20] Ohsawa T, Yoshino K. Electrochemical polymerization of benzene utilizing boron trifluoride ethyl ether complex. Synth Met 1987;17:601-606.
    [21] Shi GQ, Jin S, Xue G, Li C. A conducting polymer film stronger than aluminum. Science 1995;267:994-996.
    [22]聂广明.部分稠环芳香化合物电化学聚合制备高性能导电高分子.青岛:青岛科技大学硕士论文, 2005.
    [23]张雅娟.三氟化硼乙醚溶液中芴及其衍生物的电化学聚合.天津:河北工业大学硕士论文, 2006.
    [24]周卫强.新型导电高分子材料的电化学合成及其光谱分析研究.南昌:南昌大学硕士论文, 2006.
    [25]侯健.高性能聚硒吩、聚荧蒽及聚吲哚卤素衍生物的电合成.青岛:青岛科技大学硕士论文, 2006.
    [26]马木林.邻二位取代苯的电化学聚合.南昌:南昌大学硕士论文, 2008.
    [27]范长利.部分导电聚芴衍生物发光材料的电合成实验研究.成都:成都理工大学硕士论文, 2009.
    [28] Sih BC, Wolf MO. Metal nanoparticle—conjugated polymer nanocomposites. Chem Commun 2005;3375-3384.
    [29] Rapecki T, Donten M, Stojek Z. Electrodeposition of polypyrrole-Au nanoparticles composite from one solution containing gold salt and monomer. Electrochem Commun 2010;12:624-627.
    [30] Heinig NF, Kharbanda N, Pynenburg MR, Zhou XJ, Schultz GA, Leung KT. The growth of nickel nanoparticles on conductive polymer composite electrodes. Mater Lett 2008;62:2285-2288.
    [31] Alqudami A, Annapoorni S, Sen P, Rawat RS. The incorporation of silver nanoparticles into polypyrrole: Conductivity changes. Synth Met 2007;157:53-59.
    [32] Chen W, Li CM, Yu L, Lu Z, Zhou Q. In situ AFM study of electrochemical synthesis of polypyrrole/Au nanocomposite. Electrochem Commun 2008;10:1340-1343.
    [33] Katz E, Shipway AN, Willner I. in Nanoscale Mater (Eds: Liz-Marzán LM, Kamat P), Kluwer, Dordrecht, 2003, chap. 2, pp. 5-78.
    [34] Tsakova V. How to affect number, size, and location of metal particles deposited in conducting polymer layers. J Solid State Electrochem 2008;12:1421.
    [35] Hepel M. The electrocatalytic oxidation of methanol at finely dispersed platinum nanoparticles in polypyrrole films. J Electrochem Soc 1998;145:124-134.
    [36] Bouzek K, Mangold KM, Juttner K. Platinum distribution and electrocatalytic properties of modified polypyrrole films. Electrochim Acta 2000;46:661-670.
    [37] Trueba M, Trasatti SP, Trasatti S. Electrocatalytic activity for hydrogen evolution of polypyrrole films modified with noble metal particles. Mater Chem Phys 2006;98:165-171.
    [38] Vork FTA, Janssen LJJ, Barendrecht E. Oxidation of hydrogen at platinum-polypyrrole electrodes. Electrochim Acta 1986;31:1569-1575.
    [39] Kost KM, Bartak DE, Kazee B, Kuwana T. Electrodeposition of platinum microparticles into polyaniline films with electrocatalytic applications. Anal Chem 1988;60:2379-2384.
    [40] Li HS, Josowicz M, Baer DR, Engelhard MH, Janata J. Preparation and Characterization of Polyaniline-Palladium Composite Films. J Electrochem Soc 1995;142:798-805.
    [41] De Oliveira LMF, Moutet JC, Hamar-Thibault S. Electrocatalytic hydrogenation activity of palladium and rhodium microparticles dispersed in alkylammonium- and pyridinium- substituted polypyrrole films. J Mater Chem 1992;2:167-173.
    [42] Mikhaylova AA, Molodkina EB, Khazova OA, Bagotzky VS. Electrocatalytic and adsorption properties of platinum microparticles electrodeposited into polyaniline films. J Electroanal Chem 2001;509:119-127.
    [43] Malinauskas A. Electrocatalysis at conducting polymers. Synth Met 1999;107:75-83.
    [44]陈宏,鲁戈舞,周海晖,陈金华,旷亚非.金属微粒修饰聚苯胺膜电极的研究进展.材料导报, 2004;18(1):18-20.
    [45]李新贵,孙晋,黄美荣.聚苯胺/金属纳米粒子复合物的制备及性能.化学进展, 2007;19(5):787-795.
    [46] Antolini E, Gonzalez ER. Polymer supports for low-temperature fuel cell catalysts. Appl Catal A: Gen 2009;365:1-19.
    [47] Sarma TK, Chattopadhyay A. One Pot Synthesis of Nanoparticles of Aqueous Colloidal Polyaniline and Its Au?Nanoparticle Composite from Monomer Vapor. J Phys Chem A 2004;108:7837-7842.
    [48] Pillalamarri SK, Blum FD, Tokuhim AT, Bertino MF. One-Pot Synthesis of Polyaniline-Metal Nanocomposites. Chem Mater 2005;17(24):5941-5944.
    [49] Khanna PK, Singh N, Charan S, Viswanath AK. Synthesis of Ag/polyaniline nanocomposite via an in situ photo-redox mechanism. Mater Chem Phys 2005;92:214-219.
    [50] Granot E, Katz E, Basnar B, Willner I. Enhanced bioelectrocatalysis using Au-nanoparticle/polyaniline hybrid systems in thin films and microstructured rods assembled on electrodes. Chem Mater 2005;17(18):4600-4609.
    [51]都君华,李伟善,李红.甲醛在聚苯胺修饰分散铂电极上的电催化氧化.华南师范大学学报, 2003;(4):78-83.
    [52] Gholamian M, Sundaram J, Contractor AQ. Oxidation of formic acid at polyaniline-coated and modified-polyaniline-coated electrodes. Langmuir 1987;3:741-744.
    [53]过家好,陈俊明,陈忠平.甲醇在聚苯胺载铂电极上的电催化氧化.塑料工业2007;35:42-45.
    [54] Napporn WT, Laborde H, Leger JM, Lamy C. Electro-oxidation of C1 molecules at Pt-based catalysts highly dispersed into a polymer matrix: effect of the method of preparation. J Electroanal Chem 1996;404:153-159.
    [55] Laborde H, Leger JM, Lamy C. Electrocatalytic oxidation of methanol and C1 molecules on highly dispersed electrodes Part 1: Platinum in polyaniline. J Appl Electrochem 1994;24:219-226.
    [56] Salavagione HJ, Sanchis C, Morallon E. Friendly conditions synthesis of platinum nanoparticles supported on a conducting polymer: methanol electrooxidation. J Phys Chem C 2007;111:12454-12460.
    [57] Palmero S, Colina A, Munoz E, Heras A, Ruiz V, Lopez-Palacios J. Layer-by-layer electrosynthesis of Pt-Polyaniline nanocomposites for the catalytic oxidation of methanol. Electrochem Commun 2009;11:122-125.
    [58] Li YF, Qian RY. Studies on the chemical compensation of conducting polypyrrole by NaOH solution. Synth Met 1988;26:139-151.
    [59] Lukachova LV, Shkerin EA, Puganova EA, Karyakina EE, Kiseleva SG, Orlov AV, Karpacheva GP, Karyakin AA. Electroactivity of chemically synthesized polyaniline in neutral and alkaline aqueous solutions: Role of self-doping and external doping. J Electroanal Chem 2003;544:59-63.
    [60] Nagashree KL, Ahmed MF. Electrocatalytic oxidation of methanol on Pt modified polyaniline in alkaline medium. Synth Met 2008;158:610-616.
    [61] Podlovchenko BI, Maksimov YM, Gladysheva TD, Kolyadko EA, Russ. Electrocatalytic Activity of Platinum-Polyaniline and Palladium-Polyaniline Systems Obtained by Cycling the Electrode Potential. Russian J Electrochem 2000;36:731-735.
    [62] Zhiani M, Rezaei B, Jalili J. Methanol electro-oxidation on Pt/C modified by polyaniline nanofibers for DMFC applications. Int J hydrogen energy 2010;35:9298-9305.
    [63] Lai EKW, Beattie PD, Orfino FP, Simon E, Holdcroft S. Electrochemical oxygen reduction at composite films of Nafion?, polyaniline and Pt. Electrochim Acta 1999;44:2559-2569.
    [64] Huang LM, Chen CH, Wen TC, Gopalan A. Effect of secondary dopants on electrochemical and spectroelectrochemical properties of polyaniline. Electrochim Acta 2006;51:2756-2764.
    [65] Huang QM, Zhang QL, Huang HL, Li WS, Huang YJ, Luo JL. Methanol permeability and proton conductivity of Nafion membranes modified electrochemically with polyaniline. J Power Sources 2008;184:338-343.
    [66] Huang LM, Tang WR, Wen TC. Spatially electrodeposited platinum in polyaniline doped with poly(styrene sulfonic acid) for methanol oxidation. J Power Sources 2007;164:519-526.
    [67] Liu FJ, Huang LM, Wen TC, Li CF, Huang SL, Gopalan A. Platinum particles dispersed polyaniline-modified electrodes containing sulfonated polyelectrolyte for methanol oxidation. Synth Met 2008;158:767-774.
    [68] Liu FJ, Huang LM, Wen TC, Li CF, Huang SL, Gopalan A. Effect of deposition sequence of platinum and ruthenium particles into nanofibrous network of polyaniline-poly(styrene sulfonic acid) on electrocatalytic oxidation of methanol. Synth Met 2008;158:603-609.
    [69] Feast WJ, Tsibouklis J, Pouwer KL, Groenendaal L, Meijer EW. Synthesis, processing and material properties of conjugated polymers. Polymer 1996;37:5017-5047.
    [70] Kim S, Park SJ. Electroactivity of Pt-Ru/polyaniline compositecatalyst-electrodes prepared by electrochemical deposition methods. Solid State Ionics 2008;178:1915-1921.
    [71] Hu ZA, Shang XL, Yang YY, Kong C, Wu HY. The electrochemical synthesis of polyaniline/polysulfone composite films and electrocatalytic activity for ascorbic acid oxidation. Electrochim Acta 2006;51:3351-3355.
    [72] Hu ZA, Ren LJ, Feng XJ, Wang YP, Yang YY, Shi J, Mo LP, Lei ZQ. Platinum-modified polyaniline/polysulfone composite film electrodes and their electrocatalytic activity for methanol oxidation. Electrochem Commun 2007;9:97-102.
    [73] Shi H. Activated carbons and double layer capacitance. Electrochim Acta 1996;41(10):1633-1639.
    [74] Roy SC, Christensen PA, Hamnett A, Thomas KM, Trapp V. Direct methanol fuel cell cathodes with sulfur and nitrogen-based carbon functionality. J Electrochem Soc 1996;143(10):3073-3079.
    [75] Frelink T, Visscher W, Veen JAR. Particle-size effect of carbon supported platinum catalysts for the electrooxidation of methanol. J Electroanal Chem 1995;382(1-2):65-72.
    [76] Wu G, Li L, Li JH, Xu BQ. Polyaniline-carbon composite films as supports of Pt and PtRu particles for methanol electrooxidation. Carbon 2005;43:2579-2587.
    [77] Prasad KR, Munichandraiah N. Electrooxidation of methanol on polyaniline without dispersed catalyst particles. J Power Sources 2002;103(2):300-304.
    [78] Lin YW, Wu TM. Synthesis and characterization of externally doped sulfonated polyaniline/multi-walled carbon nanotube composites. Compos Sci Technol 2009;69:2559-2565.
    [79] Wu TM, Lin YW, Liao CS. Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon 2005;43:734-740.
    [80] Hughes M, Chen GZ, Shaffer MSP, Fray DJ, Windle AH. Electrochemical Capacitance of a Nanoporous Composite of Carbon Nanotubes and Polypyrrole. Chem Mater 2002;14: 1610-1613.
    [81] Wu TM, Chang HL, Lin YW. Synthesis and characterization of conductivepolypyrrole/multi-walled carbon nanotubes composites with improved solubility and conductivity. Compos Sci Technol 2009;69:639-644.
    [82] Wooa HS, Czerw R, Webster S, Carroll DL, Park JW, Lee JH. Organic light emitting diodes fabricated with single wall carbon nanotubes dispersed in a hole conducting buffer: the role of carbon nanotubes in a hole conducting polymer. Synth Met 2001;116:369-372.
    [83] Zhu ZZ, Wang Z, Li HL. Functional multi-walled carbon nanotube/polyaniline composite films as supports of platinum for formic acid electrooxidation. Appl Surf Sci 2008;254:2934-2940.
    [84] Shi J, Wang Z, Li HL. Electrochemical fabrication of polyaniline/multi-walled carbon nanotube composite films for electrooxidation of methanol. J Mater Sci 2007;42:539-544.
    [85] Capon A, Parsons R. The oxidation of formic acid at noble metal electrodes : Part III. Intermediates and mechanism on platinum electrodes. J Electroanal Chem 1973;45:205-231.
    [86] Mikhaylova AA, Tusseeva EK, Mayorova NA, Rychagov AY, Volfkovich YM, Krestinin AV, Khazova OA. Single-walled carbon nanotubes and their composites with polyaniline. Structure, catalytic and capacitive properties as applied to fuel cells and supercapacitors. Electrochim Acta 2011;56:3656-3665.
    [87] Xu CW, Zeng R, Shen PK, Wei ZD. Synergistic effect of CeO2 modified Pt/C catalysts on the alcohols oxidation. Electrochim Acta 2005;51:1031-1035.
    [88]旷亚非,游军飞,周海晖,李云飞,陈金华. Pt修饰聚苯胺-WO3复合膜电极对甲醛的电催化氧化.湖南大学学报, 2007;34(3):57-60.
    [89] Banon ML, Lopez V, Ocon P, Herrasti P. Poly(o-toluidine). Deposition of platinum and electrocatalytic applications. Synth Met 1992;48:355-362.
    [90] Profeti D, Olivi P. Methanol electrooxidation on platinum microparticles electrodeposited on poly(o-methoxyaniline) films. Electrochim Acta 2004;49:4979-4985.
    [91] Raoof JB, Karimi MA, Hosseini SR, Mangelizade S. Enhanced electrocatalytic activity of nickel particles electrodeposited onto poly (m-toluidine) film preparedin presence of CTAB surfactant on carbon paste electrode for formaldehyde oxidation in alkaline medium. Int J Hydrogen Energy 2010; In Press.
    [92] Raoof J, Ojani R, Hosseini SR. Electrochemical fabrication of novel Pt/poly (m-toluidine)/Triton X-100 composite catalyst at the surface of carbon nanotube paste electrode and its application for methanol oxidation. Int J Hydrogen Energy 2011;36:52-63.
    [93] Medway SL, Lucas CA, Kowal A, Nichols RJ, Johnson D. In situ studies of the oxidation of nickel electrodes in alkaline solution. J Electroanal Chem 2006;587:172-181;
    [94] Vukovic M. Voltammetry and anodic stability of a hydrous oxide film on a nickel electrode in alkaline solution. J Appl Electrochem 1994;24:878-882.
    [95] Koper MTM, Hachkar M, Beden B. Investigation of the oscillatory electrooxidation of formaldehyde on Pt and Rh electrodes by cyclic voltammetry, impedance spectroscopy and the electrochemical quartz crystal microbalance. J Chem Soc Faraday Trans 1996;92:3975-3982.
    [96] Santhosh P, Gopalan A, Vasudevan T, Lee KP. Platinum particles dispersed poly(diphenylamine) modified electrode for methanol oxidation. Appl Surf Sci 2006;252:7964-7969.
    [97] Li YJ, Lenigk R, Wu XZ, Gruendig B, Dong SJ, Renneberg R. Investigation of Oxygen- and Hydrogen Peroxide-Reduction on Platinum Particles Dispersed on Poly(o-phenylenediamine) Film Modified Glassy Carbon Electrodes. Electroanalysis 1998;10:671-676.
    [98] Gajendran P, Vijayanand S, Saraswathi R. Investigation of oxygen reduction at platinum loaded poly(o-phenylenediamine) electrode in acid medium. J Electroanal Chem 2007;601:132-138.
    [99] Golikand AN, Golabi SM, Maragheh MG, Irannejad L. Electrocatalytic oxidation of methanol on (Pb) lead modified by Pt, Pt-Ru and Pt-Sn microparticles dispersed into poly(o-phenylenediamine) film. J Power Sources 2005;145:116-123.
    [100] Pournaghi-Azar MH, Habibi B. Electrocatalytic oxidation of methanol onpoly(phenylenediamines) film palladized aluminum electrodes, modified by Pt micro-particles: Comparison of permselectivity of the films for methanol. J Electroanal Chem 2007;601:53-62.
    [101] Maiyalagan T. Electrochemical synthesis, characterization and electro-oxidation of methanol on platinum nanoparticles supported poly(o-phenylenediamine) nanotubes. J Power Sources 2008;179:443-450.
    [102] Habibi B, Pournaghi-Azar MH. Methanol oxidation on the polymer coated and polymer-stabilized Pt nano-particles: A comparative study of permeability and catalyst particle distribution ability of the PANI and its derivatives. Int J Hydrogen Energy 2010;35:9318-9328.
    [103] Habibi B, Pournaghi-Azar MH, Abdolmohammad-Zadeh H, Razmi H. Electrocatalytic oxidation of methanol on mono and bimetallic composite films: Pt and Pt-M (M=Ru, Ir and Sn) nano-particles in poly(o-aminophenol). Int J Hydrogen Energy 2009;34:2880-2892.
    [104] Golabi SM, Nozad A. Electrocatalytic Oxidation of Methanol at Lower Potentials on Glassy Carbon Electrode Modified by Platinum and Platinum Alloys Incorporated in Poly(o-Aminophenol) Film. Electroanalysis 2003;15:278-286.
    [105] Ojani R, Raoof JB, Fathi S. Nickel-poly(o-aminophenol)-modified carbon paste electrode; an electrocatalyst for methanol oxidation. J Solid State Electrochem 2009;13:927-934.
    [106] Taraszewska J, Roslonek G. Electrocatalytic oxidation of methanol on a glassy carbon electrode modified by nickel hydroxide formed by ex situ chemical precipitation. J Electroanal Chem 1994;364:209-213
    [107] El-Shafei AA. Electrocatalytic oxidation of methanol at a nickel hydroxide/glassy carbon modified electrode in alkaline medium. J Electroanal Chem 1999;471:89-95.
    [108] Eramo FD, Marioli JM, Arevalo AA, Sereno LE. HPLC Analysis of Carbohydrates with Electrochemical Detection at a Poly-1-naphthylamine/Copper Modified Electrode. Electroanalysis 1999;11:481-486.
    [109] Gopalan AI, Lee KP, Manesh KM, Santhosh P, Kim JH. Gold nanoparticlesdispersed into poly(aminothiophenol) as a novel electrocatalyst—Fabrication of modified electrode and evaluation of electrocatalytic activities for dioxygen reduction. J Mol Catal A: Chem 2006;256:335-345
    [110] Ojani R, Raoof JB, Rahemi V. Evaluation of sodium dodecyl sulfate effect on electrocatalytic properties of poly (4-aminoacetanilide)/nickel modified carbon paste electrode as an efficient electrode toward oxidation of ethylene glycol. Int J Hydrogen Energy 2010; In Press.
    [111] Gong K, Du F, Xia Z, Durstock M, Dai L. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science 2009;323:760-764.
    [112] Gavrilov N, Da?i?-Tomi? M, Pa?ti I, ?iri?-Marjanovi? G, Mentus S. Carbonized polyaniline nanotubes/nanosheets-supported Pt nanoparticles: Synthesis, characterization and electrocatalysis. Mater Lett 2011;65:962-965.
    [113] Cai ZH, Martin CR. Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities. J Am Chem Soc 1989;111:4138-4139.
    [114] Rajesh B, Thampi KR, Bonard JM, Mathieu HJ, Xanthopoulos N, Viswanathan B. Nanostructured Conducting Polyaniline Tubules as Catalyst Support for Pt Particles for Possible Fuel Cell Applications. Electrochem Solid State Lett 2004;7:A404-A407.
    [115] Chen ZW, Xu LB, Li WZ, Waje M, Yan YS. Polyaniline nanofibre supported platinum nanoelectrocatalysts for direct methanol fuel cells. Nanotechnology 2006;17:5254-5259.
    [116] Michel M, Ettingshausen F, Scheiba F, Wolz A, Roth C. Using layer-by-layer assembly of polyaniline fibers in the fast preparation of high performance fuel cell nanostructured membrane electrodes. Phys Chem Chem Phys 2008;10:3796-3801.
    [117] Zhou HH, Jiao SQ, Chen JH, Wei WZ, Kuang YF. Effects of conductive polyaniline (PANI) preparation and platinum electrodeposition on electroactivity of methanol oxidation. J Appl Electrochem 2004;34:455-459.
    [118] Liu FJ, Huang LM, Wen TC, Gopalan A. Large-area network of polyaniline nanowires supported platinum nanocatalysts for methanol oxidation. Synth Met 2007;157:651-658.
    [119] Pandey RK, Lakshminarayanan V. Electro-Oxidation of Formic Acid, Methanol, and Ethanol on Electrodeposited Pd-Polyaniline Nanofiber Films in Acidic and Alkaline Medium. J Phys Chem C 2009;113:21596-21603.
    [120] Hatchett DW, Josowicz M, Janata J. Acid Doping of Polyaniline: Spectroscopic and Electrochemical Studies. J Phys Chem B 1999; 103:10992-10998.
    [121] Li G, Maritinez C, Semancik S. Controlled Electrophoretic Patterning of Polyaniline from a Colloidal Suspension. J Am Chem Soc 2005;127:4903-4909.
    [122] Ge J, Xing W, Xue X, Liu C, Lu T, Liao J. Controllable Synthesis of Pd Nanocatalysts for Direct Formic Acid Fuel Cell (DFAFC) Application: From Pd Hollow Nanospheres to Pd Nanoparticles. J Phys Chem C 2007;111:17305-17310.
    [123] Yin Z, Zheng H, Ma D, Bao X. Porous Palladium Nanoflowers that Have Enhanced Methanol Electro-Oxidation Activity. J Phys Chem C 2009;113:1001-1005.
    [124] Sivakumar C. Finely dispersed Pt nanoparticles in conducting poly(o-anisidine) nanofibrillar matrix as electrocatalytic material. Electrochim Acta 2007;52:4182-4190.
    [125] Jiang CM, Lin XQ. Preparation of three-dimensional composite of poly(N-acetylaniline) nanorods/platinum nanoclusters and electrocatalytic oxidation of methanol. J Power Sources 2007;164:49-55.
    [126] Jiang C, Chen H, Yu C, Zhang S, Liu BH, Kong JL. Preparation of the Pt nanoparticles decorated poly(N-acetylaniline)/MWNTs nanocomposite and its electrocatalytic oxidation toward formaldehyde. Electrochim Acta 2009;54:1134-1140
    [127]李靖.聚吡咯-铂纳米复合材料对氧还原的电催化性能研究.上海第二工业大学学报. 2009,26:312-317.
    [128] Bose CSC, Rajeshwar K. Efficient electrocatalyst assemblies for proton andoxygen reduction: the electrosynthesis and characterization of polypyrrole films containing nanodispersed platinum particles. J Electroanal Chem 1992;333:235-256.
    [129] Chen CC, Bose CSC, Rajeshwar K. The reduction of dioxygen and the oxidation of hydrogen at polypyrrole film electrodes containing nanodispersed platinum particles. J Electroanal Chem 1993;350:161-176.
    [130] Strike DJ, De Rooij NF, Koudelka-Hep M, Ulmann M, Augustynski J. Electrocatalytic oxidation of methanol on platinum microparticles in polypyrrole. J Appl Electrochem 1992;22:922-926.
    [131] Yang H, Lu T, Xue K, Sun S, Lu G, Chen S. Electrocatalytic Oxidation of Methanol on Polypyrrole Film Modified with Platinum Microparticles. J Electrochem Soc 1997;144(7):2302-2307.
    [132] Becer?k I, Suzer S, Kadirgan F. Electrooxidation of methanol on doped polypyrrole films in acidic media. J Electroanal Chem 2001;502:118-125.
    [133] Warren LF, Anderson DP. Polypyrrole films from aqueous electrolytes. J Electrochem Soc 1987;134:101-105.
    [134] Adhikari A, Radhakrishnan S, Patil R. Influence of dopant ions on properties of conducting polypyrrole and its electrocatalytic activity towards methanol oxidation. Synth Met 2009;159:1682-1688.
    [135] Tian L, Qi YJ, Wang BB. Electrochemical preparation and structural characterization of platinum thin film on a polypyrrole film modified ITO electrode. J Colloid Interface Sci 2009;333:249-253
    [136] Qi ZG, Lefebvre MC, Pickup PG. Electron and proton transport in gas diffusion electrodes containing electronically conductive proton-exchange polymers. J Electroanal Chem 1998;459:9-14.
    [137] Li Y, Shi GQ. Electrochemical growth of two-dimensional gold nanostructures on a thin polypyrrole film modified ITO electrode. J Phys Chem B 2005;109:23787-23793.
    [138] Oh EJ, Jang KS, MacDiarmid AG. High molecular weight soluble polypyrrole. Synth Met 2002;125:267-272.
    [139] Bensebaa F, Farah AA, Wang D, Bock C, Du X, Kung J, Page YL. Microwave synthesis of polymer-embedded Pt-Ru catalyst for direct methanol fuel cell. J Phys Chem B 2005;109:15339.
    [140] Zhao HB, Li L, Yang J, Zhang YM. Nanostructured polypyrrole/carbon composite as Pt catalyst support for fuel cell applications. J Power Sources 2008;184:375-380.
    [141] Bai ZY, Yang L, Li L, Lv J, Wang K, Zhang J. A facile preparation of hollow palladium nanosphere catalysts for direct formic acid fuel cell. J Phys Chem C 2009;113(24):10568-10573.
    [142] Reddy ALM, Rajalakshmi N, Ramaprabhu S. Cobalt-polypyrrole-multiwalled carbon nanotube catalysts for hydrogen and alcohol fuel cells. Carbon 2008;46:2-11.
    [143] Qu B, Xu YT, Lin SJ, Zheng YF, Dai LZ. Fabrication of Pt nanoparticles decorated PPy-MWNTs composites and their electrocatalytic activity for methanol oxidation. Synth Met 2010;160:732-742.
    [144] Zhao YC, Yang XL, Tian JN, Wang FY, Zhan L. A facile and novel approach toward synthetic polypyrrole oligomers functionalization of multi-walled carbon nanotubes as PtRu catalyst support for methanol electro-oxidation. J Power Sources 2010;195:4634-4640.
    [145] Zhao HB, Yang J, Li L, Li H, Wang JL, Zhang YM. Effect of over-oxidation treatment of Pt-Co/polypyrrole-carbon nanotube catalysts on methanol oxidation. Int J Hydrogen Energy 2009;34:3908-3914.
    [146] Selvaraj V, Alagar M. Pt and Pt-Ru nanoparticles decorated polypyrrole/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation. Electrochem Commun 2007;9:1145-1153.
    [147] Kulesza PJ, Matczak M, Wolkiewicz A, Grzybowska B, Galkowski M, Malik MA, Wieckowski A. Electrocatalytic properties of conducting polymer based composite film containing dispersed platinum microparticles towards oxidation of methanol. Electrochim Acta 1999;44:2131-2137.
    [148] Jia N, Lefebvre MC, Halfyard J, Qi ZG, Pickup PG. Modification of nafion protonexchange membranes to reduce methanol crossover in PEM fuel cells. Electrochem Solid-State Lett 2000;3(12):529-531.
    [149] Nobuko Y, Masayoshi Y, Minato E, Masayuki M. Electrocatalysts depositen on poly(N-methylpyrrole)/nafion composite: films I. anodic oxidation of ethanol at platinum microparticle. Electrochemistry 2007;75(2):190-192.
    [150] Minato E, Masayoshi Y, Nobuko Y, Masayuki M. Electrocatalysts Deposited on Poly(N-methylpyrrole)/Nafion Composite: Films II. Effect of Ruthenium Co-catalyst on Ethanol Oxidation. Electrochemistry 2007;75(2):193-196.
    [151] Liu JW, Qiu JX, Miao YQ, Chen JR. Preparation and characterization of Pt-polypyrrole nanocomposite for electrochemical reduction of oxygen. J Mater Sci 2008;43:6285-6288.
    [152] Rajesh B, Thampi KR, Bonard JM, Mathieu HJ, Xanthopoulos N, Viswanathan B. Conducting polymeric nanotubules as high performance methanol oxidation catalyst support. Chem Commun 2003;2022-2023.
    [153] Li J, Lin XQ. A composite of polypyrrole nanowire platinum modified electrode for oxygen reduction and methanol oxidation reactions. J Electrochem Soc 2007;154(10):B1074-B1079.
    [154] Zhou Q, Li CM, Li J, Cui XQ, Gervasio D. Template-synthesized cobalt porphyrin/polypyrrole nanocomposite and its electrocatalysis for oxygen reduction in neutral medium. J Phys Chem C 2007;111(30):11216-11222.
    [155] Schrebler R, del Valle MA, Gomez H, Veas C, Cordova R. Preparation of polythiophene-modified electrodes by electrodeposition of Pt and Pt+Pb. application to formic acid electro-oxidation. J Electroanal Chem 1995;380:219-227.
    [156] Valle MAD, Diaz FR, Bodini ME, Pizarro T, Cordova R, Gomez H, Schrebler R. Polythiophene, polyaniline and polypyrrole electrodes modified by electrodeposition of Pt and Pt+Pb for formic acid electrooxidation. J Appl Electrochem 1998;28:943-946.
    [157] Giacomini MT, Ticianelli EA, McBreen J, Balasubramanian M. Oxygen Reduction on Supported Platinum/Polythiophene Electrocatalysts. J ElectrochemSoc 2001;148:A323-A329.
    [158] Giacomini MT, Balasubramanian M, Khalid S, McBreen J, Ticianelli EA. J Electrochem Soc 2003;150:A588-A593.
    [159] Selvaraj V, Alagar M, Hamerton I. Nanocatalysts impregnated polythiophene electrodes for the electrooxidation of formic acid. Appl Catal B 2007;73:172-179.
    [160] Tourillon G, Garnier F. Inclusion of metallic aggregates in organic conducting polymers. A new catalytic system, [poly(3-methylthiophene)-Ag-Pt], for proton electrochemical reduction. J Phys Chem 1984;88:5281-5285.
    [161] Yassar A, Roncali J, Garnier F. Preparation and electroactivity of poly(thiophene) electrodes modified by electrodeposition of palladium particles. J Electroanal Chem 1988;255:53-69.
    [162] Swathirajan S, Mikhail YM. Methanol Oxidation on Platinum-Tin Catalysts Dispersed on Poly(3-methyl)thiophene Conducting Polymer. J Electrochem Soc 1992;139:2105-2110.
    [163] Galal A, Atta NF, Darwish SA, Ali SM. Electrodeposited Metals at Conducting Polymer Electrodes. II: Study of the Oxidation of Methanol at Poly(3-methylthiophene) Modified with Pt-Pd Co-catalyst. Top Catal 2008;47:73-83.
    [164] Skotheim TA, Ed. Handbook of Conducting Polymers. Marcel Dekker: New York, 1986; Vol. 1.
    [165] Rajesh B, Thampi KR, Bonard JM, Xanthopoulos N, Mathieu HJ, Viswanathan B. Template Synthesis of Conducting Polymeric Nanocones of Poly(3-methylthiophene). J Phys Chem B 2004;108:10640-10644.
    [166] Rajesh B, Thampi KR, J Bonard M, McEvoj AJ, Xanthopoulos N, Mathieu HJ, Viswanathan B. Pt particles supported on conducting polymeric nanocones as electro-catalysts for methanol oxidation. J Power Sources 2004;133:155-161.
    [167] Bayer AG. Eur. Pat. 339340, 1988.
    [168] Heywang G, Jonas F. Poly(alkylenedioxythiophene)s—new, very stable conducting polymers. Adv Mater 1992;4:116-118.
    [169] Dietrich M, Heinze J, Heywang G, Jonas F. Electrochemical and spectroscopiccharacterization of polyalkylenedioxythiophenes. J Electroanal Chem 1994;369:87-92.
    [170] Yamato H, Ohwa M, Wernet W. Stability of polypyrrole and poly(3,4-ethylenedioxythiophene) for biosensor application. J Electroanal Chem 1995;397:163-170.
    [171] Pei QB, Zuccarello G, Ahlskogt M, Ingan?s O. Electrochromic and highly stable poly(3,4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue. Polymer 1994;35:1347-1351.
    [172] Qi Z, Pickup PG. High performance conducting polymer supported oxygen reduction catalysts. Chem Commun 1998;2299-2300.
    [173] Lefebvre M, Qi Z, Pickup PG. Electronically Conducting Proton Exchange Polymers as Catalyst Supports for Proton Exchange Membrane Fuel Cells. Electrocatalysis of Oxygen Reduction, Hydrogen Oxidation, and Methanol Oxidation. J Electrochem Soc 1999;146(6):2054-2058.
    [174] Kuo CW, Sivakumar C, Wen TC. Nanoparticles of Pt/HxMoO3 electrodeposited in poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) as the electrocatalyst for methanol oxidation. J Power Sources 2008;185:807-814.
    [175] Patra S, Munichandraiah N. Electrooxidation of Methanol on Pt-Modified Conductive Polymer PEDOT. Langmuir 2009;25:1732-1738.
    [176] Patra S, Dash S, Anand V, Nimisha CS, Rao GM, Munichandraiah N. Electrochemical co-deposition of bimetallic Pt–Ru nanoclusters dispersed on poly(3,4-ethylenedioxythiophene) and electrocatalytic behavior for methanol oxidation. Mater Sci Eng B 2011;176:785-791.
    [177] Drillet JF, Dittmeyer R, Juttner K. Activity and long-term stability of PEDOT as Pt catalyst support for the DMFC anode. J Appl Electrochem 2007;37:1219-1226.
    [178] Zhang KF, Guo DJ, Liu X, Li J, Li HL, Su ZH. Vanadium oxide nanotubes as the support of Pd catalysts for methanol oxidation in alkaline solution. J Power Sources 2006;162:1077-1081.
    [179] Murugan AV, Kwon CW, Campet G, Kale BB, Mandale AB, Sainker SR, Gopinath CS, Vijayamohanan K. A Novel Approach To PreparePoly(3,4-ethylenedioxythiophene) Nanoribbons between V2O5 Layers by Microwave Irradiation. J Phys Chem B 2004;108:10736-10742.
    [180] Maiyalagan T, Viswanathan B. Synthesis, characterization and electrocatalytic activity of Pt supported on poly(3,4-ethylenedioxythiophene)-V2O5 nanocomposites electrodes for methanol oxidation. Mater Chem Phys 2010;121:165-171.
    [181] Pandey RK, Lakshminarayanan V. Enhanced Electrocatalytic Activity of Pd-Dispersed 3,4-Polyethylenedioxythiophene Film in Hydrogen Evolution and Ethanol Electro-oxidation Reactions. J Phys Chem C 2010;114:8507-8514.
    [182] Gongming Qian, Changzhu Yang, Wenhong Pu, Jintao Huang, Jingdong Zhang. A novel polycatechol/platinum composite film prepared by electrochemical synthesis. Synthetic Metals 157 (2007) 448-453.
    [183]钱功明,杨昌柱,方柏,陈铁军.新型聚邻苯二酚/铂复合膜修饰电极对甲醛电化学氧化.分析科学学报, 2009;25:341-343.
    [184] Kelaidopoulou A, Abelidou E, Kokkinidis G. Electrocatalytic oxidation of methanol and formic acid on dispersed electrodes: Pt, Pt-Sn and Pt/M(upd) in poly(2-hydroxy-3-aminophenazine). J Appl Electrochem 1999;29:1255-1261.
    [185] Bruckenstein S, Wilde CP, Hillman AR. Transport phenomena accompanying redox switching in polythionine films immersed in aqueous acetic acid solutions. J Phys Chem 1990;94:6458-6464.
    [186] Ohsaka T, Tanaka K, Tokuda K. Electrocatalysis of poly(thionine)-modified electrodes for oxidation of reduced nicotinamide adenine dinucleotide. J Chem Soc Chem Commun 1993;222-224.
    [187]杨辉,李长志,法天红,薛宽宏,孙世刚,卢国强,陈声培.甲醇在铂微粒修饰的聚硫堇电极上的电催化氧化.物理化学学报, 1997;13(6):542-547.
    [188] Bruckenstein S, Wilde CP, Hillman AR. Redox switching kinetics of polythionine films in aqueous acetic acid solutions. J Phys Chem 1993;97(26):6853-6858.
    [189] Choi JH, Park KW, Lee HK, Kim YM, Lee JS, Sung YE. Nano-composite of PtRu alloy electrocatalyst and electronically conducting polymer for use as the anode in a direct methanol fuel cell. Electrochim Acta 2003;48:2781-2789.
    [190] Yu L, Sathe M, Zeng X. EQCM Study of the Redox Processes of Polyvinylferrocene Film in L-Glutamine Solution. J Electrochem Soc 2005;152(11):E357-E363.
    [191] ?elebi MS, Pekmez K, Ozyoruk H, Y?ld?z A. Preparation and physical/electrochemical characterization of Pt/poly(vinylferrocenium) electrocatalyst for methanol oxidation. J Power Sources 2008;183:8-13.
    [192] Arévalo AH, Fernández H, Silber JJ, Sereno L. Mechanism of electropolymerization of 1-naphthylamine in aqueous acid media. Electrochim Acta 1990;35:741-748.
    [193] Ojani R, Raoof JB, Salmany-Afagh P. Electrocatalytic oxidation of some carbohydrates by poly(1-naphthylamine)/nickel modified carbon paste electrode. J Electroanal Chem 2004;571:1-8.
    [194] Ojani R, Raoof JB, Zavvarmahalleh SRH. Electrocatalytic oxidation of methanol on carbon paste electrode modified by nickel ions dispersed into poly (1,5-diaminonaphthalene) film. Electrochim Acta 2008;53:2402-2407.
    [195] Nagashree KL, Raviraj NH, Ahmed MF. Carbon paste electrodes modified by Pt and Pt-Ni microparticles dispersed in polyindole film for electrocatalytic oxidation of methanol. Electrochim Acta 2010;55:2629-2635.
    [196] Dong B, Song DF, Zheng LQ, Xu JK, Li N. Electrosynthesis of polyfluorene in an ionic liquid and characterization of its stable electrocatalytic activity for formic acid oxidation. J Electroanal Chem 2009;633:63-70.
    [197] Esteban PO, Leger JM, Lamy C, Genies E. Electrocatalytic oxidation of methanol on platinum dispersed in polyaniline conducting polymers. J Appl Electrochem 1989;19:462-464.
    [198] Castro-Luna AM. A novel electrocatalytic polyaniline electrode for methanol oxidation. J Appl Electrochem 2000;30:1137-1142.
    [199] Niu L, Li Q, Wei F, Wu S, Liu P, Cao X. Electrocatalytic behavior of Pt-modified polyaniline electrode for methanol oxidation: Effect of Pt deposition modes. J Electroanal Chem 2005;578:331-337.
    [200] Hu CC, Chen E, Lin JY. Capacitive and textural characteristics ofpolyaniline-platinum composite films. Electrochim Acta 2002;47:2741-2749.
    [201] Bernier P, Lefrant S, Bidan G (Eds). Advances in Synthetic Metals. Amsterdam, Elsevier, 1999.
    [202] Xu JK, Nie GM, Zhang SS, Han XJ, Hou J, Pu SZ. Electrosyntheses of freestanding polyindole films in boron trifluoride diethyl etherate. J Polym Sci Part A: Polym Chem 2005;43:1444-1453.
    [203] Nie GM, Zhang Y, Xu JK, Zhang SS. Low-potential facile electrosyntheses of free-standing poly(5-methoxyindole) film with good fluorescence properties. J Electroanal Chem 2008;622:121-127.
    [204] Xu JK, Zhou WQ, Hou J, Pu SZ, Yan LS, Wang JW. Electrosyntheses of high-quality poly(5-nitroindole) films in boron trifluoride diethyl etherate containing additional diethyl ether. J Polym Sci Part A: Polym Chem 2005;43:3986-3997.
    [205] Xu JK, Zhou WQ, Hou J, Pu SZ, Yan LS, Wang JW. Electrosyntheses of high quality poly (5-cyanoindole) films in boron trifluoride diethyl etherate containing additional diethyl ether. Mater Chem Phys 2006;99:341-349.
    [206] Wei ZH, Xu JK, Nie GM, Du YK, Pu SZ. Low-potential electrochemical polymerization of carbazole and its alkyl derivatives. J Electroanal Chem 2006;589:112-119.
    [207] Xu JK, Zhou WQ, Peng HP, Pu SZ, Wang JW, Yan LS. Electrosyntheses of freestanding and conducting poly[poly(N-vinyl-carbazole)] films in tetrahydrofuran containing additional boron trifluoride diethyl etherate. Polymer J 2006;38: 369-375.
    [208] Wei ZH, Wang Q, Xu JK, Nie YL, Du YK, Xia HY. Facile electrosyntheses of high tensile strength alkyl-bridged dicarbazole polymer films and its fluorescence spectra. J Polym Sci Part A: Polym Chem 2008;46: 5232-5241.
    [209] Xu JK, Wei ZH, Du YK, Zhou WQ, Pu SZ. Low-potential electrochemical polymerization of fluorene and its alkyl-polymer precursor. Electrochim Acta 2006;51: 4771-4779.
    [210] Xu JK, Zhou WQ, Chen B, Pu SZ, Wang JW, Wan YQ. Low potentialelectrosyntheses of free-Standing poly(dibenzofuran) films in mixed electrolytes of boron trifluoride diethyl etherate and trifluoroacetic acid. J Polym Sci Part A: Polym Chem 2006;44:1125-1135.
    [211] Christensenand PA, Hamnett A. Techniques and mechanisms in electrochemistry. Blackie Academic, London (1994).
    [212] Dyer AL, Reynolds JR. in Handbook of conducting polymers, 3rd ed., Skotheim TA, Reynolds JR, Editors, CRC Press, New York (2007), p.18-3.
    [213] Kassmi AE, Fache F, Lemaire M. Poly(3-fluorothiophene). J Electroanal Chem 1994;373:241-244.
    [214] Liu ZL, Lee JY, Han M, Chen WX, Gan LM. Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions. J Mater Chem 2002;12:2453-2458.
    [215] Ren X, Zelenay P, Thomas S, Davey J, Gottesfeld S. Recent advances in direct methanol fuel cells at los alamos national laboratory. J Power Sources 2000;86:111-116.
    [216] Lin YM, Rei MH. Process development for generating high purity hydrogen by using supported palladium membrane reactor as steam reformer. Int J Hydrogen Energ 2000;25:211-219.
    [217] Barragán VM, Heinzel A. Estimation of the membrane methanol diffusion coefficient from open circuit voltage measurements in a direct methanol fuel cell. J Power Sources 2002;104:66-72.
    [218] Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors? Chem Rev 2004;104:4245-4270.
    [219] Kamarudin SK, Achmad F, Daud WRW. Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. Int J Hydrogen Energ 2009;34:6902-6916.
    [220] Lee CH, Lee CW, Kim D, Bae SE. Characteristics of methanol oxidation on Pt-Ru catalysts supported by HOPG in sulfuric acid. Int J Hydrogen Energ 2002;27:445-450.
    [221] Jung EH, Jung UH, Yang TH, Peak DH, Jung DH, Kim SH. Methanol crossoverthrough PtRu/Nafion composite membrane for a direct methanol fuel cell. Int J Hydrogen Energ 2007;32:903-907.
    [222] Kadirgan F, Beyhan S, Atilan T. Preparation and characterization of nano-sized Pt-Pd/C catalysts and comparison of their electro-activity toward methanol and ethanol oxidation. Int J Hydrogen Energ 2009;34:4312-4320.
    [223] Zeng JH, Lee JY. Ruthenium-free, carbon-supported cobalt and tungsten containing binary & ternary Pt catalysts for the anodes of direct methanol fuel cells. Int J Hydrogen Energ 2007;32:4389-4396.
    [224] Antolini E. Carbon supports for low-temperature fuel cell catalysts. Appl Catal B 2009;88:1-24.
    [225] Wang JJ, Yin GP, Shao YY, Zhang S, Wang ZB, Gao YZ. Effect of carbon black support corrosion on the durability of Pt/C catalyst. J Power Sources 2007;171:331-339.
    [226] Rice C, Ha S, Masel RI, Waszczuk P, Wieckowski A, Barnard T. Direct formic acid fuel cells. J Power Sources 2002;111:83-89.
    [227] Lu GQ, Crown A, Wieckowski A. Formic Acid Decomposition on Polycrystalline Platinum and Palladized Platinum Electrodes. J Phys Chem B 1999;103:9700-9711.
    [228] Jayashree RS, Spendelow JS, Yeom J, Rastogi C, Shannon MA, Kenis PJA. Characterization and application of electrodeposited Pt, Pt/Pd, and Pd catalyst structures for direct formic acid micro fuel cells. Electrochim Acta 2005;50:4674-4682.
    [229] Wang X, Hu JM, Hsing IM. Electrochemical investigation of formic acid electro-oxidation and its crossover through a Nafion? membrane. J Electroanal Chem 2004;562:73-80.
    [230] Selvaraj V, Grace AN, Alagar M. Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated single walled carbon nanotubes. J Colloid Interf Sci 2009;333:254-262.
    [231] Choi JH, Jeong KJ, Dong Y, Han J, Lim TH, Lee JS, Sung YE. Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells. JPower Sources 2006;163:71-75.
    [232] Peng B, Wang JY, Zhang HX, Lin YH, Cai WB. A versatile electroless approach to controlled modification of Sb on Pt surfaces towards efficient electrocatalysis of formic acid. Electrochem Commun 2009;11:831-833.
    [233] Uhm S, Chung ST, Lee J. Activity of Pt anode catalyst modified by underpotential deposited Pb in a direct formic acid fuel cell. Electrochem Commun 2007;9:2027-2031.
    [234] Kristian N, Yan YS, Wang X. Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation. Chem Commun 2008;353-355.
    [235] El-Deab MS, Kibler LA, Kolb DM. Enhanced electro-oxidation of formic acid at manganese oxide single crystalline nanorod-modified Pt electrodes. Electrochem Commun 2009;11:776-778.
    [236] Zhou XC, Xing W, Liu CP, Lu TH. Platinum-macrocycle co-catalyst for electro-oxidation of formic acid. Electrochem Commun 2007;9:1469-1473.
    [237] Zhou XC, Liu CP, Liao JH, Lu TH, Xing W. Platinum-macrocycle co-catalysts for electro-oxidation of formic acid. J Power Sources 2008;179:481-488.
    [238] Zhang ZH, Zhou XC, Liu CP, Xing W. The mechanism of formic acid electrooxidation on iron tetrasulfophthalocyanine-modified platinum electrode. Electrochem Commun 2008;10:131-135.
    [239] Kaneto K, Nakajima J, Nakagawa M, Takashima W. Electrical transport at nanometric interface of metals and conducting polymers. Thin Solid Films 2003;438:195-200.
    [240] Ramanavi?ius A, Ramanavi?ien? A, Malinauskas A. Electrochemical sensors based on conducting polymer-polypyrrole. Electrochim Acta 2006;51:6025-6037.
    [241] Rajesh, Ahuja T, Kumar D. Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sensor Actuat B Chem 2009;136:275-286.
    [242] Liu YC, Yang KH, Ger MD. Mechanism of underpotential deposition of metal on conducting polymers. Synth Met 2002;126:337-345.
    [243] Niu L, Li QH, Wei FH, Chen X, Wang H. Electrochemical impedance andmorphological characterization of platinum-modified polyaniline film electrodes and their electrocatalytic activity for methanol oxidation. J Electroanal Chem 2003;544:121-128.
    [244] Wang ZH, Gao GQ, Zhu HF, Sun ZD, Liu HP, Zhao XL. Electrodeposition of platinum microparticle interface on conducting polymer film modified nichrome for electrocatalytic oxidation of methanol. Int J Hydrogen Energ 2009;34:9334-9340.
    [245] Selvaraj V, Alagar M, Hamerton I. Electrocatalytic properties of monometallic and bimetallic nanoparticles-incorporated polypyrrole films for electro-oxidation of methanol. J Power Sources 2006;160:940-948.
    [246] Zhao HB, Yang J, Li L, Li H, Wang JL, Zhang YM. Effect of over-oxidation treatment of Pt-Co/polypyrrole-carbon nanotube catalysts on methanol oxidation. Int J Hydrogen Energ 2009;34:3908-3914.
    [247] Cao XX, Huang X, Boon N, Liang P, Fan MZ. Electricity generation by an enriched phototrophic consortium in a microbial fuel cell. Electrochem Commun 2008;10:1392-1395.
    [248] Rabaey K, Boon N, H?fte M, Verstraete W. Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 2005;39:3401-3408.
    [249] Talbi H, Billaud D. Electrochemical properties of polyindole and poly(5-cyanoindole) in LiClO4-acetonitrile and in HC1 and HClO4 solutions. Synth Met 1998;93:105-110.
    [250] Ryu KS, Park NG, Kim KM, Lee YG, Park YJ, Lee SJ, Jeong CK, Joo J, Chang SH. The physicochemical properties of polyindole/thiol composites. Synth Met 2003;135-136:397-398.
    [251] Tüken T, Dudukcu M, Yaz?c? B, Erbil M. The use of polyindole for mild steel protection. Prog Org Coat 2004;50:273-282.
    [252] Zhou M, Heinze J. Electropolymerization of pyrrole and electrochemical study of polypyrrole: 1. Evidence for structural diversity of polypyrrole. Electrochim Acta 1999;44:1733-1748.
    [253] Chen XW, Inganas O. Three-step redox in polythiophenes: evidence from electrochemistry at an ultramicroelectrode. J Phys Chem 1996;100:15202-15206.
    [254] Ren XM, Pickup PG. Ion transport in polypyrrole and a polypyrrole/polyanion composite. J Phys Chem 1993;97:5356-5362.
    [255] Salzer CA, Elliott CM. Quantitative in situ studies of ionic doping of polypyrrole employing rotated ring-disk electrode voltammetry. Chem Mater 2000;12:2099-2105.
    [256] Loganathan K, Cammisa EG, Myron BD, Pickup PG.Δ4,4′-Dicyclopenta[2,1-b:3,4-b′]dithiophene. A conjugated bridging unit for low band gap conducting polymers. Chem Mater 2003;15:1918-1923.
    [257] Niu L, Kvarnstr?m C, Ivaska A. Mixed ion transfer in redox processes of poly(3,4-ethylenedioxythiophene). J Electroanal Chem 2004;569:151-160.
    [258] Liu ZL, Lee JY, Han M, Chen WX, Gan LM. Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions. J Mater Chem 2002;12:2453–2458.
    [259] Arenz M, Stamenkovic V, Schmidt TJ, Wandelt K, Ross PN, Markovic NM. The electro-oxidation of formic acid on Pt–Pd single crystal bimetallic surfaces. Phys Chem Chem Phys 2003;5:4242-4251.
    [260] Shi J, Guo DJ, Wang Z, Li HL. Electrocatalytic oxidation of formic acid on platinum particles dispersed in SWNT/PANI composite film. J Solid State Electrochem 2005;9:634-663.
    [261] Climent V, Herrero E, Feliu JM. Electrocatalysis of formic acid and CO oxidation on antimony-modified Pt(111) electrodes. Electrochim Acta 1998;44:1403-1414.
    [262] Luna AC, Iwasita T, Vielstich V. UPD metal electrocatalysis of formic acid oxidation at teflon-bonded carbon substrate electrodes. J Electroanal Chem 1985;196:301-314.
    [263] Macia MD, Herrero E, Feliu JM. Formic acid oxidation on Bi---Pt(1 1 1) electrode in perchloric acid media. A kinetic study. J Electroanal Chem 2003;554-555:25-34.
    [264] Kang S, Lee J, Lee JK, Chung SY, Tak Y. Influence of Bi Modification of Pt Anode Catalyst in Direct Formic Acid Fuel Cells. J Phys Chem B 2006;110:7270-7274.
    [265] Jung WS, Han J, Ha S. Analysis of palladium-based anode electrode using electrochemical impedance spectra in direct formic acid fuel cells. J Power Sources 2007;173:53-59.
    [266] Yi QF, Chen AC, Huang W, Zhang JJ, Liu XP, Xu GR, Zhou ZH. Titanium-supported nanoporous bimetallic Pt-Ir electrocatalysts for formic acid oxidation. Electrochem Commun 2007;9:1513-1518.
    [267] Chen W, Kim J, Sun SH, Chen SW. Composition Effects of FePt Alloy Nanoparticles on the Electro-Oxidation of Formic Acid. Langmuir 2007;23:11303-11310.
    [268] Chen W, Kim J, Xu LP, Sun SH, Chen SW. Langmuir-Blodgett Thin Films of Fe20Pt80 Nanoparticles for the Electrocatalytic Oxidation of Formic Acid. J Phys Chem C 2007;111:13452-13459.
    [269] Uhm S, Chung ST, Lee J. Characterization of direct formic acid fuel cells by Impedance Studies: In comparison of direct methanol fuel cells. J Power Sources 2008;178:34-43.
    [270] Kristian N, Yu YL, Gunawan P, Xu R, Deng WQ, Liu XW, Wang X. Controlled synthesis of Pt-decorated Au nanostructure and its promoted activity toward formic acid electro-oxidation. Electrochim Acta 2009;54:4916-4924.
    [271] Yun HJ, Lee H, Joo JB, Kim W, Yi J. Influence of Aspect Ratio of TiO2 Nanorods on the Photocatalytic Decomposition of Formic Acid. J Phys Chem C 2009;113:3050-3055.
    [272] Liu B, Chen JH, Zhong XX, Cui KZ, Zhou HH, Kuang YF. Preparation and electrocatalytic properties of Pt-SiO2 nanocatalysts for ethanol electrooxidation. J Colloid Interface Sci 2007;307:139-144.
    [273] Hsing IM, Wang X, Leng YJ. Electrochemical impedance studies of methanol electro-oxidation on Pt/C thin film electrode. J Electrochem Soc 2002;149:A615-A621.
    [274] Liu YC, Qiu XP, Zhu WT, Wu GS. Impedance studies on mesocarbon microbeads supported Pt-Ru catalytic anode. J Power Sources 2003;114:10-14.
    [275] Sugimoto W, Aoyama K, Kawaguchi T, Murakami Y, Takasu Y. Kinetics of CH3OH oxidation on PtRu/C studied by impedance and CO stripping voltammetry. J Electroanal Chem 2005;576:215-221.
    [276] Wu G, Li L, Xu BQ. Effect of electrochemical polarization of PtRu/C catalysts on methanol electrooxidation. Electrochim Acta 2004;50:1-10.
    [277] Krewer U, Christov M, Vidakovic T, Sundmacher K. Impedance spectroscopic analysis of the electrochemical methanol oxidation kinetics. J Electroanal Chem 2006;589:148-159.
    [278] Wang ZB, Yin GP, Shao YY, Yang BQ, Shi PF, Feng PX. Electrochemical impedance studies on carbon supported PtRuNi and PtRu anode catalysts in acid medium for direct methanol fuel cell. J Power Sources 2007;165:9-15.
    [279] Lee EP, Peng ZM, Chen W, Chen SW, Yang H, Xia YN. Electrocatalytic properties of Pt nanowires supported on Pt and W gauzes. Acs Nano 2008;2:2167-2173.
    [280] Yuan H.P, Guo DJ, Qiu XP, Zhu WT, Chen LQ. Influence of metal oxides on Pt catalysts for methanol electrooxidation using electrochemical impedance spectroscopy. J Power Sources 2009;188:8-13.
    [281] Chen A, Russa DJL, Miller B. Effect of the iridium oxide thin film on the electrochemical activity of platinum nanoparticles. Langmuir 2004;20:9695-9702.
    [282] Wang ZB, Chu YY, Shao AF, Zuo PJ, Yin GP. Electrochemical impedance studies of electrooxidation of methanol and formic acid on Pt/C catalyst in acid medium. J Power Sources 2009;190:336-340.
    [283] Tirapattur S, Belletete M, Drolet N, Leclerc M, Durocher G. Steady-state and time-resolved studies of 2,7-carbazole-based conjugated polymers in solution and as thin films: determination of their solid state fluorescence quantum efficiencies. Chem Phys Lett 2003;370:799-804.
    [284] Huang J, Niu YH, Yang W, Mo YQ, Yuan M, Cao Y. Novel ElectroluminescentPolymers Derived from Carbazole and Benzothiadiazole. Macromolecules 2002;35:6080-6082.
    [285] Pei QB, Yu G, Zhang C, Yang Y, Heeger AJ. Polymer Light-Emitting Electrochemical Cells. Science 1995;269:1086-1088.
    [286] Siove A, Ades D. Synthesis by oxidative polymerization with FeCl3 of a fully aromatic twisted poly(3,6-carbazole) with a blue-violet luminescence. Polymer 2004;45:4045-4049.
    [287] Saraswathi R, Gerard M, Malhotra BD. Characteristics of aqueous polycarbazole batteries. J Appl Polym Sci 1999;74:145-150.
    [288] Nie GM, Xu JK, Zhang SS, Han XJ. Electrodeposition of high-quality polycarbazole films in composite electrolytes of boron trifluoride diethyl etherate and ethyl ether. J Appl Electrochem 2006;36:937-944.
    [289] Jüttner K, Schmitz RHJ, Hudson A. A parameter study on the impedance of poly(3-methylthiophene) film electrodes. Electrochim Acta 1999;44:4177-87.
    [290] Betova I, Bojinov M, Lankinen E, Sundholm G. Studies on the redox behaviour of some polythiophene derivatives by impedance spectroscopy in symmetrical and asymmetrical configurations. J Electroanal Chem 1999;472:20-32.
    [291] Bobacka J, Lewenstam A, Ivaska A. Electrochemical impedance spectroscopy of oxidized poly(3,4-ethylenedioxythiophene) film electrodes in aqueous solutions. J Electroanal Chem 2000;489:17-27.
    [292] Vorotyntsev MA, Deslouis C, Musiani MM, Tribollet B, Aoki K. Transport across an electroactive polymer film in contact with media allowing both ionic and electronic interfacial exchange. Electrochim Acta 1999;44:2105-2115.
    [293] Bobacka J. Potential stability of all-solid-state ion-selective electrodes using conducting polymers as ion-to-electron transducers. Anal Chem 1999;71:4932-4937.
    [294] She PP, Wang ZH. Degradation of Poly(3,4-ethylenedioxythiophene) at an Anode. Acta Chim Sinica 2006;64:997-1003.
    [295] Sarac AS, Sezer E, Ustamehmetoglu B. Oxidative polymerization of N-substituted carbazoles. Polym Advan Technol 1997;8:556-562.
    [296] Pan C, Dassenoy F, Casanove MJ, Philippot K, Amiens C, Lecante P, Mosset A, Chaudret B. A new synthetic method toward bimetallic ruthenium platinum nanoparticles; composition induced structural changes. J Phys Chem B 1999;103:10098-10101.
    [297] Leger JM. Preparation and activity of mono- or bi-metallic nanoparticles for electrocatalytic reactions. Electrochim Acta 2005;50:3123-3129.
    [298] Waszczuk P, Barnard TM, Rice C, Masel RI, Wieckowski A. A nanoparticle catalyst with superior activity for electrooxidation of formic acid. Electrochem Commun 2002;4:599-603.
    [299] Tong Y, Kim HS, Babu PK, Waszczuk P, Wieckowski A, Oldfield E. An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst. J Am Chem Soc 2002;124:468-473.
    [300] Lu C, Masel RI. The effect of ruthenium on the binding of CO, H2, and H2O on Pt(110). J Phys Chem B 2001;105:9793-9797.
    [301] Waszczuk P, Wieckowski A, Zelenay P, Gottesfeld S, Coutanceau C, Leger JM, Lamy C. Adsorption of CO poison on fuel cell nanoparticle electrodes from methanol solutions: a radioactive labeling study. J Electroanal Chem 2001;511:55-64.
    [302] Cao L, Scheiba F, Roth C, Schweiger F, Cremers C, Stimming U, Fuess H, Chen LQ, Zhu WT, Qiu XP. Novel nanocomposite Pt/RuO2?x H2O/Carbon nanotube catalysts for direct methanol fuel cells. Angew Chem Int Ed 2006;45:5315-5319.
    [303] Xue KH, Cai CX, Yang H, Zhou YM, Sun SG, Chen SP, Xu G. Electrocatalysis and related factors of platinum microparticles dispersed on/in polypyrrole film in methanol oxidation. J Power Sources 1998;75:207-213.
    [304] Jia JB, Cao LY, Wang ZH. Platinum-Coated Gold Nanoporous Film Surface: Electrodeposition and Enhanced Electrocatalytic Activity for Methanol Oxidation. Langmuir 2008;24:5932-5936.
    [305] Sieben JM, Duarte MME, Mayer CE. Methanol oxidation on carbon supported Pt–Ru catalysts prepared by electrodeposition– Evaluation of Nafion? 117 film effect. Int J Hydrogen Energy 2010;35:2018-2024.
    [306] Li GC, Pickup PG. Decoration of carbon-supported Pt catalysts with Sn to promote electro-oxidation of ethanol. J Power Sources 2007;173:121-129.
    [307] Tang XL, Zhang BC, Li Y, Xu YD, Xin Q, Shen WJ. The role of Sn in Pt–Sn/CeO2 catalysts for the complete oxidation of ethanol. J Mol Catal A Chem 2005;235:122-129.
    [308] Ren H, Humbert MP, Menning CA, Chen JG, Shu YY, Singh UG, Cheng WC. Inhibition of coking and CO poisoning of Pt catalysts by the formation of Au/Pt bimetallic surfaces. Appl Catal A Gen 2010;375:303-309.
    [309] Park IS, Lee KS, Jung DS, Park HY, Sung YE. Electrocatalytic activity of carbon-supported Pt–Au nanoparticles for methanol electro-oxidation. Electrochim Acta 2007;52:5599-5605.
    [310] Liu W, Huang JJ. Electro-oxidation of formic acid on carbon supported Pt-Os catalyst. J Power Sources 2009;189:1012-1015.
    [311] Kadirgan F, Beyhan S, Atilan T. Preparation and characterization of nano-sized Pt–Pd/C catalysts and comparison of their electro-activity toward methanol and ethanol oxidation. Int J Hydrogen Energy 2009;34:4312-4320.
    [312] Choi JH, Park KW, Park IS, Nam WH, Sung YE. Methanol electro-oxidation and direct methanol fuel cell using Pt/Rh and Pt/Ru/Rh alloy catalysts. Electrochimica Acta 2004;50:787-790.
    [313] Park KW, Sung YE. Catalytic Activity of Platinum on Ruthenium Electrodes with Modified (Electro)chemical States. J Phys Chem B 2005;109:13585-13589.
    [314] Liu Z, Lee JY, Chen W, Han M, Gan LM. Physical and Electrochemical Characterizations of Microwave-Assisted Polyol Preparation of Carbon-Supported PtRu Nanoparticles. Langmuir 2004;20:181-187.
    [315] Ren XM, Wilson MS, Gottesfeld S. High performance direct methanol polymer electrolyte fuel cells. J Electrochem Soc 1996;143:L12-L15.
    [316] Basnayake R, Li Z, Lakshmi S, Zhou W, Smotkin ES, Casadonte DJ, Korzeniewski C. PtRu nanoparticle electrocatalyst with bulk alloy properties prepared through a sonochemical method. Langmuir 2006;22:10446-10450.
    [317] Steigerwalt ES, Deluga GA, Lukehart CM. Pt-Ru/Carbon fiber nanocomposites:synthesis, characterization, and performance as anode catalysts of direct methanol fuel cells. A Search for Exceptional Performance. J Phys Chem B 2002;106:760-766.
    [318] Kadirgan F, Beden B, Leger JM, Lamy C. Synergistic effect in the electrocatalytic oxidation of methanol on platinum+palladium alloy electrodes. J Electroanal Chem 1981;125:89-103.
    [319] Yu EH, Scott K, Reeve RW. A study of the anodic oxidation of methanol on Pt in alkaline solutions. J Electroanal Chem 2003;547:17-24.
    [320] Prabhuram J, Manoharan R. Investigation of methanol oxidation on unsupported platinum electrodes in strong alkali and strong acid. J Power Sources 1998;74:54-61.
    [321] Manoharan R, Prabhuram J. Possibilities of prevention of formation of poisoning species on direct methanol fuel cell anodes. J Power Sources 2001;96:220-225.
    [322] Parsons R, VanderNoot T. The oxidation of small organic molecules: A survey of recent fuel cell related research. J Electroanal Chem 1988;257:9-45.
    [323] Chen SL, Schell M. A comparison of multistability in the electrocatalyzed oxidations of methanol and ethanol in acid and alkaline solutions. J Electroanal Chem 1999;478:108-117.
    [324] Tripkovic AV, Popovic KD, Grgur BN, Blizanac B, Ross PN, Markovic NM. Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions. Electrochim Acta 2002;47:3707-3714.
    [325] Wang Y, Li L, Hu L, Zhuang L, Lu JT, Xu BQ. A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages. Electrochem Commun 2003;5:662-666.
    [326] Hable CT, Wrighton MS. Electrocatalytic oxidation of methanol by assemblies of platinum/tin catalyst particles in a conducting polyaniline matrix. Langmuir 1991;7:1305-1309.
    [327] Arbizzani C, Biso M, Manferrari E, Mastragostino M. Methanol oxidation by pEDOT-pSS/PtRu in DMFC. J Power Sources 2008;178:584-590.
    [328] Palmero S, Colina A, Munz E, Heras A, Ruiz V, Palacios JL. Layer-by-layerelectrosynthesis of Pt-Polyaniline nanocomposites for the catalytic oxidation of methanol. Electrochem Commun 2008;11:122-125.
    [329] Van Mullekom HAM, Vekemans JAJM, Havinga EE, Meijer EW. Developments in the chemistry and band gap engineering of donor–acceptor substituted conjugated polymers. Mater Sci Eng R 2001;32:1-40.
    [330] Loakes D. The applications of universal DNA base analogues. Nucleic Acids Res 2001;29:2437-2447.
    [331] Wheaton CA, Dobrowolski SL, Millen AL, Wetmore SD. Nitrosubstituted aromatic molecules as universal nucleobases: Computational analysis of stacking interactions. Chem Phys Lett 2006;428:157-166.
    [332] Kokkinidis G, Kelaidopoulou A. Electrochemical behaviour of nitroindoles: oxidative electropolymerization and reduction of the nitro group of polymerized and non-polymerized 4-nitro and 5-nitroindole. J Electroanal chem 1996;414:197-208.
    [333] Liu JP, Ye JQ, Xu CW, Jiang SP, Tong YX. Electro-oxidation of methanol, 1-propanol and 2-propanol on Pt and Pd in alkaline medium. J Power Sources 2008;177:67-70.
    [334] Xu CW, Shen PK. Novel Pt/CeO2/C catalysts for electrooxidation of alcohols in alkaline media. Chem Commun 2004;2238-2239.
    [335] Yu EH, Scott K, Reeve RW, Yang LX, Allen RG. Characterisation of platinised Ti mesh electrodes using electrochemical methods: methanol oxidation in sodium hydroxide solutions. Electrochim Acta 2004;49:2443-2452.
    [336] Yu X, Pickup PG. Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 2008;182:124-132.
    [337] Yang S, Zhang X, Mi H, Ye X. Pd nanoparticles supported on functionalized multi-walled carbon nanotubes (MWCNTs) and electrooxidation for formic acid. J Power Sources 2008;175:26-32.
    [338] Hoshi N, Kida K, Nakamura M, Nakada M, Osada K. Structural Effects of Electrochemical Oxidation of Formic Acid on Single Crystal Electrodes of Palladium. J Phys Chem B 2006;110:12480-12484.
    [339] Samjeske G, Miki A, Ye S, Osawa M. Mechanistic Study of Electrocatalytic Oxidation of Formic Acid at Platinum in Acidic Solution by Time-Resolved Surface-Enhanced Infrared Absorption Spectroscopy. J Phys Chem B 2006;110:16559-16566.
    [340] Hahn F, Beden B, Lamy C. In situ infrared reflectance spectroscopic study of the adsorption of formic acid at a rhodium electrode. J Electroanal Chem 1986;204:315-327.
    [341] Miki A, Ye S, Osawa M. Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions. Chem Commun 2002;1500-1501.
    [342] Park S, Xie Y, Weaver MJ. Electrocatalytic Pathways on Carbon-Supported Platinum Nanoparticles: Comparison of Particle-Size-Dependent Rates of Methanol, Formic Acid, and Formaldehyde Electrooxidation. Langmuir 2002;18:5792-5798.
    [343] Chang SC, Leung LWH, Weaver MJ. Metal crystallinity effects in electrocatalysis as probed by real-time FTIR spectroscopy: electrooxidation of formic acid, methanol, and ethanol on ordered low-index platinum surfaces. J Phys Chem 1990;94:6013-6021.
    [344] Samjeske G, Miki A, Ye S, Yamakata A, Mukouyama Y, Okamoto H, Osawa M. Potential Oscillations in Galvanostatic Electrooxidation of Formic Acid on Platinum: A Time-Resolved Surface-Enhanced Infrared Study. J Phys Chem B 2005;109:23509-23516.
    [345] Sumodjo PTA, Silva EJ, Rabochai T. Electrosorption of hydroxylated compounds: a comparative study of molecules with three carbon atoms. J Electroanal Chem 1989;271:305-317.
    [346] Wang JT, Wasmus S, Savinell RF. Evaluation of ethanol, 1-propanol, and 2-propanol in a direct oxidation polymer-electrolyte fuel cell. J Electrochem Soc 1995;142:4218-4224.
    [347] Ye JQ, Liu JP, Xu CW, Jiang SP, Tong YX. Electrooxidation of 2-propanol on Pt, Pd and Au in alkaline medium. Electrochem Commun 2007;9:2760-2763.
    [348] Shobha T, Aravinda CL, Bera P, Devi LG, Mayanna SM. Characterization of Ni-Pd alloy as anode for methanol oxidative fuel cell. Mater Chem Phys 2003;80:656-661.
    [349] Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science 2006;311:362-365.
    [350] Xu CW, Tian ZQ, Chen ZC, Jiang SP. Pd/C promoted by Au for 2-propanol electrooxidation in alkaline media. Electrochem Commun 2008;10:246-249.
    [351] Bianchi CL, Canton P, Dimitratos N, Porta F, Prati L. Selective oxidation of glycerol with oxygen using mono and bimetallic catalysts based on Au, Pd and Pt metals. Catal Today 2005;102:203-212.
    [352] Wang D, Villa A, Porta F, Su DS, Prati L. Single-phase bimetallic system for the selective oxidation of glycerol to glycerate. Chemm Commun 2006;1956-1958.
    [353] Xu CW, Shen PK. Electrochamical oxidation of ethanol on Pt-CeO2/C catalysts. J Power Sources 2005;142:27-29.
    [354] Tripkovic AV, Popovic KD, Lovic JD, Jovanovic VM, Kowal A. Methanol oxidation at platinum electrodes in alkaline solution: comparison between supported catalysts and model systems. J Electroanal Chem 2004;572:119-128.
    [355] Lamy C, Belgsir EM. Leger JM. Electrocatalytic oxidation of aliphatic alcohols: Application to the direct alcohol fuel cell (DAFC). J Appl Electrochem 2001;3:799-809.
    [356] Shen PK, Xu CW. Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts. Electrochem Commun 2006;8:184-188.
    [357] Grem G, Leditzky G, Ullrich B, Leising G. Realization of a blue-light-emitting device using poly(p-phenylene). Adv Mater 1992;4:36-37.
    [358] Osaka T, Komaba S, Fujihana K, Okamoto N, Momma T, Kaneko N. J Electrochem Soc 1997;144:742.
    [359] Ostergard T, Kvarnstrom C, Stubb H, Ivaska A. Electrochemically prepared light-emitting diodes of poly(para-phenylene). Thin Solid Films 1997;311:58-61.
    [360] Lee CH, Kang GW, Jeon JW, Song WJ, Seoul C. Blue electroluminescence and dynamics of charge carrier recombination in a vacuum-deposited poly(p-phenylene) thin film. Thin Solid Films 2000;363:306-309.
    [361] Satoh M, Tabata M, Kaneto K, Yoshino K. A highly conducting poly (p-Phenylene) film. J Electroanal Chem 1985;195:203-206.
    [362] Kovacic P, Kyriakis A. Polymerization of benzene to p-Polyphenyl by aluminum chloride-cupric chloride. J Am Chem Soc 1963;85:454-458.
    [363] Schiavon G, Zecchin S, Zotti G, Cattarin S. Electroactive polymeric films from oxidative coupling of oligophenyls. J Electroanal Chem 1986;213:53-64.
    [364] Shepard AF, Dannels BF. Interfacial anodic polymers from benzene in hydrogen fluoride. J Polym Sci Part A: Polym Chem 1966;4:511-518.
    [365] Goldenberg LM, Lacaze PC. Anodic synthesis of poly(p-phenylene). Synth Met 1993;58:271-293.
    [366] Ashley K, Parry DB, Harris JM, Jones J, Pons S, Bennion DN, LaFollette R, Jones J, King EJ. Properties of electrochemically generated poly(p-phenylene). Electrochim Acta 1989;34:599-610.
    [367] Aeiyach S, Lacaze PC. Electropolymerization of benzene and biphenyl in organic media: Influence of different parameters (solvent, water, acidity, salt) on the formation of polyparaphenylene films (PPP). J Polym Sci Part A: Polym Chem 1989;27:515-526.
    [368] Soubiran P, Aeiyach S, Lacaze PC. Formation of polyparaphenylene (PPP) films by electrooxidation of biphenyl in CH2Cl2: A study of the nucleation process at a platinum electrode. J Electroanal Chem 1991;303:125-137.
    [369] Rault-Berthelot J, Tahri-Hassani J. Anodic oxidation of biphenyl and p-terphenyl in dry CH2Cl2 + 0.2 M Bu4NBF4. Towards poly(p-phenylene) possessing stable and reversible p- and n-doping processes. J Electroanal Chem 1996;408:247-256.
    [370] Kvarnstrom C, Bilger R, Ivaska A, Heinze J. An electrochemical quartz crystal microbalance study on polymerization of oligo-p-phenylenes. Electrochim Acta 1998;43:355-366.
    [371] Lee HJ, Cui SY, Park SM. Electrochemistry of Conductive Polymers: XXV.Electrochemical Preparation and Characterization of Poly(p-phenylenes) from Biphenyl and p-Terphenyl. J Electrochem Soc 2001;148:D139-D145.
    [372] Bhadani SN, Gupta SKS, Gupta MK, Prasad J. Electrosynthesis of Conducting Poly (p-phenylene). J Appl Polym Sci 1993;47:1215-1218.
    [373] Jin S, Xue G. Interaction between thiophene and solvated lewis acids and the low-potential electrochemical deposition of a highly anisotropic conducting polythiophene film. Macromolecules 1997;30:5753-5757.
    [374] Fu MX, Zhu YF, Tan RQ, G Shi Q. Aligned Polythiophene Micro- and Nanotubules. Adv Mater 2001;13:1874-1877.
    [375] Zhou WQ, Peng HP, Xu JK, Xia HY, Pu SZ. Electrochemical polymerization of phenanthrene in mixed electrolytes of boron trifluoride diethyl etherate and concentrated sulfuric acid. Polym Int 2008;57:92-98.
    [376] Otero TF, Larreta-Azelain ED. Electrochemical generation of polythiophene films on platinum electrodes. Polymer 1988;29:1522-1527.
    [377] Brown CE, Jones MB, Kovacic P. Cross polarization, magic angle 13C NMR spectroscopy of poly(p-phenylene) and lower oligomers. J Polym Sci Part C: Polym Lett 1980;18:653-658.
    [378] Jones MB, Kovacic P, Lanska D. Polymerization of aromatic nuclei. XXVI. Poly(p-phenylene): Friedel-crafts alkylation, molecular weight, and propagation mechanism. J Polym Sci Part A: Polym Chem 1981;19:89-101.
    [379] Bezgin B, Cihaner A, Onal AM. Electrochemical polymerization of 9-fluorenecarboxylic acid and its electrochromic device application. Thin Solid Films 2008;516:7329-7334.
    [380] Zhou WJ, Lee JY. Highly active core-shell Au@Pd catalyst for formic acid electrooxidation. Electrochem Commun 2007;9:1725-1729.
    [381] Park IS, Lee KS, Yoo SJ, Cho YH, Sung YE. Electrocatalytic properties of Pd clusters on Au nanoparticles in formic acid electro-oxidation. Electrochim Acta 2010;55:4339-4345.
    [382] Bai ZY, Yang L, Li L, Lv J, Wang K, Zhang J. A Facile Preparation of Hollow Palladium Nanosphere Catalysts for Direct Formic Acid Fuel Cell. J Phys ChemC 2009;113:10568-10573.
    [383] Wang XM, Xia YY. Electrocatalytic performance of PdCo-C catalyst for formic acid oxidation. Electrochem Commun 2008;10:1644-1646.
    [384] Wang X, Tang YW, Gao Y, Lu TH. Carbon-supported Pd-Ir catalyst as anodic catalyst in direct formic acid fuel cell. J Power Sources 2008;175:784-788.
    [385] Liu ZL, Zhang XH. Carbon-supported PdSn nanoparticles as catalysts for formic acid oxidation. Electrochem Commun 2009;11:1667-1670.
    [386] Yu XW, Pickup PG. Novel Pd-Pb/C bimetallic catalysts for direct formic acid fuel cells. J Power Sources 2009;192:279-284.
    [387] Bai ZY, Yang L, Zhang JS, Li L, Lv J, Hu CG, Zhou J. Solvothermal synthesis and characterization of Pd-Rh alloy hollow nanosphere catalysts for formic acid oxidation. Catal Commun 2010;11:919-922.
    [388] Wang JY, Kang YY, Yang H, Cai WB. Boron-Doped Palladium Nanoparticles on Carbon Black as a Superior Catalyst for Formic Acid Electro-oxidation. J Phys Chem C 2009;113(19):8366-8372.
    [389] Zhang LL, Tang YW, Bao JC, Lu TH, Li C. A carbon-supported Pd-P catalyst as the anodic catalyst in a direct formic acid fuel cell. J Power Sources 2006;162:177-179.
    [390] Yang GX, Chen Y, Zhou YM, Tang YW, Lu TH. Preparation of carbon supported Pd-P catalyst with high content of element phosphorus and its electrocatalytic performance for formic acid oxidation. Electrochem Commun 2010;12:492-495.
    [391] Lee JK, Jeon H, Uhm S, Lee J. Influence of underpotentially deposited Sb onto Pt anode surface on the performance of direct formic acid fuel cells. Electrochim Acta 2008;53:6089-6092.
    [392] Zhang HX, Wang C, Wang JY, Zhai JJ, Cai WB. Carbon-Supported Pd-Pt Nanoalloy with Low Pt Content and Superior Catalysis for Formic Acid Electro-oxidation. J Phys Chem C 2010;114(14):6446-6451.
    [393] Lee JK, Lee J, Han J, Lim TH, Sung YE, Tak Y. Influence of Au contents of AuPt anode catalyst on the performance of direct formic acid fuel cell. Electrochim Acta 2008;53:3474-3478.
    [394] Obradovic MD, Tripkovic AV, Gojkovic SLj. The origin of high activity of Pt–Au surfaces in the formic acid oxidation. Electrochim Acta 2009;55:204-209.
    [395] Huang J, Hou HQ, You TY. Highly efficient electrocatalytic oxidation of formic acid by electrospun carbon nanofiber-supported PtxAu100-x bimetallic electrocatalyst. Electrochem Commun 2009;11:1281-1284.
    [396] Chen W, Xu LP, Chen SW. Enhanced electrocatalytic oxidation of formic acid by platinum deposition on ruthenium nanoparticle surfaces. J Electroanal Chem 2009;631:36-42.
    [397] Yoshida T, Miyamoto K, Hibi N, Sugiura T, Minoura H, Schlettwein D, Oekermann T, Schneider G, Wohrle D. Self assembled growth of nano particulate porous ZnO thin film modified by 2,9,16,23-tetrasulfophthalocyanatozinc(II) by one-step electrodeposition. Chem Lett 1998;27:599-600.
    [398] Wang JP, Holt-Hindle P, MacDonald D, Thomas DF, Chen A. Synthesis and electrochemical study of Pt-based nanoporous materials. Electrochim Acta 2008;53:6944-6952.
    [399] Blasini DR, Rochefort D, Fachini E, Alden LR, DiSalvo FJ, Cabrera CR, Abru?a HD. Surface composition of ordered intermetallic compounds PtBi and PtPb. Surf Sci 2006;600:2670-2680.
    [400] Cuesta A, Couto A, Rincon A, Perez MC, Lopez-Cudero A, Gutierrez C. Potential dependence of the saturation CO coverage of Pt electrodes: The origin of the pre-peak in CO-stripping voltammograms. Part 3: Pt(poly). J Electroanal Chem 2006;586:184-195.
    [401] Lopez-Cudero A, Cuesta A, Gutierrez C. Potential dependence of the saturation CO coverage of Pt electrodes: The origin of the pre-peak in CO-stripping voltammograms. Part 1: Pt(111). J Electroanal Chem 2005;579:1-12.
    [402] Lopez-Cudero A, Cuesta A, Gutierrez C. Potential dependence of the saturation CO coverage of Pt electrodes: The origin of the pre-peak in CO-stripping voltammograms. Part 2: Pt(100). J Electroanal Chem 2006;586:204-216.
    [403] Clavilier J, Sun SG. Electrochemical study of the chemisorbed species formed from formic acid dissociation at platinum single crystal electrodes. J ElectroanalChem 1986;199:471-480.
    [404] Iwasita T, Xia XH, Herrero E, Liess HD. Early Stages during the Oxidation of HCOOH on Single-Crystal Pt Electrodes As Characterized by Infrared Spectroscopy. Langmuir 1996;12:4260-4265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700