A.elegans、A.oryzae和R.oligosporus肽酶系统及其脱苦机理的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代化工业生产中,蛋白质水解产物比天然蛋白质具有更优越的加工性质和独特的营养特性,但是,蛋白质水解形成的肽类物质通常都具有令人难以接受的苦味,这使肽类产品在食品中的应用受到了极大的限制。雅致放射毛霉A. elegans、米曲霉A. oryzae和少孢根霉R. oligosporus分别是生产腐乳、酱油和天培的最常用生产菌种,在大豆发酵过程中,能够旺盛生长并释放出丰富的蛋白水解酶类,即肽酶酶系,并将大豆蛋白质降解为多肽和游离氨基酸,能够赋予大豆发酵食品良好的风味。本文通过对三种霉菌肽酶酶系的研究,旨在揭示其酶促降解的特点和脱苦作用的机理,以A. elegans 3.2778、A.oryzae 3042和R. oligosporus 3152为研究对象,利用不同类型的合成底物研究了霉菌内肽酶、羧肽酶、氨肽酶、二肽酶和三肽酶的种类和活力,并探讨了三种菌种产生的肽酶组成特点、其对大豆蛋白的降解特性以及脱苦作用机理。在此基础上,对具有较强脱苦作用的亮氨酸羧肽酶进行了分离纯化和性质研究。
     首先比较了三种菌种产生蛋白酶的条件及酶学性质,为掌握不同种类蛋白酶作用特性和进一步的研究提供理论依据。研究结果表明,三种霉菌产蛋白酶的条件不同,酶学性质也有很大差异。A. elegans产蛋白酶适宜温度为28℃,在pH 5.0~7.0时活力最高且最稳定;A. oryzae产蛋白酶适宜温度为28~32℃,在pH 5.0~9.0的范围内有活力,pH3.0~4.0以及pH 6.0~8.0的范围内稳定性强;R. oligosporus产蛋白酶适宜温度最高,为32℃,产酸性蛋白酶能力最强,在pH 3.0~6.0范围内有较强活力,在pH 5.0~6.0最稳定。A. elegans和A. oryzae均能产生酸性、中性及碱性蛋白酶,且A. elegans蛋白酶活力明显低于A. oryzae蛋白酶,而R. oligosporus产生大量的酸性蛋白酶和极少量中性蛋白酶。
     建立了实用性强的测定发酵液中羧肽酶活力的方法,即标准加入法和镉-茚三酮结合的方法,为羧肽酶定量提供了可靠手段。研究结果表明,使用纯氨基酸作为标准物制作的标准曲线计算酶活力时,得到的羧肽酶活力受样品本底值影响很大,无法客观地反映羧肽酶活力高低。本研究发现,采用加入适当稀释的粗酶液的标准加入法可以有效地消除样品本身带来的测定误差,并与纯氨基酸标准曲线(A)得到的酶活力值之间差异非常显著( P <0.05 )。当酶液稀释合适的倍数,加入灭活粗酶液制备的标准曲线B和加入相同稀释倍数的活性粗酶液标准曲线C得到的酶活力值之间没有显著差异( P >0.05 )。利用多种类型的合成底物肽,系统地研究了三种霉菌外肽酶的底物特异性,研究发现,三种霉菌均可产生丰富的羧肽酶、氨肽酶、二肽酶和三肽酶,但不同霉菌外肽酶的底物特异性不同。A. elegans和R. oligosporus的羧肽酶在中性条件下对羧基末端和次末端为Leu、Phe和Tyr的肽段有较强的水解能力,其中Z-Phe-Leu是最适底物,在酸性条件下的催化能力则明显下降;A. oryzae羧肽酶在酸性条件下对羧基末端是疏水性氨基酸(如Tyr、Leu和Phe)和次末端为Glu的底物的水解催化能力很强,其中Z-Glu-Tyr是最适底物;三种霉菌在中性条件下苯丙氨酸氨肽酶、亮氨酸氨肽酶的活力都很高,尤其是R. oligosporus所产生的亮氨酸氨肽酶活力最高;氨肽酶在pH4.0处均无活力;三种霉菌都具有很强的二肽酶和三肽酶活力,A. oryzae的二肽酶和三肽酶在pH4.0时作用范围最广,能够催化所有检测底物降解,特别是催化Leu-Tyr降解的能力比较强,A. elegans的二肽酶和三肽酶在pH7.0的活力比A. oryzae更高,也能够催化所有检测底物的降解,以Gly-Leu-Phe和Tyr-Phe为底物时活力最高,R. oligosporus的二肽酶和三肽酶在pH7.0时的活力比A. elegans还要高,以Trp-Leu和Gly-Leu-Phe为底物时活力最高,但不能降解Leu-Tyr。
     研究和比较了在不同pH条件下,三种霉菌蛋白质水解酶提取液对大豆分离蛋白( SPI )的酶促降解作用以及对苦味肽的脱苦作用。水解作用的研究结果表明,霉菌外肽酶能够显著降低苦味肽的苦味,特别是在酸性条件下,三种霉菌所产生的蛋白质水解酶对SPI的降解能力都较强,能够在3.0小时内将SPI的7S组分和11S组分完全降解,水解产物均没有苦味,尤其是A. elegans和R. oligosporus催化SPI降解后生成的游离氨基含量较少,表明这两种霉菌在水解蛋白的制备方面有良好的应用前景。脱苦作用的研究结果表明,苦味肽在经过霉菌外肽酶的处理后,苦味显著下降,特别是在酸性条件下,在没有氨肽酶活力存在时,脱苦作用仍然很强,而且A. elegans和R. oligosporus的蛋白酶提取液处理过的水解液中游离氨基酸生成量很少,其中73%是疏水性氨基酸,表明A.elegans和R. oligosporus羧肽酶是脱苦关键酶。
     研究了固态发酵A. elegans 3.2778产亮氨酸羧肽酶,主要考察亮氨酸羧肽酶的产酶条件、纯化过程以及酶学性质。发现该菌株产亮氨酸羧肽酶的适宜条件为25°C培养60h。亮氨酸羧肽酶最适作用pH 6.0~7.2,最适温度40°C~45°C,在30°~40°C之间具有良好的温度稳定性。Mg~(2+)能够显著提高亮氨酸羧肽酶活力,Cu~(2+)、Fe~(2+)、Ni~(2+)、Hg~(2+)对亮氨酸羧肽酶的活力具有强烈抑制作用,1,10-邻菲啰啉、苯甲基磺酰氟和二异丙基磷酰氟可以完全抑制亮氨酸羧肽酶活性。
Proteolytic enzyme treatment has been commonly used to improve the process,functional, and nutritional properties of food proteins. However, a prevailing problem in theiruse has been that many proteins yielded bitter-tasting peptides during the hydrolysis process.A. elegans, A. oryzae and R. oligosporus are widely applied in the soybean fermentationindustry, they all have powerful ability to secret many kinds of peptidase, and contributeexcellent flavor to the final products. The aim of this study was to explore endopeptidase andexopeptidase of three mold species frequently utilized in soybean products, i.e. A. elegans, A.oryzae and R. oligosporus, determine their component characteristics via different kinds ofartificially synthesized substrates, and analyze the key enzymes with debittering potency onAlcalse soybean hydrolysates at different pHs. Main results are as follows:
     The culture condition and the properties of proteases from A. elegans, A. oryzae, and R.oligosporus and the properties of the protease system were compared firstly in this research.The culture condition and properties of proteases from different molds showed distinctivecharacteristics: The protease system from A. elegans consist of acid, neutral and alkalineprotease, but has much lower activity than which from A. oryzae, the yield of acid protease isrelatively higher in neutral and slightly acid media, but the yield of neutral and alkalineprotease is nearly the same when cultured in acid and basic media at 28oC, the proteasesystem from A. elegans is active in the range of pH 5.0~9.0, stable in pH5.0~7.0 and the mostactive in pH 5.0~6.0. The protease system from A. oryzae consist of acid, neutral and alkalineprotease, and has the highest activity among the proteases system from three molds, the yieldof acid protease, neutral protease and alkaline protease from A. oryzae is higher when culturedin acid, neutral and alkaline medium at 28~32oC respectively, the protease system of A.oryzae has fairly strong activities in the range of pH 5.0~9.0, and is stable between pH3.0~4.0 and pH 6.0~8.0; the protease system from R. oligosporus mainly consists of acidprotease with highest level, the enzyme yield is relatively higher when cultured in acidmedium of pH2.5~4.0, at 32oC, the enzyme system is most active among pH 3.0~ 6.0 andstable around pH5.0~6.0.
     Carboxypeptidase activity from A. elegans bran koji was investigated via absorbance at507 nm after being stained by Cd-nihydrin solution, with calibration curve A, which wasmade by a set of known concentration standard leucine (mmol/L), calibration B, made bythree sets of known concentration standard leucine solutions (mmol/L) with the addition ofthree concentrations inactive crude enzyme extracts, and calibration C, made by three sets of known concentration standard leucine solutions (mmol/L) with the addition of threeconcentrations crude enzyme extracts. The results indicated that both the calibration curve Band the calibration curve C were capable to meet the demand of precision and sensitivity ofcarboxypeptidase activity determination for there was no difference in significant enzymeactivity between the calibration B and calibration C if the proper dilute multiple was used,while the enzyme activities were always overestimated when calibration curve A was used,even though the inactive crude enzyme extract was intentionally chosen as the control. It wasconcluded that the addition of crude enzyme extracts to the calibration was necessary toeliminate the interference of free amino acids and related compounds presented in crudeenzyme extract.
     The characteristics of exopeptidase from the 3 molds on different kinds of syntheticsubstrates were also explored. The result indicated that carboxypeptidases in A. elegans and R.oligosporus were of much higher activity under neutral condition than acidic condition, and ofgreat preference to the hydrophobic synthetic substrates with Leu, Phe and Tyr at C-terminal,and Z-Phe-Leu was their commol/Lon best substrate; however, carboxypeptidase in A. oryzaewere of much higher activity on substrates under acidic condition than under neutral condition,and its best substrate was Z-Glu-Tyr. The aminopeptidases, dipeptidyl-peptidase, dipeptidasesand tripeptidase in A. elegans and R. oligosporus all had a distinct pH preference to neutralcondition than acidic condition. Leu-ρNA, Gly-Leu-Phe both were the best substrate ofaminopeptidase and tripeptidase in A. elegans and R. oligosporus respectively. Leucineaminopeptidase activity in A. elegans was almost the same as that from A. oryzae, and bothwere at least 2.5 times lower than leucine aminopeptidase in R. oligosporus. However,dipeptidase from R. oligosporus had no power to catalyze the substrate Leu-Tyr, but showedhighest enzyme activity for substrat Trp-Leu.
     Proteolysis of soy protein isolates(SPI) at different pHs by crude extracts in A. elegans, R.oligosporus and A. oryzae was investigated. Under acidic condition,β-conglycinin faction andglycinin faction both were easily hydrolyzed within three hours by three mold extracts, at thesame time, amount of free amino acids, mainly hydrophobic amino acids, such as leucine,phenylalanine and tyrosine, released much less than which under neutral and alkali condition.A. elegans expressed preference to basic units of glycinin under alkalic condition. Nobitterness was produced during each hydrolysis process.
     Bitter pepitde solution, obtained by hydrolyzing soy protein isolates with Alcalase, wastreated with extracts from A. elegans, R. oligosporus and A. oryzae. These three molds wereall efficient tools to decrease the bitterness of bitter peptides, because of their powerful exopeptidase activities. A. elegans and R. oligosporus peptidases liberated least free aminoacid (consisted of 73% hydrophobic amino acid) under acidic condition, displaying goodapplication prospect in protein hydrolyzate industry.
     Studies on leucine carboxypeptidase characteristics of extract solution produced by A.elegans 3.2778 in solid state fermentation of wheat bran were conducted, with the syntheticsubstrate N-terminal blocked peptide Z-Phe-Leu and Cd-ninhydrin method. The enzyme yieldis relatively higher when cultured under 32oC for 60h. Leucine carboxypeptidase activity wasobserved at pH 6.6 and 40 oC respectively. The enzyme actively exists between pH 5.0 and 9.5but unstable above 45 oC. It was activated by Mg~(2+) at 0.99 mmol/L and 9.10mmol/L, however,partially inhibited by Ca~(2+), Zn~(2+), Ba~(2+) and Mn~(2+) at two concentrations. Leucinecarboxypeptidase activity was completely inhibited by 1,10- phenanthroline, as well as PMSFand DFP.
引文
[1] Arai S., Noguchi M., Shukuko K., et al. Applying proeteolytic enzymes on soybean. 6.Deodorization effect of aspergillopeptidase A and debittering effect of Aspergillus acidcarboxypeptidase [J]. Journal of Food Science, 1970, 35:392–395
    [2] Arai S., Yamashita M., Kato H., Fujimaki M. Applying proteolytic enzymes on soybean,PartV. Anondialyzable bitter peptide in peptic hydrolyzate of soybean protein and itsbitterness in relation to the chemical structure [J]. Agriculture and Biological Chemistry,1970,34:729–738
    [3] Fujimaki M. Diffusable bitter peptides in peptic hydrolyzate of soybean protein [J].Agriculture and Biological Chemistry, 1968,32:794–795
    [4] Fujimaki M., Yamashita M., OkazawaY., et al. Applying proteolytic enzymes on soybean.Diffusable bitter peptides and free amino acids in peptic hydrolyzate of soybean protein[J]. Journal of Food Science, 1970,35:215–218
    [5] KukmanI L., Zelenik-Blatnik M., Abram V. Isolationof low molecular mass hydrophobicbitter peptides in soybean protein hydrolyzates by reversed-phase high performanceliquid chromatography [J]. Journal of Chromatography A, 1995,704:113–120
    [6] Yamashita M., Arai A., Fujimaki M. Applying proteolytic enzymes on soybean, part IV. Aninhydrin-negative bitter peptide in peptic hydrolyzate of soybean protein [J].Agriculture and Biological Chemistry, 1969,33:321–330
    [7]吴建中.大豆蛋白的酶法水解及产物抗氧化活性的研究[D].广州:华南理工大学博士学位论文, 2003
    [8] Flores M., Aristoy M.C., Toldra F. Hydrolysis of alanine oligopeptides by porcine muscleananyl aminopeptidase [J]. European Food Research and Technology, 1999,4:264
    [9] Reznik E.S., Fricker D.L. Carboxypeptidases from A to Z: implications in embryonicdevelopment and Wnt binding [J]. Cellular and Molecular Life Sciences,2001,58:1790-1804
    [10] Vendrell J., Querol E., Aviles F.X. Metallocarboxypeptidases and their protein inhibitorsstructure, function and biomedical properties [J]. Biochimica et Biophysica Acta,2000,1477:284-298
    [11] Dobrivoje V., Marinkovic J.N., Ervin G. E., et al. Purification of carboxypeptidase Bfrom human pancreas[J]. Biochemical Journal, 1977,163:253-260
    [12] Satoh Y., Kadota Y., Oheda Y., et al. Microbial serine carboxypeptidase inhibitorscomparative analysis of actions on homologous enzymes derived from man, yeast andwheat [J]. The Journal of Antibiotics. 2004,5:316-325
    [13] Tan P.S., Van Kessel T.A., Van De Veerdonk F., et al. Degradation and debittering of atryptic digest from beta-casein by aminopeptidase N from Lactococcus lactis subsp.Cremoris Wg2 [J]. Applied and Environmental Microbiology, 1993,5:1430
    [14] Bockelmann W. The proteolytic system of starter and non-starter bacteria: componentsand their importance for cheese ripening [J]. International Dairy Journal, 1995,8:977
    [15] Kim H., Lipscomb W.N. Structure and mechanism of bovine lens leucineaminopeptidase [J]. Advances in Enzymology and Realated Areas of Molecular Biology.1994,68:153-213
    [16] Chang Y.H, Smith J.A. Molecular cloning and sequencing of genomic DNA encodingaminopeptidase from Saccharomyces cerevisiae [J].The Journal of Biological Chemistry,1989,12:69-79
    [17] Burgos F.J., Salva M., Villegas V., et a1. Analysis of the activation process of porcineprocarboxypeptidase B and determination of the sequenece of its activation segment [J].Biochemistry, 1991,30:4082-4089
    [18] Liao Der-Ing, Remington J.S. Structure of wheat serine carboxypeptidaseⅡat 3.5-?resolution [J]. The Journal of Biological Chemistry, 1990,12:6528-6531
    [19] Occhipinti E., Martelli P.L, Spinozzi F., et al. 3D structure of sulfolobus solfataricuscarboxypeptidase developed by molecular modeling is confirmed by site-direcetedmutagenesis and small angle X-ray scattering [J].Biophysical Journal,2003,85:1165-1175
    [20] Artymiuk P.J., Grindley H.M., Park J.E., et al. Three dimensional structural resemblancebetween leucine aminopeptidase and carboxypeptidase A revealed by graph-theoreticaltechniques [J]. FEBS Letters. 1992,1:48-52
    [21] Raksakulthai R. Purification and characterization of exopeptidases from Atlantic shortfinned squid (Illex illecebrosus) and their application to Cheddar cheese ripening [D].Davis: University of California, 2001
    [22] Moore S., Stein W.H. Photometric ninhydrin method for use in the chromatography ofamino acids [J]. The Journal of Biological Chemistry, 1948,176:367-388
    [23] Doi E., Shibata D., Maoba T. Modified colorimetric ninhydrin methods for peptidaseassay [J]. Analytical Biochemistry, 1981,181:173-184
    [24] Marceau F, Drumheller A, Gendreau M, et al. Rapid assay of human plasmacarboxypeptidase N by high performance liquid chromatographic separation ofhippuryl-L-lysine and its product [J]. Journal of Chromatography, 1983,266:173-177
    [25] Hendriks D., Scharpe S., Sande V.M. Assay of carboxypeptidase N activity in serum byliquid-chromatographic determination for hippuric acid [J]. Clinical Chemistry,1985,12:1936-1939
    [26] Chikuma T., Kishii M., Taguchi K., et al. High-performance liquid chromatographiccolorimetric assay for glycine carboxypeptidase activity [J]. Journal of ChromatographyB, 1997,73:45-51
    [27] Lewis W.H., Harris H. Human red cell peptidases [J]. Nature, 1967,99:351
    [28] Ichishima E. Purification and characterization of a new type of acid carboxypeptidasefrom Aspergillus [J]. Biochimica Biophysica Acta, 1972,258:274-288
    [29] Mortensen U.H., Stennicke R.H., Breddam K. Reversed-flow affinity elution applied tothe purification of carboxypeptidase Y [J]. Analytical Biochemistry, 1998,258:236-239
    [30]严金勇,丁双,杨江科,等.微生物酶分离纯化研究进展[J].现代化工, 2007,6:19-23
    [31] Lzawa N. Debittering of protein hydrolysates using Aeromonas caviae aminoeptidase [J].Jouranl of Agricultural and Food Chemistry, 1997,45:543-545
    [32]钱方,邓岩,王凤翼.蛋白酶及其大豆蛋白水解物苦味的研究[J].大连轻工业学院学报, 2000,9:182-186
    [33]李理,罗泽民,卢向阳,等.毛霉产蛋白酶的特性及其应用研究[J].湖南农业大学学报, 1999,25(3):216-219
    [34] Edens L., Dekker P., Van der Hoeven R., et al. Extracellular prolyl endoprotease fromAspergillus niger and its use in the debittering of protein hydrolysates [J]. Jouranl ofAgricultural and Food Chemistry, 2005,53(20):7950-7957
    [35] Nishiwaki T., Yoshimizu S., Furuta M., et al. Debittering of enzymatic hydrolysates usingan aminopeptidase from the edible basidiomycetes Grifola frondosa [J]. Journal ofBioscience and Bioengineering, 2002,1:60-63
    [36] Liu F, Yasuda M. Debittering effect of Monascus carboxypeptidase during the hydrolysisof soybean protein [J]. Journal of Industrial Microbiology & Biotechnology,2005,32:487-489
    [37] Komai T., Kawabata C., Tojo H., et al. Purification of serine carboxypeptidase from thehepatopancreas of Japanese common squid Todarodes pacificus and its application forelimination of bitterness from bitter peptides [J]. Fisheries Science, 2007,73:404-411
    [38] Li L, Yang Z.Y, Yang X.Q, et al. Debittering effect of Actinomucor elegans peptidases onsoybean protein hydrolysates [J]. Journal of Industrial Microbiology & Biotechnology,2008, 35: 41-47
    [39] Raksakulthai R. Exopeptidases and their application to reduce bitterness in food: areview. Critical Reviews Food Science Nutrition, 2003, 43:401-445
    [40]李理,罗泽民.毛霉蛋白酶的制备及其酶解产物的分析[J].食品与机械,1999,3:18-19
    [41]邓靖,林亲录,赵谋明,等.米曲霉M3产蛋白酶的特性研究[J].中国调味品,2005,1:16-20
    [42] Koaze Y., Goi H., Ezawa K., et al. Fungal proteolytic enzymes. Part 1. Isolationof two kinds of acid-protease excreted by Aspergillul niger var. macrospores [J].Agricultural and Biological Chemistry, 1964,28:216-223
    [43] Sternberg M.Z., Marschall D. Crystalline milk clotting protease from Mucor mieheiand some of its properties [J]. Journal of Dairy Science, 1971,54(2):159-167
    [44] Machalinski C., Pirpignani M.L., Marino C., et al. Structural aspects of the Mucorbacilliformis proteinase, a new member of the aspartyl proteinase family [J]. Journal of Biotechnology, 2006,123,4:443-452
    [45] Arima K., Yu J., Lwasaki S. Milk-clotting enzyme from Mucor pusillus [J]. Methodsin Enzymology, 1970,19:446-459
    [46] Fumamoto J., Tsuru D., Yamamoto T. A rennin-like enzyme from Rhizopus chinesis[J]. Agricultural and Biological Chemistry, 1967,31:710-717
    [47] Horiuchi H., Yanai K., Okazaki T. Isolation and sequencing of a genomic clone encoding aspartic proteinase of Rhizopus niveus [J]. Journal of Bacteriology, 1988,170(1):272-278
    [48] Hofmann T., Shaw R. Proteolytic enzymes of Penicillium janthinellum: I purificationand properties of a trypsinogen-activation enzyme (peptidase A) [J]. BiochimicaBiophysica Acta, 1964,92:543-557
    [49] Morihara K., Oka T. Comparative specificity of microbial acid proteinases for syntheticpeptides. III. Relationship with their trypsinogen activating ability [J]. Archivesof Biochemistry Biophysics, 1973,157:561-572
    [50] Yada R.Y., Nakai S. Use of principal compnent analysis to study the relationshipbetween physical/chemical properties and the milk clotting to proteolytic activityratio of some aspartyl proteinases [J]. Journal of Agricultural and Food Chemistry,1986,34:675-679
    [51] Preetha S., Boopathy R. Purification and characterization of a milk clotting proteasefrom Rhizomucor miehei [J].World Journal of Microbiology and Biotechnology,1997, 13:573-578
    [52] Venera G.D., Machalinski C., Zumarraga H., et al. Further characterization and kineticparameter determination of a milk-clotting protease from Mucor bacillformis[J]. Applied Biochemistry and Biotechnology, 1997,68:207-216
    [53] Fernandez-Lahore H.M., Auday R.M., Fraile E.R., et al. Purification and characterrizationof an acid proteinase from mesophilic Mucor sp. solid state cultures [J].Joural of Peptide Research, 1999,53(6):599-605
    [54] Raphael D., Arieh G., Theo H. Aspergillus oryzae Acid Proteinase: purificationand properties, and formation for-chymotrypsin [J]. Journal of Biochemistry, 1975,147:45-53
    [55] Kamitori S., Ohtaki A., Ino H. Crystal structures of Aspergillus oryzae asparticproteinase and its complex with an inhibitor pepstatin at 1.9A resolution [J]. Journal of Molecular Biology, 2003,326:1503-1511
    [56] Ostoslavskaya V.I., Revina L.P., Kotlova E.K., et al. The primary structure of aspergillopepsinA, aspartic proteinase from Aspergillus awamori. IV. Amino acidsequence of the enzyme [J]. Bioorg Khim, 1986,12:1030-1047
    [57] Takahashi K. Proteinase A from Aspergillus niger [J]. Methods in Enzymology,1995,248:146-155
    [58] Takahashi K. Aspergillopepsin I.I. In Handbook of Proteolytic Enzymes, 2 edn(Barrett,A.J., Rawlings,N.D. & Woessner,J.F. eds), 2004,221-224
    [59] Huang X.P., Yabuki Y., Kojima M., et al. Activation profiles of the zymogen ofaspergilloglutamic peptidase[J]. The Journal of Biological Chemistry, 2007,388:129-133
    [60] Athauda S B., Takahashi K. Cleavage specificities of aspartic proteinases towardoxidized insulin B chain at different pH values [J]. Protein Peptide Lettres, 2002,9:289-294
    [61] Dunn B.M. Rhizopuspepin. In Handbook of Proteolytic Enzymes [M], 2 edn (BarrettA J,Rawlings N D & Woessner J F. eds), Elsevier, London, 2004: 108-111
    [62] Kumar S., Sharma NS., Saharan MR., et al. Extracellular acid protease from Rhizopus:purification and characterization [J]. Process Biochemistry, 2005,40(5):1701-1705
    [63] Ichishima E., Ojima M., Yamagate Y., et al. Molecular and enzymatic propertiesof an Aspartic proteinase from Rhizopus Hangchow[J]. Phytochemistry, 1995,38(1):27-30
    [64] Chrzanowska J., Kolaczkowska M., Dryjanski M., et al. Aspartic proteinase fromPenicillium camemberti: purification, properties, and substrate specificity [J]. Enzymeand Microbial Technology, 1995,17:719-724
    [65] Chitpinityol S., Jame M., Cralbe C. Chymosin and aspartic proteinases [J]. FoodChemistry, 1998,61(4):395-418
    [66] Yamamoto N., Matsumoto K., Yamagaa Y., et al. A heat-labile serine proteinasefrom Penicillium citrinum[J]. Phytochemistry, 1993,32:1393-1397
    [67] Banerjee R., Bhattacharyya B.C. Extracellular alkaline protease of newly isolatedRhizopus oryzae [J]. Biotechnol Letters, 1992,14:301-304
    [68] Nakadai T., Nasuno S., Iguchi N. Purification and properties of neutral proteinasefrom Aspergillus oryzae [J]. Agriculture and Biological Chemistry, 1973,37:2703-2708
    [69] Luisetti M., Piccioni PD., Dyne K., et al. Some properties of the alkaline proteinasefrom Aspergillus melleus [J]. International Journal of Tissue Reactions-Experimentaland Clinicalaspects, 1991,13:187-192
    [70] Heskamp M.L., Barz W. Characterization of protease from Rhizopus species aftergrowth on soybean protein [J]. Zeitschrift fur Naturforschung C-A Jouranl of Biosciences,1997,52(9-10):595-604
    [71] Gripon J.C., Desmazeaud M., Le Bars D., et al. Role of proteolytic enzymes ofStreptococcus lactis, Penicillium roqueforti and Penicillium caseicolum during cheeseripening [J]. Journal of Dairy Science, 1977,60:1532-1538
    [72] Ramesh MV., Sirakova TD., Kolattukudy PE. Cloning and characterization of thecDNAs and genes(mep 20) encoding homologous metalloproteinases from Aspergillusflavus and A. fumigates [J]. Gene, 1995,165:121-125
    [73] Monod M., Paris S., Sanglard D., et al. Isolation and characterIsolation and characterizationof a secreted metalloprotease of Aspergillus fumigates [J]. Infectionand Immunity, 1993,61:4099-4104
    [74] Su N.W., Lee M.H. Purification and characterization of a novel salt-tolerant protease from Aspergillus sp. FC-10, soy sauce koji mold [J]. Journal of Industrial ofMicrobiology & Biotechnology, 2001,26(4):253-258
    [75] Sumantha A., Deepa P., Sandhya C., et al. Rice bran as a substrate for proteolyticenzyme production [J]. Brazilian Archives of Biology and Technology, 2006,49(5):843-851
    [76] Wang H.L., Vespa J.B., Hesselti C.W. Acid protease production by fungi used insoybean food fermentation [J]. Applied Microbiology, 1974, 27(5):906-911
    [77] HAQ I., Mukhtar H. Biosynthesis of proteases by Rhizopus oligosporus IHS13 inlow-cost medium by solid state fermentation [J]. Journal of Basic Microbiology,2004,44(4):280-287
    [78] Ikasari L., Mitchell D.A. Leachingand characterization of Rhizopus oligosporusacid protease from solid state fermentation [J]. Enzyme and Microbial Technology,1996,19(3):171-175
    [79] Tunga R., Banerjee R., Bhattacharyya B.C. Optimization of some additives to improveprotease production under SSF [J]. Indian Journal of Experimental Biology,2001,39(11):1144-1148
    [80] Tunga R., Banerjee R., Bhattacharyya B.C. Studies of some physical parametersfor large scale protease production by SSF [J]. Bioprocess Engineering, 1999,21(2):107-112
    [81] Aikat K., Bhattacharyya B.C. Protease extraction in solid state fermentation of wheat bran by a local strain of Rhizopus oryzae and growth studies by the soft geltechnique [J]. Bioprocess Engineering, 2000,35(9):907-914
    [82] Yang F.C., Lin I.H. Production of acid protease using thin stillage from a ricespirit distillery by Aspergillus niger [J]. Enzyme and Mcrobial Technology, 1998,23:397-402
    [83] Tremacoldi C.R., Watanabe N.K., Carmona E.C. Production of extracellular acidproteases by Aspergillus clavatus [J]. World Journal of Microbiology & Biotechnolgy, 2004,20:639-642
    [84]邱雁临,曾莹,王伟平,等.两种曲霉产蛋白酶特性的研究[J].中国酿造, 1997, 2:12-16
    [85]陈涛,刘耘,李理,等.毛霉M4固体发酵产蛋白酶的研究[J].中国酿造, 2004, 4:16-18
    [86]侯美珍,宋德贵,韦平英.时间及温度对腐乳毛霉生长及产蛋白酶的影响[J].广西师范大学学报:自然科学版, 2004,22(4):97-100
    [87] Han B.Z., Ma Y., Rombouts F.M., et al. Effects of temperature and relative humidityon growth and enzyme production by Actinomucor elegans and Rhizopus ol-igosporus during sufu phetze preparation [J]. Food Chemistry, 2003,81(1):27-34
    [88] Fernandez-Lahore H.M., Fraile E.R., Cascone O. Acid protease recovery from asolid-state fermentation system [J]. Joural of Biotechnology, 1998,62(2):83-93
    [89] Andrade V.S., Sarubbo L.A., Fukushima K. Production of extracellular proteasesby Mucor circinelloides using D-glucose as carbon source substrate [J]. BrazilianJournal of Microbiology, 2002,33:106-110
    [90] Liliana B.A., Mirtha B., De Jiménez Bonino., et al. Purification and characterizationof a milk clotting protease from Mucor bacilliformis [J]. Applied Biochemistryand Biotechnology, 1992,37(3):283-294
    [91] Lowther W.T., Dunn B.M. The promiscuous active site specificity binding preferencesof the fungal aspartic proteinase, Rhizopuspepsin [J]. Protein and peptideLetters, 1998,5(6):303-316
    [92] Takahashi K. The amino acid sequence of Rhizopuspepsin, an aspartic proteinasefrom Rhizopus chinensis [J]. Journal of Biological Chemistry, 1987,262(4):1468-1478
    [93] Delaney R., WONG RNS., Meng G.Z., et al. Amino acid sequence for rhizopusp-epsin isozyme PI-5 [J]. Journal of Biological Chemistry, 1987,262( 4):1461-1467
    [94] Nakayama S., Nagashima Y., Hoshino M., et al. Structural study on the active siteof porcine pepsin and Rhizopus Chinensis acid protease spin labeling with diazoketonereagents [J]. Journal of Biochemistry, 1983,93(5):1297-1304
    [95] Tello-Solis S R. Effect of the pH in the conformation and activity of the acidprotease from Aspergillus saitoi [J]. Protein and Peptide Letters, 2001,8(2):101-108
    [96] Nakadai T., Nasuno S., Iguchi N. Purification and properties of acid carboxypeptidaseI from Aspergillus oryzae [J]. Agriculture and Biological Chemistry, 1972,36:1343-1352
    [97] Nakadai T., Nasuno S., Iguchi N. Purification andproperties of acid carboxypeptidaseII from Aspergillus oryzae [J]. Agriculture and Biological Chemistry, 1972,36:1473-1480
    [98] Nakadai T., Nasuno S., Iguchi N. Purification and properties of acid carboxypeptidase III from Aspergillus oryzae [J]. Agriculture and Biological Chemistry, 1972,36:1481-1488
    [99] Nakadai T., Nasuno S., Iguchi N. Purification and properties of acid carboxypeptidaseIV from Aspergillus oryzae [J]. Agriculture and Biological Chemistry, 1973,37:1237-1251
    [100] Basten D.E., Visser J., Schaap P.J. Lysine aminopeptidase of Aspergillus niger[J]. Microbiology, 2001,147:2045-2050
    [101] Basten D.E., Boeren J.S., Schaap P.J. Aminopeptidase A and B from Aspergillusniger have different substrate specificities [J]. Applied and Environmental Microbiology,2004,3:1246-1250
    [102] Nakadai T., Nasuno S., Iguchi N. The Action of Peptidases from Aspergillus oryzae in Digestion of Soybean Protein [J]. Agriculture and Biological Chemistry, 1972,36:261-268
    [103] Nakadai T., Nasuno S., Iguchi N. Purification and properties of leucine aminopeptidaseⅠfrom Aspergillus oryzae [J]. Agriculture and Biological Chemistry,1973,37:757-766
    [104] Nakadai T., Nasuno S., Iguchi N. Purification and properties of leucine aminopeptidaseⅡfrom Aspergillus oryzae [J]. Agriculture and Biological Chemistry, 1973,37:767-774
    [105] Nakadai T., Nasuno S., Iguchi N. Purification and properties of leucine aminopeptidaseⅢfrom Aspergillus oryzae [J]. Agriculture and Biological Chemistry, 1973,37:775-778
    [106] Blinkovsky A., Golightly E., Byun T., et al. Polypeptides having aminopeptidaseactivity and nucleic acids encoding same [P]. Patent application PCT:WO98/51804,1998
    [107] Blinkovsky A.M., Byun T., Brown K., et al. A non-specific aminopeptidase fromAspergillus [J]. Biochimica Biophysica Acta, 2000,1480:171-181
    [108] Lehmann K.V., Uhlig H. Aminopeptidases aus Aspergilli, I. Hoppe-Seyler’s Z [J].Hoppe-Seyler's Zeitschrift fur Physiologische Chemie. 1969,350:99-104
    [109] Sugiura M., Ishikawa M., Sasaki M. Some properties of leucine aminopeptidasefrom Aspergillus japonica as a metalloenzyme [J]. Chemical & Pharmaceutical Bulletin, 1978,26:3101-3106
    [110] Sugiura M., Suzuki M., Ishikawa M., et al. Pharmaceutical studies on amninopeptidaseⅠfrom Aspergillus japonica [J]. Chemical & Pharmaceutical Bulletin, 1976,24:2286-2293
    [111] Sugiura M., Suzuki M., Ishikawa M., et al. Purification and Propeties of leucineaminopeptidaseⅡfrom Aspergillus japonica[J]. Chemical & Pharmaceutical Bulletin, 1976,24:2026-2031
    [112] Kauppinen M.S., Si J.Qi, Dambmann C., et al. Enzymes with aminopeptidaseactivity [P]. Patent US: 200792 B1,2001
    [113] Hirsch H.H., Schiffer H.H., Wolf D.H. Biogenesis of the yeast vacuole (lysosome)[J]. European Journal of Biochemistry, 1992,207:867-876
    [114] Hombergh van den J.P.T.W., Jarai G., Buxton P.P. et al. Cloning,characterizationand expression of pepF,a gene encoding a serine carboxypeptidase from Aspergillus.niger [J]. Gene, 1994,151:73-79
    [115] Nakadai T., Nasuno S. Purification and properties of leucine aminopeptidaseⅣfrom Aspergillus oryzae [J]. Agriculture and Biological Chemistry, 1977,41:1657-1666
    [116] Labbe J.P., Rebeyrotte P. Isolation of fractions having aminonpeptidase acticity(EC 3.4.1.1)(arylamidase) from culture medium of Aspergillus oryzae [J]. Biochimie,1974,56:839-844
    [117] Schuster E., Sprossler B., Titze K., et al. Leucine aminopeptidases produced recombinantlyfrom Aspegillus soyae [P]. Patent application PCT: WO 97/04108,1997
    [118] Kauppinen S., Si J.Qi., Spendler T., et al. An enzyme with aminopeptidase activity[P]. Patent application PCT WO96/28542,1996
    [119] Stevens L. Regulation of proteinase activity in Aspergillus nidulans [J]. BiochemicalSociety Transactions, 1985,13:283-285
    [120] Takeuchi M., Ushijima T., Ichishima E. A new acid carboxypeptidase, O-1, fromAspergillus oryzae [J]. Current Microbiology, 1982,7:19-23
    [121] Blinkovsky M.A., Byun T., Brown K., et al. Purification, characterization, andheterologous expression in fusarium venenatum of a novel serine carboxypeptidasefrom Aspergillus oryzae [J]. Applied and Environmental Microbiology, 1999,8:3298-3303
    [122] Ichishima E., Yamane A., Nitta T., et al. Production of a new type of acid carboxypeptidase of molds of the Aspergillus niger group [J]. Applied Microbiology,1973,3:327-331
    [123] Dal D.F., Ribadeau-Dumas B., Breddam K. Purification and characterization oftwo serine carboxypeptidases from Aspergillus niger and their use in C-terminalsequencing of proteins and peptide synthesis [J]. Applied and Environmental Mic-robiology, 1992,7:2144-2152
    [124] Liu F., Tachibana S., Taira T., et al. Purification and characterization of a newtype of serine carboxypeptidase from Monascus purpureus [J]. Journal of IndustrialMicrobiology & Biotechnology, 2004,31:23-28
    [125] Liu F., Tachibana S., Taira T., et al. Purification and characterization of a highmolecular mass serine carboxypeptidase from Monascus pilosus [J]. Journal of IndustrialMicrobiology & Biotechnology, 2004,31:572-580
    [126] Yokoyama S., Oobayashi A., Tanabe O. Production and some properties of anew type of acid carboxypeptidase of Penicillium molds [J]. Journal of AppliedMicrobiology, 1974,27:953-960
    [127] Yokoyama S., Oobayashi A., Tanabe O., et al. Submerged production, purification,and crystallization of acid carboxypeptidase from Penicillium janthinellum IFO-8070 [J]. Applied Microbiology, 1974,5:742-747
    [128] Svendsen I.b., Day S.E. The primary structure of carboxypeptidase S3 from Penicilliumjanthinellum IBT 3991 [J]. FEBS Letters. 1995,371:1-3
    [129] Umetsu H., Hishinuma K., Wake H. Production, purification, and properties of serine carboxypeptidase from Paecilomyces carneus [J]. Current Microbiology, 1996,33:44-48
    [130] DiSanto M.E, Logan D.A. Peptidase activities during morphogenesis of Mucorracemosus [J]. Archives 0f Microbiology, 1989,152:492-498
    [131] Disanto M.E., Li Q.H, Logan D.A. Purification and characterization of a developmentallyregulated carboxypeptidase from Mucor racemosus [J]. Journal of Bacteriology,1992,174(2):447-455
    [132] Ma X., Zhou X., Yoshimoto T. Purification and properties of a novel glycine aminopeptidase from Actinomucor elegans and its potential application [J]. Journalof Applied Microbiology, 2004,97:985-991
    [133] Belitz H.D., Wieser H. Bitter compounds: occurrence and structure-activity relationships[J]. Food Reviews International, 1985,2:271
    [134] Ishibashi N., Kouge k., Shinoda I., et al. A mechanism for bitter taste sensibilityin peptides [J]. Agriculture and Biological Chemistry, 1988,52:819-827
    [135] Roy G. Bitterness: reduction and inhibition [J]. Trends in Food Science & Technology, 1992,3(4):85
    [136] Asao M., Iwamura H., Akamatsu M., et al. Quantitative structure activity relati-onships of the bitter thresholds of amino acids, peptides and their derivatives [J]. Journal of Medicinal Chemisty, 1987,30(10):1873-1879
    [137] Otagiri K., Miyake I., Ishibashi N., et al. Studies of bitter peptides from caseinhydrolyzate. II. Syntheses of bitter peptide fragments and analogs of BPIa(Arg-Gly-Pro-Pro-Phe-Ile-Val) from casein hydrolyzate [J]. Bulletin of the Chenical Socie-ty of Japan, 1983,56:1116-1119
    [138] Shigenaga T., Otagiri K., Kanehisa H., et al. Studies of bitter peptides from caseinhydrolyzate. VII. Bitterness of the retro-BPIa (Val-Ile-Phe-Pro-Pro-Gly-Arg) and its fragments [J]. Bulletin of the Chenical Society of Japan, 1984,57:103-107
    [139] Kanehisa H., Okai H. Studies of bitter peptides from casein hydrolyzate. V. Bitternessof the synthetic N-terminal analogs of des-Gly2-BPIa (Arg-Pro-Pro-Phe-Ile-Val) [J]. Bulletin of the Chenical Society of Japan, 1984,57:301-302.
    [140] Ishibashi N., Arita Y., Kanehisa H., et al. Bitterness of leucine-containing peptides[J]. Agriculture and Biological Chemistry, 1987,51:2389-2394
    [141] Ishibashi N., Sadamori K., Yamamoto O., et al. Bitterness of phenylalanine- andtyrosine-containing peptides [J]. Agriculture and Biological Chemistry, 1987,51:3309-3313
    [142] Ney K.H. Bitterness of peptides: amino acid composition and chain length [M].In: Bondreau, J.C., Ed. Food Taste chemistry, Washington, D.C., Amercan ChemicalSociety, 1979:149-173
    [143] Adler-Nissen J. A review of food protein hydrolysis-specific areas, in Enzymichydrolysis of food proteins [M]. London, Elsevier Applied Science Publishers. 1986:57
    [144] Cho M.J., Unklesbay N., Hsieh F.H., et al. Hydrophobicity of bitter peptides fromsoy protein hydrolysates [J]. Journal of Agricultural and Food Chemistry, 2004,52:5895-5901
    [145] Hellberg S., Sjostrom M., Skagerberg B., et al. Peptide quantitative structure-activityrelationships, a multivariate approach [J]. Journal of Medicinal Chemistry, 1987,30:1126-1135.
    [146] Kim H.O., Li-Chan E.C.Y. Quantitative structure-activity relationship study of bitterpeptides [J]. Journal of Agricultural and Food Chemistry, 2006,54:10102-10111
    [147] Matoba T., Hata T. Relationship between bitterness of peptides and their chemi-cal structures [J]. Agriculture and Biological Chemistry, 1972,8:1423
    [148] Kukman I.L., Zelenik M., and Abram V. Isolation of low molecular mass hydrop-hobic bitter peptides in soybean protein hydrolyzates by reverse-phase liquidchromatography [J]. Journal of Chromatography A, 1995, 704:113
    [149]冯学武.大豆蛋白酶法水解物的苦味及脱苦方法[D].北京:中国农业大学, 2001
    [150]邓勇,吴煜欢.微生物蛋白酶对大豆分离蛋白水解作用[J].食品科学, 1999,6:42-45
    [151] Kim M.R., Kawamura Y., Lee C.H. Isolation and identification of bitter peptides oftryptic hydrolysate of soybean 11S glycinin by reverse-phase high performance liquidchromatography [J]. Journal of Food Science, 2003,68: 2416-2422
    [152] Oyashiki H., Uchida M., Obayashi A., et al. Mirin-making from koji prepared with amutant Aspergillus oryzae producing high activity of carboxypeptidase [J]. Journal ofFermentation and Bioengineering, 1989,68(3): 210-212
    [1] Davidson R., Gertler A., Hofmann T. Aspergillus oryzae acid proteinase. Purification andproperties, and formation ofπ-chymotrypsin[J]. Biochemistry J, 1975, 147(1):45-53
    [2] Wang R., Law R.C.S., Webb C. Protease production and conidition by Aspergillus oryzae inflour fermentation[J]. Process Biochemistry, 2005, 40: 217–227
    [3] Babu G.S., Shivakiran R.R., Lokeswarin N., et al. Optimization of Protease Productionfrom Aspergillus oryzae Sp. Using Box-Behnken Experimental Design[J]. E-Journal ofChemistry, 2007 , 4 (2) : 145-153
    [4]潘进权,罗晓春,谢明权.雅致放射毛霉AS3.2778碱性蛋白酶的纯化及对大豆蛋白的水解特性[J].南理工大学学报, 2008, 36(12): 106-111
    [5] Pan Jin Quan, Luo Xiao Chun, Xie Ming Quan. Purification and Characterization of oneAlkaline protease from Actinomucor elegans AS 3.2778[J].中国生物工程杂志, 2008,28(9): 111-118
    [6]李理,罗泽民,卢向阳.毛霉产蛋白酶的特性及其应用研究[J].湖南农业大学学报,1999, 25(03): 216-219
    [7]李理,罗泽民,卢向阳.梨形毛霉蛋白酶在大豆多肽制备中的应用[J].中国粮油学报,2001,16(01): 55-58
    [8]李理,潘进权,杨晓泉,等.液体发酵法生产风味良好的大豆多肽[J].食品与发酵工业, 2003,29(01): 23-26
    [9]李理,杨晓泉,赵谋明. A.elegans蛋白酶在腐乳成熟中的作用[J].食品科学,2004, (25):101-104
    [10] Li Li, Zuo-Yi Yang, Xiao-Qun Yang et al. Debittering effect of Actinomucor eleganspeptidases on soybean protein hydrolysates[J].Journal of Industrial Microbiology &Biotechnology, 2008, 35:41-47
    [11]邓靖,周晓媛,赵德坚.脱苦蛋白酶霉菌菌株的选育[J].中国酿造, 2006, (8): 43- 47
    [12]章运,傅力.高产蛋白酶菌株UF366 A.oryzae的选育及发酵条件的研究[D].石河子:新疆农业大学, 2005
    [13] Han, B.Z., Ma, Y., Rombouts, F. M. et al. Effects of Temperature and Relative Humidityon Growth and Enzyme Production by Actinomucor elegans and Rhizopus oligosporusduring Sufu Pehtze Preparation[J]. Food Chemistry, 2003, (81): 27-34
    [14] Wang, H.L., Vespa J.B., Hesseltine C.W. Acid Protease Production by Fungi Used inSoybean Food Fermentation[J]. Applied Microbiology, 1974,27 (5): 906-911
    [15] Wang H.L., Hesseltine C. W.. Studies on the Extracellular Proteolytic Enzymes ofRhizopus oligospous[J]. Canadian Journal of Microbiology, 1965, (11): 727-731
    [16] Wang H.L., Hesseltine C. W.. Multiple Forms of Rhizopus oligosporus Protease[J].Archives of Biochemistry and Biophysics, 1970, (140): 459-463
    [17]张树政.酶制剂工业(下)[M].北京:科学出版社, 1984: 446-447
    [18]Macedo A.C., Vieira M., Po?as R., et al. Peptide hydrolase system of lactic acid bacteriaisolated from Serra da Estrela cheese[J]. Internation Dairy Jouranl, 2000, 10: 769-774
    [19]冷云伟,徐岩.酱油曲中米曲霉及制曲工艺的研究[D].无锡:江南大学, 2004
    [20]潘进权.雅致放射毛霉胞外蛋白酶组分的纯化、鉴定及性质研究[D].广州:华南理工大学, 2008
    [21]王立群,刘慧,朱祥春,等.根霉发酵大豆食品的研究——菌种生长条件及发酵初试[J].东北农业大学学报, 2000, 31 (1): 77-79
    [22] Lilik I., Mitchell D.A. Leaching and characterization of Rhizopus oligosporus acid proteasefrom solid-state fermentation[J]. Enzyme and Microbial Technology, 1996, (19): 171-175
    [23] Otagiri K., Noshio y., Shinoda I., et al. Studies on a model of bitter peptides includingarginine, proline and phenylalanine residues. I. Bitter taste of di- and tripeptides, andbitterness increase of the model peptides by extension of the peptide chain[J].Agricultural and Biological Chemistry, 1987, 51(8): 2103-2107
    [1] Liu F., Yasuda M. Debittering effect of Monascus carboxypeptidase during the hydrolysisof soybean protein[J]. Journal of Industrial Microbiology & Biotechnology, 2005, 32:487-489
    [2] Komai T., Kawabata C., Tojo H., et al. Purification of serine carboxypeptidase from thehepatopancreas of Japanese commol/Lon squid Todarodes pacificus and its applicationfor elimination of bitterness from bitter peptides [J]. Fisheries Science, 2007, 73:404-411
    [3] Arai S., Yamashita M., Kato H., et al. Applying proeteolytic enzymes on soybean. 6.Deodorization effect of aspergillopeptidase A and debittering effect of Aspergillus acidcarboxypeptidase [J]. Food Science, 1970, 35: 392–395
    [4] Umetsu H., Matsuoka H., Ichishima E. Debittering mechanisms of bitter peptides frommilk casein by wheat carboxypeptidase [J]. Journal of Agricutral and Food Chemistry,1983, 31: 50–53
    [5] Li L., Yang Z.Y., Yang X.Q.,et al. Debittering effect of Actinomucor elegans peptidases onsoybean protein hydrolysates [J]. Journal of Industrial Microbiology and Biotechnology,2008, 35: 41-47
    [6] Chikuma T., Kishii M., Taguchi K., et al. High performance liquid chromatographic-colorimetric assay for glycine carboxypeptidase activity [J]. Journal ofChromatography B, 1997, 703: 45-51.
    [7] Mao S.S., Colussi D., Bailey C., et al. An electrochemiluminescence assay for basiccarboxypeptidases: Inhibition of basic carboxypeptidases and activation ofthrombin-activatable fibrinolysis inhibitor [J]. Analytical Biochemistry, 2003,319:159-170
    [8] Banerjee S., Kaplan H., Yagodnik C., et al. A method for detecting carboxypeptidaseactivity in the sapstaining fungus, Ophiostoma piceae, growing in artificial medium or inwood [J]. Biotechnology Technology, 1995, 9: 241-246
    [9] Heylen E., Augustyns K., Hendriks D. Measurement of carboxypeptidase U (activethrombin activatable fibrinolysis inhibitor) in plasma: Challenges overcome by a novelselective assay [J]. Analytical Biochemistry, 2010, 403: 114-116
    [10] Hendriks D., Scharpe S., Sande van M., et al. Carboxypeptidase N: Colorimetric assayusing a new substrate [J]. Analytical Biochemistry, 1987, 164: 90-95
    [11] Disanto M.E, Logan D.A. Peptidase activities during morphogenesis of Mucorracemosus [J]. Archives of Microbiology, 1989, 152: 492–498
    [12] Yemm E.W., Cocking E.C. The determination of amino-acids with ninhydrin. Analyst(Cambrage, U. K.), 1955, 80: 209-214
    [13] Yokoyama S. Hiramatsu J.I. A modified ninhydrin reagent using ascorbic acid instead ofpotassium cyanide [J]. Journal of Bioscience and Bioengineering, 2003, 95: 204-205
    [14] Moore S., Stein W.H.J. Photometric ninhydrin method for use in the chromatography ofamino acids [J]. Biological Chemistry, 1948, 176: 367-388
    [15] Moore S., Stein W.H.J. A modified ninhydrin reagent for the photometric determinationof amino acids and related compounds [J]. Biological Chemistry, 1954, 211: 907-913
    [16] Tsarichenko A.P., Nauch. T. Krasnodar.Gos. Pedugog. Inst. 1966,70: 86-88 (as cited inChem. Abstr. 67,7 9479C). Sheehan J P,and Hess, G. P. (1955) J. America
    [17] D'Aniello A., D'Onofrio G., Pischetola M., et al. Effect of various substances on thecolorimetric amino acid-ninhydrin reaction. Analytical Biochemistry, 1985, 1442(1):610-611
    [18] Doi E., Shibata D., Maoba T. Modified colorimetric ninhydrin methods for peptidaseassay [J]. Analytical Biochemistry, 1981, 181: 173-184
    [19] Folkertsma B., Fox P.F. Use of Cd-ninhydrin reagent to assess proteolysis in cheeseduring ripening [J]. Journal of Dairy Research, 1992, 59(2): 217-224
    [20] Macedo A.C., Vieira M., Pocas R.,et al. Peptide hydrolase system of lactic acid bacteriaisolated from Serra da Estrela cheese. International Dairy Journal [J], 2000, 10: 769-774
    [21] Ozcan M., Akman S. Determination of Cu, Co and Pb in gasoline by electrothermalatomic absorption spectrometry using aqueous standard addition in gasoline ethanolwater three component systems [J]. Spectrochimica Acta Part B-Atomic Spectroscopy,2005, 60: 399-402
    [22] Zhu Y.H., Li G.R., Duan Y.P., et al. Application of the standard addition method for thedetermination of acrylamide in heat-processed starchy foods by gas chromatographywith electron capture detector [J]. Food Chemistry, 2008, 109: 899-908
    [23] Ito S., Tsukada K.J. Matrix effect and correction by standard addition in quantitativeliquid chromatographic-mass spectrometric analysis of diarrhetic shelfish poisoningtoxins [J]. Journal of Chromatography A , 2002, 943: 39-46
    [24]赵建,郭本恒,陈卫,等.肽酶高产菌株的筛选及其生物学特性研究[J].乳业科学与技术,2007,2: 69-73
    [25]陈石根,周润琦.酶学.复旦大学出版社[M].北京: 1997,129
    [26] Rosen H. A modified ninhydrin calorimetric analysis for amino acids [J]. Archives ofBiochemistry Biophysics, 1957, 67: 10–15
    [27] Umetsu H., Matsuoka H., Ichishima E. Debittering mechanism of bitter peptides frommilk casein by wheat carboxypeptidase [J]. Journal of Agricultural and Food Chemistry,1983, 31: 50–53
    [1] Fallico V., Mcsweeney P.L.H., Horne J., et al. Evaluation of bitterness in Ragusano cheese[J]. Journal of Dairy Science, 2005,88 (4):1288-1300
    [2] Spellman D., O'Cuinn G., FitzGerald R.J. Bitterness in Bacillus proteinase hydrolysates ofwhey proteins [J]. Food Chemistry, 2009,114:440-446
    [3] Leksrisompong P.P., Miracle R.E., Drake M. Characterization of flavor of whey proteinhydrolysates[J]. Journal of Agricultural and Food Chemistry, 2010,58:6318-6327
    [4] Nakadai T., Nasuno S., Iguchi N. Purification and properties of leucine aminopeptidase Ifrom Aspergillus oryzae [J]. Agricultural and Biological Chemistry, 1973, 37: 757-765
    [5] Nakadai T., Nasuno S., Iguchi N. Purification and properties of leucine aminopeptidase IIfrom Aspergillus oryzae [J]. Agricultural and Biological Chemistry, 1973, 37: 767-774
    [6] Nakadai T., Nasuno S., Iguchi N. Purification and properties of leucine aminopeptidase IIIfrom Aspergillus oryzae [J]. Agricultural and Biological Chemistry, 1973,37: 775-782
    [7] Nakadai T., Nasuno S., Iguchi N. Purification and properties of leucine aminopeptidase IVfrom Aspergillus oryzae [J]. Agricultural and Biological Chemistry, 1977, 41:1657-1666
    [8] Lin S.J., Chen Y.H., Chen L.L., et al. Large scale production and application of leucineaminopeptidase produced by Aspergillus oryzae LL1 for hydrolysis of chicken breastmeat[J]. European Food Research Technology, 2008, 227: 159-165
    [9] Lin S.J., Chen L.L., Wen C.Y., et al. Extracellular leucine aminopeptidase produced byAspergillus Oryzae LL1 and LL2 [J]. Journal of Microbiology Research, 2010, 4(3):158-168
    [10] Douma A., VandenBroek P., Affolter M., Monod M. Characterization of the prolyldipeptidyl peptidase gene (dppIV) from the koji mold Aspergillus oryzae [J]. AppliedEnvironmental Microbiology, 1998, 64:4809–4815
    [11] Nakadai T., Nasuno S., Iguchi N. Purification and properties of acid car-boxypeptidase Ifrom Aspergillus oryzae [J]. Agricultural and Biological Chemistry, 1972, 36: 1343-1352
    [12] Nakadai T., Nasuno S., Iguchi N. Purification and properties of acid carboxypeptidase IIfrom Aspergillus oryzae [J]. Agricultural and Biological Chemistry, 1972, 36:1473-1480
    [13] Nakadai T., Nasuno S., Iguchi N. Purification and properties of acid carboxypeptidase IIIfrom Aspergillus oryzae [J]. Agricultural and Biological Chemistry, 1972, 36:1481-1488
    [14] Disanto M.E., Li Q.Z., Logan D.A. Purification and characterization of adevelopmentally regulated carboxypeptidase from Mucor racemosus [J]. The Journal ofBacteriology, 1992, 174:447-455
    [15]马晓航,孙桂芹,赵宇华等.绮丽刺毛霉的一种新型甘氨酸氨肽酶的研究[J].生物工程学报, 2004, 20(4): 578-583
    [16] Ichishim E. Purification and charaterization of a new type of acid carboxypeptidase fromAspergillus [J]. Biochimica Biophysica Acta, 1972, 258: 274-288
    [17] Nakadai T., Nasuno S., Iguchi N. Purification and properties of acid carboxypeptidase Ifrom Aspergillus oryzae [J]. Agricultural and Biological Chemistry, 1972, 36:1343–1352
    [18] Liu F., Tachibana S., Taira T., et al. Purification and characterization of a high molecularmass serine carboxypeptidase from Monascus pilosus [J]. Journal of IndustrialMicrobiology & Biotechnology, 2004, 31: 572-580
    [19] Liu F., Tachibana S., Taira T., et al. Purification and characterization of a new type ofserine carboxypeptidase from Monascus purpureus [J]. Journal of IndustrialMicrobiology and Biotechnology., 2004, 31: 23-28
    [20] Arai S., Yamashita M., Kato H., et al. Applying proteolytic enzymes on soybean.6.Deodorization effect of aspergillopeptidase A and debittering effect of Aspergillus acidcarboxypeptidase [J]. Journal of Food Science, 1970, 35: 392–395
    [21] Liu F., Yasuda M. Debittering effect of Monascus carboxypeptidase during the hydrolysisof soybean protein [J]. Journal of Industrial Microbiology & Biotechnology, 2005, 32:487-489
    [22]李理,杨晓泉,赵谋明.毛霉蛋白酶在腐乳成熟中的作用[J].食品科学, 2004, 25:101-104
    [23]杨佐毅,李理,梁世中,等.腐乳后发酵阶段微生物肽酶系统的研究[J].华南理工大学学报(自然科学版),2006, 34(12): 35-40
    [24] Li L., Yang Z.Y., Yang X.Q., et al. Debittering effect of Actinomucor elegans peptidaseson soybean protein hydrolysates [J]. Journal of Industrial Microbiology & Biotechnology,2008, 35:41-47
    [25] Doi E., Shibataic D., Matoba T. Modified colormetric ninhydrin methods for peptidaseassay[J]. Analytical Biochemistry, 1981, 118: 173-184
    [26] Nout M.J.R., Rombouts F.M. Recent developments in tempe research [J]. Journal ofApplied Bacteriology, 1990, 69: 609-633
    [27] Wang H.L., Vespa J.B., Hesseltine C.W. Acid protease production by fungi used insoybean food fermentation [J]. Applied Microbiology, 1974, 27(5): 906-911
    [28] Ikasari L., Mitchell D.A. Protease production by Rhizopus oligosporus in solid-statefermentation [J]. World Journal of Microbiology Biotechnology, 1994, 10: 320-324
    [29] Rao M.B., Tanksale A.M., Ghatge M.S., et al. Molecular and biotechnological aspects ofmicrobial proteases [J]. Microbiology MoLecular Biology Reviews, 1998, 62: 597-635
    [30] Joseph R.L., Sanders W.J. Leucine amino peptidase in extracts of swine muscle [J].Current Eye Research, 1996, 15(7):774-781
    [1]包启安.豆豉的源流及其生产技术[J].中国酿造, 1985,2:9-14
    [2] Su Y.C. Sufu, in Legume-Based Fermented Foods [M]. Reddy N. R., Pierson, M.D.,Salunkhe D.K. Eds., CRC Press, Boca Raton, FL, 1986:69-83
    [3] Han B.Z., Rombouts F.M., Nout M. J. A Chinese fermented soybean food [J]. InternationalJournal of Food Microbiology, 2001,65:1-10
    [4] Han B.Z., Ma Y., Rombouts F.M., et al. Effects of temperature and relative humidity ongrowth and enzyme production by Actinomucor elegans and Rhizopus oligosporusduring sufu pehtze preparation [J]. Food Chemistry, 2003,81:27-34
    [5] Wang H.H. Fermented rice products, in Rice Utilization[M]. 2nd ed., Luh, B. S. VanNostrand Reinhold, New York, 1991:195-223
    [6] Juzlova P., Martinkova L., Kren V. Secondary metabolites of the fungus Monascus: Areview [J]. Journal of Industrial Microbiology, 1996,16:163-170
    [7] Liu Y.H., Chou C.C. Contents of various types of proteins and water soluble peptides insufu during aging and the amino acid composition of tasty oligopeptides [J]. Journal ofthe Chinese Agricultural Society, 1994,32:276-283
    [8]王家槐.腐乳的营养与保健功能[J].中国酿造, 2002,4:4-6
    [9] Chou C.C., Hwan C.H. Effect of ethanol on the hydrolysis of protein and lipid during theaging of a Chinese fermented soya bean curd-sufu [J]. Journal of the Science of Foodand Agriculture, 1994,66:393-398
    [10] Wang L.J., Saito M., Tatsumi E., et al. Anti-oxidative and angiotensin I-convertingenzyme inhibitory activity of sufu (fermented tofu) extracts [J]. Japan AgriculturalResearch Quarterly, 2003,37:129-132
    [11] Wang L.J., Li L.T., Fan J.F., et al. Radical-scavenging activity and isofavone content ofsufu (fermented tofu) extracts from various regions in China [J]. Food Science andTechnology Research, 2004,10:324-327
    [12] Li J.W., Ran G.X., Chen X.M. Isolation and thrombolytic effect of the fibrinolyticenzyme from Semen Sojia preparatum in vitro [J]. Chinese Journal of Clinical Pharmacy,1999,20:148-150
    [13] Peng Y., Zhang Y.Z., Isolation and characterization of fibrinolytic enzyme producingstrain DC-4 from Chinese douchi and primary analysis of the enzyme property [J].Chinese High Technology Letters, 2002,12:30-34
    [14] Fujita H., Yamagami T., Ohshima K. Fermented soybean-derived water-soluble Touchiextract inhibits alpha-glucosidase and is antiglycemic in rats and humans after single oraltreatments [J]. Journal of Nutrition, 2001,131:1211-1213
    [15] Miwa I., Okuda J., Horie T., et al. Inhibition of intestinal alpha-glucosidases and sugarabsorption by favones [J]. Chemical & Pharmaceutical Bulletin, 1986,34:838-844华
    [16] Fujita H., Yamagami T., Ohshima K. Long-term ingestion of a fermentedsoybean-derived Touchi-extract with alpha-glucosidase inhibitory activity is safe andeffective in humans with borderline and mild type-2 diabetes [J]. Journal of Nutrition,2001,131:2105-2108
    [17] Fujimaki M, Yamashita M, Okazawa Y, et al. Applying proteolytic enzymes on soybean.3. Diffusable bitter peptides and free amino acids in peptic hydrolyzate of soybeanprotein [J]. Journal of Food Science, 1970,35:215-218
    [18] Adler-Nissen J. Enzymatic Hydrolysis of Food Protein [M]. London: Elsevier. 1986:73-74
    [19] Arai S., Yamashita M., Kato H., et al. Applying proteolytic enzymes on soybean.6.Deodorization effect of aspergillopeptidase A and debittering effect of Aspergillus acidcarboxypeptidase [J]. Journal of Food Science, 1970,35:392-395
    [20]马铁铮,王强,周素梅.蛋白短肽苦味成因与脱苦技术研究进展[J].中国粮油学报,2008,23(6):220-226
    [21] Nosho Y., Otagiri K., Shinoda, I., et al. Stuies on a model of bitter peptides includingarginine, proline and phenylalanine residues.Ⅱ. Bitterness behavior of atetrapeptide(Arg-Pro-Phe-Phe) and its derivatives [J]. Agricultural and BiologicalChemistry, 1985,49:1829-1837
    [22] Kim H.O., Li-Chan E.C.Y. Quantitative structure-activity relationship study of bitterpeptides [J]. Journal of Agricultural and Food Chemistry, 2006,54:10102-10111
    [23] Umetsu H., Matuoka H., Ichishima E. Debittering mechanism of bitter peptides frommilk casein by wheat carboxypeptidase [J]. Journal of Agricultural and Food Chemistry,1983,31:50-53
    [24] Umetsu H., Ichishima E. Mechanism of digestion of bitter peptides from soybean proteinby wheat carboxypeptidase [J]. Journal of the Japanese Society for Food Science andTechnology, 1988,35(6):440
    [25] Ge S.J., Zhang L.X. The immol/Lobilized porcine pancreatic exopeptidases and itsapplication in casein hydrolysates debittering [J]. Applied Biochemistry andBiotechnology, 1996,59:159-165
    [26] Komai T., Kawabata C., Tojo H., et al. Purification of serine carboxypeptidase from thehepatopancreas of Japanese common squid Todarodes pacificus and its application forelimination of bitterness from bitter peptides [J]. Fisheries Science, 2007,73:404-411
    [27] Bouchier P.J., Ocuinn G., Harrington D., et al. Debittering and hydrolysis of a tryptichydrolysate ofβ-casein with purified general and proline specific aminopeptidases fromLactococcus lactis ssp. cremoris AM2 [J]. Journal of Food Science, 2001,66(6):816-820
    [28] Liu F., Yasuda M. Debittering effect of Monascus carboxypeptidase during the hydrolysisof soybean protein [J]. Journal of Industrial Microbiology & Biotechnology, 2005, 32:487-489
    [29] Kodera T., Asano M., Nio N. Characteristic property of low bitterness in proteinhydrolysates by a novel soybean protease D3 [J]. Journal of Food Science, 2006,71(9):S609-S614
    [30] Li L., Yang Z.Y., Yang X.Q., et al. Debittering effect of Actinomucor elegans peptidaseson soybean protein hydrolysates [J]. Journal of Industrial Microbiology andBiotechnology, 2008,35:41-47
    [31] Damle M.V., Harikumar P., Jamdar S.N. Debittering of protein hydrolysates usingimmol/Lobilized chicken intestinal mucosa [J]. Process Biochemistry,2010,45(7):1030-1035
    [32]朱文娴,周相玲,张惠,等.不同品种差异对大豆分离蛋白得率的影响[J].食品科学, 2004,25(S1):21-27·
    [33]冯子龙,杨振娟,袁保龙,等.大豆分离蛋白生产工艺与实践[J].中国油脂, 2004,29(11):29-30
    [34] Laemmli U.K. Cleavage of structural proteins during the assembly of the head ofBacteriophage T4 [J]. Nature, 1970,227:680-685
    [35]赵新淮,冯志彪.大豆蛋白水解产物水解度测定的研究[J].东北农业大学学报,1995,26(2):178-181
    [1] Arai S., Yamashita M., Kato H., et al. Applying proteolytic enzymes on soybean.6.Deodorization effect of aspergillopeptidase A and debittering effect of Aspergillus acidcarboxypeptidase [J]. Journal of Food Science, 1970,35:392-395
    [2] Ishibashi N., Ono I., Kato K. Bitterness of Leucine-containing Peptides [J]. Agriculturaland Biological Chemistry, 1987,51:2389-2394
    [3] Umetsu H., Matsuoka H., Ichishima E. Debittering mechanism of bitter peptides frommilk casein by wheat carboxypeptidase [J]. Journal of Agricultural and Food Chemistry,1983,31:50-53
    [4] Komai T., Kawabata C., Tojo H., et al. Purification of serine carboxypeptidase from thehepatopancreas of Japanese common squid Todarodes pacificus and its application forelimination of bitterness from bitter peptides [J]. Fisheries Science, 2007,73:404-411
    [5]潘进权,李理.毛霉蛋白酶的制备及催化特性的研究[J].中国酿造, 2004(5):10-12
    [6]李理,杨晓泉,赵谋明.毛霉蛋白酶在腐乳成熟中的作用[J].中国酿造, 2005,4:18-21
    [7]杨佐毅,李理,梁世中,等.腐乳后发酵阶段微生物肽酶系统的测定[J].华南理工大学学报(自然科学版), 2006,12:35-40
    [8] Li L., Yang Z.Y., Yang X.Q., et al. Debittering effect of Actinomucor elegans peptidaseson soybean protein hydrolysates [J]. Journal of Industrial of Microbiology &Biotechnology, 2008,1:41-47
    [9]马晓航,孙桂芹,赵宇华,等.绮丽刺毛霉的一种新型甘氨酸氨肽酶的研究[J].生物工程学报, 2004(4):578-583
    [10] Han B.Z., Ma Y., Rombouts F. M., et al. Effects of temperature and relative humidity ongrowth and enzyme production by Actinomucor elegans and Rhizopus oligosporusduring Sufu Pehtze Preparation [J]. Food Chemistry, 2003,81:27-34
    [11] Folkertsma B., Fox P.F. Use of the Cd-ninhydrin reagent to assess proteolysis in cheeseduring ripening [J]. Journal of Dairy Research, 1992,59(2):217-224
    [12] Doi E., Shibata D., Maoba T. Modified colorimetric ninhydrin methods for peptidaseassay [J]. Analytical Biochemistry, 1981,18:173-184
    [13]张丽英,沈微,方慧英,等.一株腐乳生产菌的筛选、鉴定及其生理特征[J].食品与生物技术学报, 2007,26(5):116-120
    [14]潘进权.毛霉胞外蛋白酶组分的纯化、鉴定及性质研究[D].广州:华南理工大学,2008.
    [15]陈秀琴.放射毛霉生长习性之研究[J].师大生物学报, 1981,16:21-26
    [16] Wang H.L., Vespa J.B., Hesseltine C.W. Acid protease production by fungi used insoybean food fermentation [J]. Applied Microbiology, 1974,27(5):906-911
    [17]钟晓敏,付静,蓝嘉,等. Actinomucor elegans、Aspergillus oryzae和Rhizopusoligosporus产蛋白酶条件及蛋白酶性质的比较[J].食品与发酵工业,2009,35(5):40-44
    [18]李理,罗泽民,卢向阳.毛霉蛋白酶提取方法的研究[J].食品与机械, 1999,1:15-16
    [19]林亲录,赵谋明,邓靖,等.毛霉产蛋白酶的特性研究[J].食品科学, 2005,26(5):44-47
    [20] Ichishima E. Purification and characterization of a new type of acid carboxypeptidasefrom Aspergillus [J]. Biochimica et Biophysica Acta, 1972,258:274-288
    [21] Nakadai T., Nasuno S., Iguchi N. Purification and properties of acid carboxypeptidaseⅣfrom Aspergillus oryzae [J]. Agriculture and Biological Chemistry, 1973,37(6):1237-1251
    [22]陆兆新,冯红霞,吕凤霞,等.曲霉羧肽酶的分离纯化研究[J].发酵与食品工业,2003,12:27-30
    [23] Yokoyama S., Oobayashi A., Tanabe O., et al. Submerged production, purification, andcrystallization of Acid carboxypeptidase from penicillium janthinellum [J]. AppliedMicrobiology, 1974,5:742-747
    [24] Umetsu H., Hishinuma K., Wake H., et al. Production, purification, and properties ofserine carboxypeptidase from Paecilomyces carneus [J]. Current Microbiology, 1996,33:44-48
    [25] Yokoyama S., Oobayashi A., Tanabe O., et al. Production and some properties of a newtype of acid carboxypeptidase of Penicillium Molds [J]. Applied Microbiology, 1974,5:953-960
    [26] Liu F., Tachibana S., Taira T. Purification and characterization of a high molecular massserine carboxypeptidase from Monascus pilosus [J]. Journal of Industrial ofMicrobiology & Biotechnology, 2004,31:572-580
    [27] Liu F., Tachibana S. Taira T., et al. Purification and characterization of a new type ofserine carboxypeptidase from Monascus purpureus[J]. Journal of Industrial ofMicrobiology & Biotechnology, 2004,31:23-28
    [28] Disanto M.E., Li Q.Z., Logan D. Purification and characterization of a debelopmentallyregulated carboxypeptidase from Mucor racemosus [J]. Journal of Bacteriology,1992,2:447-455
    [29]黄光荣,戴德慧,活泼,等.嗜热芽孢杆菌高温蛋白酶HS08活性中心研究[J].食品工业科技,2007,1:204-209

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700