用户名: 密码: 验证码:
南极磷虾(Euphausia superba)蛋白质深加工新技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南极磷虾资源量巨大,含有的蛋白质丰富质优,但是,其氟含量异常高,且含有功能强大的内源酶。因此,针对南极磷虾的这些特点,对其蛋白质进行深加工研究,从而开发安全高值的产品具有重要的意义。本文研究了南极磷虾蛋白质深加工的两套新技术:一套是基于低氟南极磷虾蛋白质基料制备的综合利用技术,包括低氟南极磷虾蛋白质基料的研究,利用低氟南极磷虾蛋白质基料制备蛋白粉的研究,以及低氟南极磷虾蛋白质基料制备过程中产生的废液副产物利用的研究;另一套是基于利用南极磷虾二段自溶制备高氨基酸态氮自溶液的技术,包括南极磷虾二段自溶技术的研究,及其自溶液的氟脱除和风味成分的研究。本文的主要研究内容和结论如下。
     1.系统研究了碱溶酸沉法提取南极磷虾蛋白质的工艺,在此基础上研究了酸沉蛋白质的氟脱除技术,制备了低氟南极磷虾蛋白质基料,并对其进行了分析评价。结果表明,磷虾蛋白质溶解的适宜条件为pH11.5和4℃;适宜的蛋白质溶解方法是二次碱溶:第一次碱溶和第二次碱溶的加水比分别为6(水/磷虾,mL/g)和3(水/沉淀物,mL/g),时间均为30min,此方法下蛋白质溶出率为97.23%;最适的酸沉pH值是4.6;酸沉过程中,合理应用谷氨酰胺转氨酶能够使蛋白质得率提高5%;酸沉蛋白质经过一种氟脱除技术的处理,能够制备氟含量低于2mg/kg的低氟南极磷虾蛋白质基料,其蛋白质得率是52.68%;低氟南极磷虾蛋白质基料含有33.01%(以干基计)的总脂和66.96%(以干基计)的粗蛋白,其脂肪酸富含EPA (13.65%)、DHA (7.17%)和MUFAs (16:18.70%,18:120.61%),其蛋白质含有WHO/FAO/UNU要求的全部必需氨基酸,蛋白质中的每一项必需氨基酸含量均高于WHO/FAO/UNU对成人(婴儿)的要求。
     2.对利用低氟南极磷虾蛋白质基料制备蛋白粉进行了研究。结果表明,喷雾干燥制备蛋白粉时,部分前处理的适宜条件是控制进料干物质含量≥7.89%,调节物料至pH7.2,40Mp高压均质,进料液温度为60℃;制备的蛋白粉水分含量<5%,其总脂含量高、磷脂含量高和表面游离脂肪含量高;喷雾干燥过程中,较低的进料干物质含量导致液滴固化后颗粒表层蛋白质的含量较大,蛋白粉的变性程度增加,而进料干物质含量的增加导致液滴固化后脂质更易滞留在颗粒表面,蛋白质更倾向于被包埋在颗粒内部;制备的低氟南极磷虾蛋白粉在空气下容易氧化,充氮包装能够良好地抑制其氧化;充氮包装下,添加抗氧化剂的低氟南极磷虾蛋白粉的抗氧化性显著地(P<0.05)提高,其中,一种复合抗氧化剂(L一抗坏血酸棕榈酸酯+dl-α-醋酸生育酚,1+1)的效果最优。
     3.低氟南极磷虾蛋白质基料制备过程中产生了两股废液副产物:酸沉废液和脱氟废液。本文研究了废液副产物的利用,即研究向废液副产物中添加南极磷虾,利用二段自溶技术制备高氨基酸态氮南极磷虾自溶液的效果。结果表明,酸沉废液和脱氟废液的含氮成分主要是小分子肽或氨基酸;在利用酸沉废液时,通过二段自溶技术制备的自溶液的氨基酸态氮达到1.070g/100mL,总氮达到1.97g/100mL,铵盐占氨基酸态氮的比例为21.18%,氟含量为18.85μg/mL,蛋白质利用率达到79.48%;在利用酸沉废液和脱氟废液的混合物时,通过二段自溶技术制备的自溶液的氨基酸态氮达到1.026g/100mL,总氮达到1.94g/100mL,铵盐占氨基酸态氮的比例为19.71%,氟含量为18.79μg/mL,蛋白质利用率达到77.32%。
     4.对南极磷虾二段自溶技术进行了研究,即研究向南极磷虾中添加水,利用二段自溶技术制备高氨基酸态氮南极磷虾自溶液的效果。此外,研究了南极磷虾一段自溶的部分影响因素。
     南极磷虾一段自溶影响因素的研究结果表明,合适浓度的Na+、K+、Ca2+、 Mg2+溶液对磷虾自溶均有显著的(P<0.05)促进作用,而Zn2+溶液对磷虾自溶的促进作用不显著(P>0.05),较高浓度的Zn2+溶液对磷虾自溶还具有显著的(P<0.05)抑制作用;适度的紫外线辐照预处理可使磷虾一段自溶液的氨基酸态氮含量达到0.739g/100mL。
     南极磷虾二段自溶技术的研究结果表明,南极磷虾二段自溶时,第二段自溶的最优条件是:液料比2.23,初始pH7.24,温度40.9℃,时间12h。最优的二段自溶条件下制备的二段自溶液含有氨基酸态氮0.951g/100mL、总氮1.92g/100mL,这两者均高于国家标准《酿造酱油》GB18186-2000对低盐固态发酵酱油特级品的相应指标值要求;二段自溶液含有的铵盐占氨基酸态氮的比例符合国家标准《酿造酱油》(征求意见稿)GB18186的新规定,含有的氟为18.60μg/mL;二段自溶液的蛋白质利用率达到75.33%。南极磷虾二段自溶技术具有蛋白质利用率高、工序简单、设备投入小、生产周期短、自溶液的氨基酸态氮含量高的优点;制备的二段自溶液含有WHO/FAO/UNU要求的全部必需氨基酸,其中Trp、Thr、His和Phe+Tyr是限制性氨基酸。二段自溶技术大幅度提高了自溶液的鲜味氨基酸含量,二段自溶液的总鲜味氨基酸达到46.06mg/mL,比一段自溶液的总鲜味氨基酸提高了23.71mg/mL,提高率达到106.09%。
     5.对南极磷虾二段自溶液的氟脱除进行了研究。结果表明,采用钙盐沉淀法对南极磷虾自溶液脱氟时,在氯化钙、乳酸钙和醋酸钙中,以乳酸钙的氟脱除效果最优;乳酸钙作用下的初步脱氟液含有氟8.19g/100mL,氨基酸态氮0.854g/100mL,总氮1.72g/100mL,其总氮损失率是9.54%;在应用乳酸钙脱氟的基础上,一种生物脱氟剂能够将南极磷虾自溶液的氟含量降低至1.53mg/L,从而解决了南极磷虾自溶液中氟的安全性问题;该生物脱氟剂作用下的深度脱氟液含有氟1.53g/100mL,氨基酸态氮0.783g/100mL,总氮1.67g/100mL,其总氮损失率是14.06%。
     对南极磷虾二段自溶液的风味成分进行了研究。结果表明,2-甲基丁醛、3-甲基丁醛、3-甲基-1-丁醇、乙醇是南极磷虾自溶液的主体风味成分,其相对丰度分别为24.56%、17.79%、17.70%和5.14%;南极磷虾自溶液的总挥发性风味化合物中,2-甲基丁醛、3-甲基丁醛、3-甲基-1-丁醇这三种食品香料的总相对丰度高达60.05%。
The biomass of Antarctic krill is huge, and Antarctic krill are rich in proteins with high quality. But, the fluoride content of Antarctic krill is extremely high and Antarctic krill contains very strong proteolytic enzymes. Thus, based on these characters of Antarctic krill, the investigation of deep processing of Antarctic krill proteins is important to develop safty krill commodities wih high added value. Two sets of new technologies for deep processing of Antarctic krill proteins were investigated in this thesis. One was based on the preparation of proteins with low fluoride level from Antarctic krill, including the preparation of proteins with low fluoride level from Antarctic krill, the preparation of protein powders by using the proteins with low fluoride level, and the utilization of the byproducts of waste liquor produced during the preparation of proteins with low fluoride leve. Another was the preparation of hydrolysates with high amino acid nitrogen level by using the technology of two-stage krill autolysis, including the investigation of the technology of two-stage krill autolysis, and the investigation of the fluoride removal and volatile flavor compounds of hydrolysates obtained by two-stage krill autolysis. The main investigations and their results were as follows.
     1. The alkali solubilization and acid precipitation method for recovering proteins from Antarctic krill was systematacially investigated. Based on the investigation of the method, the fluoride removal technology of the acid-precipitated proteins obtained by the method was investigated, and the proteins with low fluoride level were prepared. Besides, the composition of the proteins with low fluoride level was analyzed. The optimal conditions for protein solubilization were determined to be pH11.5and4℃. The optimum method of protein solubilization was the proteins were solubilized two times; a water/krill ratio (mL/g) of6and a time of30min were used for the first step, whereas the second used a water/krill residue ratio (mL/g) of3and a time of30min. The dissolved protein rate by the optimum method of protein solubilization was97.23%. The optimum pH for protein precipitation was4.6. The protein recovery yield was increased by5%when transglutaminase was correctly applied during the acid-induced protein precipitation. The proteins with low fluoride level were finally obtained through an effective fluoride removal technology of the acid-precipitated proteins. The fluoride content of the proteins with low fluoride level was lower than2mg/kg. The protein yield of the proteins with low fluoride level was52.68%. The proteins with low fluoride level were composed of66.96%of crude proteins (dry weight) and33.01%of total lipids (dry weight). The fatty acids of the proteins with low fluoride level were rich in EPA(13.65%)、DHA(7.17%)和MUFAs (16:18.70%,18:120.61%). The proteins with low fluoride level contained all essential amino acids in sufficient amounts to meet WHO/FAO/UNU requirements for adults and infants.
     2. The preparation of protein powders by using the proteins with low fluoride level was investigated. The optimal conditions of some pretreatments of spray drying were determined as follows:the dry matter content of feeds (≥7.89%), the adjusted pH of materials (7.2), the high pressure of homogenization (40Mp), the temperature of feeds (60℃). The moisture content of the prepared protein powders was lower than5%, and the protein powders contained high levels of total lipids, total phospholipids and surface free-fat. During the spray drying process, a lower dry matter content of feeds resulted in a higher protein content on the particle surface after the liquid drops were solidified, which made the denaturation degree of protein powders increase, whereas an increased dry matter content of feeds led to more lipids existing on the particle surface and more proteins enclosed in the particle interior after the liquid drops were solidified. The prepared protein powders with low fluoride level exhibited a bad oxidation resistance when they were exposed to air, and their easy oxidation properties were well inhibited by nitrogen-filled packages. Under the condition of nitrogen-filled packages, the antioxidant properties of the protein powders with antioxidant addition were significantly (P<0.05) improved, and a combined antioxidant (L-ascorbyl palmitate+DL-a-tocopheryl acetate,1+1) exhibited the best antioxidant performance.
     3. The preparation of the proteins with low fluoride level resulted in two waste liquor byproducts, of which one was produced during the acid-induced protein precipitation, and another was produced during the fluoride removal of the acid-precipitated proteins. The utilization of the byproducts was investigated through the addition of Antarctic krill to the byproducts, followed by the preparation of hydrolysates with high amino acid nitrogen level using the technology of two-stage krill autolysis in this thesis. The main nitrogen-containing ingredients of waste liquor byproducts were small molecules of peptides or amino acids. Through the utilization of waste liquor produced during the acid-induced protein precipitation, the hydrolysates obtained by two-stage krill autolysis contained1.070g/100mL of amino acid nitrogen,1.97g/100mL of total nitrogen,18.85μg/mL of fluoride, meanwhile the ammonium salt to amino acid nitrogen rate and protein yield of the hydrolysates were21.18%and79.48%, respectively. Through the utilization of the mixture of waste liquor produced during the acid-induced protein precipitation and the fluoride removal of the acid-precipitated proteins, the hydrolysates obtained by two-stage krill autolysis contained1.026g/100mL of amino acid nitrogen,1.94g/100mL of total nitrogen,18.79μg/mL of fluoride, meanwhile the ammonium salt to amino acid nitrogen rate and protein yield of the hydrolysates were19.71%and77.32%, respectively.
     4. The technology of two-stage krill autolysis was investigated. During the investigation, distilled water was added to Antarctic krill, and the preparation of hydrolysates with high amino acid nitrogen level using the technology was investigated. Furthermore, the partial influence factors of one-stage krill autolysis were investigated.
     The investigation of the influence factors of one-stage krill autolysis indicated Na+, K+, Ca2+and Mg2+solutions at appropriate concentrations showed significantly (P<0.05) promoting effects on krill autolysis, respectively, and the promoting effect of Zn2+solution on krill autolysis was insignificant (P>0.05). Furthermore, the Zn2+solution at high concentration exhibited significantly (P<0.05) inhibitory effects on krill autolysis. The amino acid nitrogen content of hydrolysates obtained by one-stage krill autolysis was0.739g/100mL through the pretreatment of appropriate ultraviolet radiation.
     The technology of two-stage krill autolysis was investigated. The optimal conditions of the second-stage krill autolysis during two-stage krill autolysis were determined to be a liquor to material rate of2.23(g/g), an initial pH of7.24, a temperature of40.9℃, a time of12h. Under these optimal conditions, the hydrolysates obtained by two-stage krill autolysis contained1.026g/100mL of amino acid nitrogen and1.92g/100mL of total nitrogen, and each of them was in sufficient amount to meet Chinese National Standard GB18186-2000requirements for the special grade soy sauce of low salt-solid fermentation. The ammonium salt to amino acid nitrogen rate of the hydrolysates met the new requirement of Chinese National Standard GB18186(Draft for Comment) for fermented soy sauce, and the fluoride content and protein yield of the hydrolysates were18.60μg/mL and75.33%, respectively. The technology of two-stage krill autolysis had the advantages of high protein yield, simple treatment processes, low equipment investment, short processing time, and prepared hydrolysates with high amino acid nitrogen level. The prepared hydrolysates contained all essential amino acids required by WHO/FAO/UNU, of which Trp, Thr, His and Phe+Tyr were the limiting amino acids. The technology of two-stage krill autolysis could greatly improve the total flavour amino acid content of the hydrolysates, which was46.06mg/mL. The total flavour amino acid content of hydrolysates obtained by two-stage krill autolysis increased by23.71mg/mL compared to that of hydrolysates obtained by one-stage krill autolysis, and the increasing rate was106.09%.
     5. The fluoride removal of hydrolysates obtained by two-stage krill autolysis was investigated. Compared to calcium chloride and calcium acetate, calcium lactate exhibited the best fluoride removal efficiency when the calcium precipitation method was employed to remove fluoride from the hydrolysates. The solution obtained by the preliminary fluoride removal of the hydrolysates through the application of calcium lactate contained8.19μg/mL of fluoride,0.854g/100mL of amino acid nitrogen,1.72 g/100mL of total nitrogen, and the loss rate of total nitrogen was9.54%. Baed on the preliminary fluoride removal of the hydrolysates through the application of calcium lactate, a biological defluorination agent could efficiently remove the residuaful fluoride from the hydrolysates and make the fluoride content of the hydrolysates decrease to1.53μg/100mL. Therefor, the safty problem of fluoride in the hydrolysates was successfully resolved. The solution obtained by the deep fluoride removal of the hydrolysates through the application of the biological defluorination agent contained1.53μg/mL of fluoride,0.783g/100mL of amino acid nitrogen,1.67g/100mL of total nitrogen, and the loss rate of total nitrogen was14.06%.
     The volatile flavor compounds of hydrolysates obtained by two-stage krill autolysis were investigated. The main volatile compounds of the hydrolysates were identified as2-methyl-Butanal,3-methyl-Butanal,3-methyl-1-Butanol, Ethanol, and each of their relative abundance in the identified volatiles was24.56%,17.79%,17.70%and5.14%, respectively. The three compounds of2-methyl-Butanal,3-methyl-Butanal and3-methyl-1-Butanol are permited to use as food flavors, and their total relative abundance was60.05%.
引文
[1]孙松.南极磷虾.世界科技研究与发展[J].2002,24(4):57-60.
    [2]黄洪亮,陈雪忠,冯春雷.南极磷虾资源开发现状分析[J].渔业现代化,2007(1):48-51.
    [3]朱国平.南极磷虾种群生物学研究进展Ⅰ—年龄、生长与死亡[J].水生生物学报,2011,35(5):862-868.
    [4]任艳.南极磷虾蛋白加工利用的初步研究[D].青岛:中国海洋大学,2009.
    [5]郭南麟,陈雪忠,陈思行,等.发展我国南极磷虾渔业的探讨[J].海洋渔业,1996(2):58-63.
    [6]Atkinson A, Siegel V, Pakhomov E A, Jessopp M J, Loeb V. A re-appraisal of the total biomass and annual production of Antarctic krill [J]. Deep-Sea Research I,2009,56:727-740.
    [7]刘建君.加速开发南极磷虾资源,打造战略性新兴产业[J].辽宁经济,2011(1):78-82.
    [8]FAO. The State of World Fisheries and Aquaculture 2004 [R]. Rome:FAO,2004.
    [9]Grantham G J. The southern ocean:the utilization of krill. FAO Southern ocean fisheries survey programme reports [R]. Rome:FAO,1977.
    [10]孙雷,周德庆,盛晓风.南极磷虾营养评价与安全性研究[J].海洋水产研究,2008,29(2):57-64.
    [11]Farber-Lordal J, Gaudy R, Mayzaud P. Elemental composition, biochemical composition and caloric value of Antarctic krill. Implications in Energetics and carbon balances [J]. Journal of Marine Systems,2009,78:518-524.
    [12]Chen Y C, Tou J C, Aczynskia J. Amino acid and mineral composition of protein and other components and their recovery yields from whole Antarctic krill(Euphausia superba) using isoelectric solubilization/precipitation [J]. Journal of Food Science,2009,74:H31-H39.
    [13]Suzuki T, Shibata N. The utilization of Antarctic krill for human food [J]. Food Reviews International,1990,6:119-147.
    [14]李红艳.南极磷虾酶解液脱氟技术的研究[D].青岛:中国海洋大学,2011.
    [15]谢营梁.南极磷虾(Euphausia superba)开发利用的现状和趋势[J].现代渔业信息,2004,19(4):18-20.
    [16]王美功.南极磷虾:巨大的蛋白库一访中科院海洋研究所研究员孙松博十[J].海洋信息,2001(2):21-23.
    [17]朱震康.南极磷虾的开发及蛋白食品的制作[J].食品研究与开发,1994(2):13-15.
    [18]Oehlenschlager J, Schreiber W. A Functional Protein Concentrate (FKPC) from Antarctic Krill [J]. Z Lebensm Unters Forsch,1981,172:393-398.
    [19]Zhang N, Yamashita Y, Nozaki Y. Effect of Protein Hydrolysate from Antarctic Krill on the State of Water and Denaturation of Lizard Fish Myofibrils during Frozen Storage [J]. Food Sci. Technol. Res.,2002,8(3):200-206.
    [20]Chen Y C, Jaczynski J. Gelation of protein recovered from whole Antarctic krill (Euphausia superba) by isoelectric solubilization/precipitation as affected by functional additives [J]. Journal of Agricultural and Food Chemistry,2007,55:1814-1822.
    [21]Gigliotti J C, Jaczynski J, Tou J C. Determination of the nutritional value, protein quality and safety of krill protein concentrate isolated using an isoelectric solubilization/precipitation technique [J]. Food Chemistry,2008,111:209-214.
    [22]宋萍.氟对机体健康的影响与危害[J].化学工程与装备,2010(4):130-131,64.
    [23]张春树,王秀梅.人体氟来源及其危害[J].新疆环境保护,1988(2):62-63.
    [24]陈思怀,黎晓敏,魏光河.高氟水的危害及控制[J].畜禽业,2003(2):53-54.
    [25]王传虎.元素氟与人体健康[J].地方病通报,2004,19(3):88-89.
    [26]陈后兴,罗仙平,刘立良.含氟废水处理研究进展[J].四川有色金属,2006(3):31-36.
    [27]苏荣梅.高氟地下水除氟研究[D].吉林:吉林大学,2007.
    [28]冯之道.自来水加氟之争[J].环境,1982(10):6-7.
    [29]WHO. Guidelines for Drinking (3rd ed.), Volume 1 [M]. Geneva:WHO,2004.
    [30]Onyango M S, Kojima Y, Aoyi O, Bernardo E C, Matsuda H. Adsorption equilibrium modelling and solution chemistry dependence of fluoride removal from water by trivalent-cation- exchanged zeolite F-9 [J]. J Colloid Interface Sci,2004,279:341-350.
    [31]Haddad L M. Clinical Management of Poisoning and Drug Overdose (2nd ed.) [M]. Philadelphia, P A:W.B. Saunders Co.,1990. pp 1051.
    [32]Mohapatra D, Mishra D, Mishra S P, Ghaudhury G R, Das R P. Use of oxide minerals to abate fluoride from water [J]. Journal of Colloid and Interface Science,2004,275:355-359.
    [33]Soevik T, Braekkan O R. Fluoride in Antarctic krill (Euphausia superba) and Atlantic krill (Meganyctiphanes norvegica) [J]. J Fish Res Board Can,1979,36:1414-1416.
    [34]张海生,夏卫平,程先豪,朱碧英.南大洋氟的生物地球化学研究Ⅰ.南极磷虾富氟异常的研究[J].南极研究,1991,3(4):58-64.
    [35]张海生,潘建明,刘小涯.南极磷虾富氟异常的原因及机理[J].海洋学报,1994,16(4):120-125.
    [36]Christians O, Leinemann M. Migration of fluoride from the shell into the muscle of frozen Antarctic krill(Euphausia superba) as a function of storage temperature and time [J]. Archiv fuer Fischereiwissenschaft,1983,34(1):87-95.
    [37]王荣,孙松.南极磷虾渔业现状与展望[J].海洋科学,1995(4):28-32.
    [38]Sands M, Nicol S, McMinn A. Fluoride in Antarctic marine crustaceans [J]. Marine Biology, 1998,32(4):591-598.
    [39]潘建明,张海生,刘小涯.南大洋磷虾富氟机制研究.Ⅰ氟的化学赋存形态研究[J].海洋学报,2000,22(2):58-64.
    [40]陆英,刘仲华.茶叶中氟的研究进展[J].吉首大学学报(自然科学版),2004,25(4):84-88.
    [41]Christians O, Leinemann M, Manthey M. New information of F- in krill [J]. Informationen fuer die Fischwirtschaft,1981,28(2):70-72.
    [42]Bykowski P, Kowalczuk M, Kostuch S. Lowering of the fluorine content of Antarctic krill products [J]. Roczniki Panstwowego Zakladu Higieny,1986,37(2):107-112.
    [43]Miller G. Production of krill for human consumption [J]. Australian Fisheries,1987,46(3): 33-34.
    [44]Manthey M, Schreiber W. Reduction of the fluoride content of krill by acid treatment [J]. Informationen fuer die Fischwirtschaft,1983,30(2):102-106.
    [45]Tenuta-Filho, A. Fluorine removal during production of krill paste and krill protein concentrates [J]. Acta Alimentaria,1993,22,(4):269-281.
    [46]Kim K H. A process for reducing the fluorine content of krill (Eeuphausia superba) by electric concentration [P]. UK Patent:9011484.4,1991-08-14.
    [47]詹松格拉夫S T,厄威J R,格里姆斯莫L.从磷虾生产蛋白质浓缩物时减少氟含量的方法[P].中国专利:200980138948.0,2011-08-31.
    [48]薛长湖,王灵昭,王玉明,李兆杰,薛勇.一种低氟南极磷虾蛋白质基料的制备方法[P].中国专利:200910019197.2,2010-04-07.
    [49]马伟,吴志敏,程子洪,吕腾飞,王天罡.一种南极磷虾中回收氟化物及制备低氟虾粉的方法[P].中国专利:201110033172.5,2011-06-29.
    [50]李学英,杨宪时,吕传萍,郭全友.一种利用生石灰降低南极磷虷酶解液中氟含量的方 法[P].中国专利:201110259184.X,2012-02-08.
    [51]朱蓓薇,杨静峰,陈跃文,吴海涛,李冬梅,李明.一种低氟南极磷虾蛋白基料的制备方法[P].中国专利:201010586821.X,2012-07-04.
    [52]朱蓓薇,马伟,董秀萍,王刃,程子洪,吴志敏,辛丘岩.一种南极磷虾脱氟制备虾肉蛋白的方法[P].中国专利:201010586857.8,2012-07-04.
    [53]Kubota M, Sakai K. Autolysis of Antarctic krill protein and its inactivation by combined effects of temperature and pH. Trans. Tokyo Univ. Fish.,1978,2:53-63.
    [54]Kawamura Y, Nishimura K, Igarashi S, Doi E, Yonezawa D. Characteristics of autolysis of Antarctic krill [J]. Agric. Biol. Chem.,1981,45:93-100.
    [55]Ellingsen T E. Biokjemiske studier over Antarktis krill, PhD. Thesis. [D]. Institutt for teknisk biokjemi, Norges tekniske hogskole, Unvivetsitet i Trondeim, Norway,1982. p.382.
    [56]Kawamura Y, Nishimura K, Matoba T, Yonezawa D. Effects of protease inhibitors on the autolysis and protease activities of Antarctic krill [J]. Agric. Biol. Chem.,1984,48:923-930.
    [57]Ellingsen T E, Mohr V. Biochemistry of the autolytic processes in Antarctic krill post mortem, Autoproteolysis [J]. Biochem. J.,1987,246:295-305.
    [58]Bucht A, Karlstam B. Isolation and immunological characterization of three highly purified serine proteinases from Antarctic krill(Euphausia superba) [J]. Polar Biol.,1991,11: 495-500.
    [59]Karlstam B. Crossed immunoelectrophoretic analysis of proteins from Antarctic krill (Euphausia superba) with special reference to serine proteinases [J]. Polar Biol.,1991,11: 489-493.
    [60]Karlstam B, Johansson B, Bryno C. Identification of proteolytic isozymes from Antarctic krill {Euphausia superba) in an enzymatic debrider [J]. Comp. Biochem. Physiol.,1991,100B: 817-820.
    [61]Sjodahl J, Emmer A, Karlstam B, Vincent J, Roeraade J. Separation of proteolytic enzymes originating from Antarctic krill(Euphausia superba) by capillary electrophoresis [J]. J. Chromatogr. B,1998,705:231-241.
    [62]Sjodahl J, Emmer A, Vincent J, Roeraade J. Characterization of proteinases from Antarctic krill(Euphausia superba) [J]. Protein Expression and purification,2002,26:153-161.
    [63]Chen C S, Yan T R., Chen H Y. Purification and properties of trypsin-like enzymes and a carboxypeptidase A from Euphausia superba [J]. J. Food Biochem.,1979,2:349-366.
    [64]Kimoto K, Kusama S, Murakami K. Purification and characterization of serine proteinases from Euphausia superba [J]. Agric. Biol. Chem.,1983,47:529-534.
    [65]Osnes K K, Mohr V. On the purification and characterization of three anionic, serine-type peptide hydrolases from Antarctic krill, Euphausia superba [J]. Comp. Biochem. Physiol., 1985,82B:607-619.
    [66]Anheller J E, Hellgren L, Karlstam B, Vincent J. Biochemical and biological profile of a new enzyme preparation from Antarctic krill(E. superba) suitable for debridement of ulcerative lesions [J]. Arch. Dermatol. Res.,1989,281:105-110.
    [67]Turkiewicz M, Galas E, Kalinowska H, Romanowska I, Zielinska M. Purification and characterization of a proteinase from Euphausia superba Dana (Antarctic krill) [J]. Acta Biochim. Pol.,1986,33:87-99.
    [68]Osnes K K, Mohr V. On the purification and characterization of exopeptidases from Antarctic krill, Euphausia superba [J]. Comp. Biochem. Physiol.,1986,83B:445-458.
    [69]Hellgren L, Mohr V, Vincent J. Proteases of Antarctic krill - a new system for effective enzymatic debridement of necrotic ulcerations [J]. Experientia,1986,42(4):403-404.
    [70]Osnes K K, Mohr V. Peptide hydrolases of antarctic krill, Euphausia superba [J]. Comp. Biochem. Physiol.,1985,82B:559-606.
    [71]Osnes K K, Ellingsen T E, Mohr V. Hydrolysis of proteins by peptide hydrolases of antarctic krill, Euphausia superba [J]. Comp. Biochem. Physiol.,1986,83B:801-805.
    [72]Kristjansdottir S, Gudmundsdottir A. Propeptide dependent activation of the Antarctic krill euphauserase precursor produced in yeast [J]. Eur. J. Biochem.,2000,267:2632-2639.
    [73]Benjamin D C, Kristjansdottir S, Gudmundsdottir A. Increasing the thermal stability of euphauserase. A cold-active and multifunctional serine protease from Antarctic krill [J]. Eur. J. Biochem.,2001,268:127-131.
    [74]Rehbein H, Danulat E, Leineman M. Activities of chitinase and protease and concentration of fluoride in the digestive tract of Antarctic fishes feeding on krill(Euphausia superba Dana) [J]. Comp. Biochem. Physiol.,1986,85A(3):545-551.
    [75]McConville M J, Ikeda T, Bacic A, Clarke A E. Digestive carbohydrases from the hepatopancreas of two Antarctic euphausiid species (Euphausia superba and E. crystallorophias) [J]. Marine Biology,1986,90:371-378.
    [76]Peters G, Saborowski R, Mentlein R, et al. Isoforms of an N-acetyl-beta-D-Glucosaminidase from the Antarctic krill, Euphausia superba:purification and antibody production [J]. Comp. Biochem. Physiol. B,1998,120(4):743-751.
    [77]Turkiewicz M, Galas E, Zielifiska M. Purification and Partial Characterization of an Endo-(1→3)-β-D-Glucanase from Euphausia superba Dana (Antarctic Krill) [J]. Polar Biol., 1985,4:203-211.
    [78]Turkiewicz M, Kalinowska H, Galas E. An endo-(1-3)-beta-glucanase and a collagenolytic serine proteinase from Euphausia superba Dana (Antarctic krill). Acta Biochim.,1991,38(1): 79-85.
    [79]Turkiewicz M, Kalinowska H, Zielinska M, et al. Purification and characterization of two endo-1,4-β-xylanases from Antarctic krill, Euphausia superba Dana [J]. Comparative Biochemistry and Physiology Part B,2000,127:325-335.
    [80]Karlstam B, Ljunglof A. Purification and partial characterization of a novel hyaluronic acid-degrading enzyme from Antarctic krill (Euphausia superba) [J]. Polar Biol,1991,11: 501-507.
    [81]Turkiewicz M, Kalinowska H, Krystynowicz A, Kahizewska M. Lipolytic activity of Antarctic krill, Euphausia superba Dana [J]. Polish Polar Res.,1995,16:185-198.
    [82]Cieslinski H, Bialkowska A, Dlugolecka A, Daroch M, Tkaczuk K, Kalinowska H, Kur J, Turkiewicz M. A cold-adapted esterase from psychrotrophic Pseudoalteromas sp. strain 643A [J]. Archiv. Microbiol.,2007,188:27-36.
    [83]Westerhof W, Van Ginkel C J, Cohen E B, Mekkes J R. Prospective randomized study comparing the debriding effect of krill enzyme and a non-enzymatic treatment in venous leg ulcers [J]. Dermatologica,1990,181(4):293-297.
    [84]Melrose J, Hall A, Macpherson C, Bellenger C R, Ghosh P. Evaulatin of digestive proteinases rom the Antarctic krill Euphausis superba as potential chemonucleolytic agents, in vitro and vivo studies [J]. Arch. Orhop. Trauma. Surg.,1995,114:145-152.
    [85]Sangwan V S, Akpek E K,Voo I, Zhao T, Pinar V, Yang J, Christen W, Baltatzis S,Wild R, Foster CS. Krill protease effects on wound healing after corneal alkai burn [J]. Cornea,1999, 18(6):707-711.
    [86]Hellgren K. Composition for dental use comprising Krill enzyme [P]. PCT Patent:WO 95/33470,1995-12-14.
    [87]Hellgren L, Karlstam B, Mohr V, Vincent J.1991. Krill enzymes. A new concept for efficient debridement of necrotic ulcers [J]. Int J Dermatol,1991,30(2):102-103.
    [88]杭虞杰,李学英,杨宪时,郭全友.南极磷虾自溶酶性质的初步研究[J].食品科学,2011,32(13):198-200.
    [89]向宇.南极大磷虾(Euphausia superba)胰蛋白酶样酶分离纯化、酶学性质探索及其生物学活性研究[D].青岛:中国海洋大学,2011.
    [90]Viggo M. Method of the isolation of active enzyme(s) from krill tissue [P]. PCT Patent:WO 89/01031,1989-02-09.
    [91]吕传萍,李学英,杨宪时,迟海,郭全友.南极磷虾酶解工艺的研究[J].湖南农业科学:2011(17):130-133。
    [1]Hultin H O, Kelleher S D. High efficiency alkaline protein extraction [P]. US Patent:6136959, 2000-10-24.
    [2]Chen Y C, Jaczynski J. Protein recovery from rainbow trout(Oncorhynchus mykiss) processing byproducts via isoelectric solubilization/precipitation and its gelation properties as affected by functional additives [J]. Journal of Agriculture and Food Chemistry,2007,55:9079-9088.
    [3]Chen Y C, Tou J C, Aczynskia J. Amino acid and mineral composition of protein and other components and their recovery yields from whole Antarctic krill (Euphausia superba) using isoelectric solubilization/precipitation [J]. J. Food Sci.,2009,74:H31-H39.
    [4]Folch J, Lees M, Sloane-Stanley G H.A simple method for the isolation and purification of total lipids from animal tissues [J]. Journal of Biological Chemistry,1957,226:497-509.
    [5]李红艳.南极磷虾酶解液脱氟技术的研究[D].青岛:中国海洋大学,2011.
    [6]张海生,夏卫平,程先豪,朱碧英.南大洋氟的生物地球化学研究Ⅰ[J].南极磷虾富氟异常的研究.南极研究,1991,3(4):58-64.
    [7]Grantham G J. The southern ocean:the utilization of krill. FAO Southern ocean fisheries survey programme reports [R]. Rome:FAO,1977.
    [8]林洪,吕青,Jamil K,等.贻贝等六种软体动物磷脂的比较[J].水产学报,2000,24(2):175-179.
    [9]Iverson S J, Lang S L, Cooper M H. Comparison of the Bligh and Dyer and Folch Methods for Total Lipid Determination [J]. Lipids,2001,36:1283-1287.
    [10]杨云霞,解绶启,朱晓鸣,雷武,崔奕波.不同溶剂和抽提方法测定脂肪含量的比较[J].浙江海洋学院学报(自然科学版),2001,20(增刊):159-160.
    [11]Dobush G R, Ankney C D, and Krementz D G. The effect of apparatus, extraction time, and solvent type on lipid extractions of snow geese [J]. Canadian Journal of Zoology,1985,63: 1917-1920.
    [12]任艳.南极磷虾蛋白加工利用的初步研究[D].青岛:中国海洋大学,2009.
    [13]Gigliotti J C, Jaczynski J, and Tou J C. Determination of the nutritional value, protein quality and safety of krill protein concentrate isolated using an isoelectric solubilization/precipitation technique [J]. Food Chem.,2008,111:209-214.
    [14]Chen Y C, Jaczynski J. Gelation of protein recovered from whole Antarctic krill(Euphausia superba) by isoelectric solubilization/precipitation as affected by functional additives [J]. J. Agric. Food Chem.,2007,55:1814-1822.
    [15]Motoki M, Seguro K. Transglutaminase and its use for food processing [J]. Trends in Food Science and Technology,1998,9:204-210.
    [16]Wang Q, Xue C H, Li Z J, Xu J. Analysis of DHA-rich phospholipids from egg of squid Sthenoteuthis oualaniensis [J]. J. Food Comp. Anal.,2008,21:356-359.
    [17]王琦.海产动物来源n-3PUFA磷脂的提取及生物活性研究[D].青岛:中国海洋大学,2008.
    [18]Manthey M, Schreiber W. Reduction of the fluoride content of krill by acid treatment [J]. Informationen fuer die Fischwirtschaft,1983,30(2):102-106.
    [19]Tenuta-Filho A. Fluorine removal during production of krill paste and krill protein concentrates [J]. ActaAlimentaria,1993,22(4):269-281.
    [20]Lee C M. Surimi:Science and technology. In Wiley Encyclopedia of Food Science and Technology,2nd ed. [M]; Francis, F. J., Ed.; John Wiley and Sons:Hoboken, NJ,1999:2229-2239.
    [21]Fricke H, Gercken G, Schreiber W, Oehlenschlager J. Lipid, sterol and fatty acid composition of Antarctic krill (Euphausia superba Dana) [J]. Lipids.1984,19:821-827.
    [22]Bottino N R. Lipid composition of two species of Antarctic krill:Euphausia superba and E. crystallorophias [J]. Comp. Biochem. Physiol. B.,1975,50:479-484.
    [23]Ruxton C, Reed S, Simpson M, Millington K. Health benefits of omega-3 polyunsaturated fatty acids:A review of the evidence [J]. J. Hum. Nutr. Diet.2004,17:449-459.
    [24]WHO/FAO/UNU. Protein and amino acid requirements in human nutrition. Report of a joint WHO/FAO/UNU expert consultation. WHO Technical Report Series 935 [R]. World Health Organization:Geneva, Switzerland,2007.
    [1]Kim E H -J, Chen X D, Pearce D. Surface composition of industrial spray-dried milk powders. 1. Development of surface composition during manufacture [J]. Journal of Food Engineering, 2009,94:163-168.
    [2]王璋,许时婴,汤坚,等.食品化学[M].北京:中国轻工业出版社,1991.
    [3]田其英,华欲飞.大豆蛋白溶解性研究[J].粮食与油脂,2006(6):6-8.
    [4]孟旭.方便豆腐粉微结构及其蛋白质溶解、凝胶机理的研究[D].无锡:江南大学,2006.
    [5]张彩猛.醇变性大豆蛋白溶解特征的研究[D].无锡:江南大学,2007.
    [6]吴锦波,吴振,朱国君,赵国华.紫苏饼粕浓缩蛋白溶解性与乳化特性的研究[J].2011,26(2):55-58.
    [7]王尔惠大豆蛋白质生产新技术[M].北京:中国轻工业出版社,1999.
    [8]廖庆禄.压力式喷雾干燥塔各主要工艺控制参素数对产品质量的影响[J].化学工程与装备,2006(3):31-33.
    [9]王喜忠,于才渊,周才君.喷雾干燥[M].北京:化学工业出版社,2003.
    [10]Buchheim, W. Extraction method for the determination of surface fat of milk powders [J]. Milchwissenschaft,1976,31(7):393-396.
    [11]Kim E H -J, Chen X D, Pearce D. Effect of surface composition on the flowability of industrial spray-dried dairy powders [J]. Colloids and Surfaces B:Biointerfaces,2005, 46:182-187.
    [12]Bottino N R. Lipid composition of two species of Antarctic krill:Euphausia superba and E. crystallorophias [J]. Comp. Biochem. Physiol. B.,1975,50:479-484.
    [13]Granelli K, Faldt P, Appelqvist L -A, Bergenstahl B. Influence of surface structure on cholesterol oxidation in model food powders [J]. Journal of the Science of Food and Agriculture,1996,71:75-82.
    [14]Hardas N, Danviriyakul S, Foley J L, Nawar W W, Chinachoti P. Accelerated stability studies of microencapsulated anhydrous milk fat [J]. Lebensmittel-Wissenschaft und Technologie, 2000,33:506-513.
    [15]Kim E H -J, Chen X D, Pearce D. Surface composition of industrial spray-dried milk powders. 2. Effects of spraydrying conditions on the surface composition [J]. Journal of Food Engineering,2009,94:169-181.
    [16]Hassan H M, Mumford C J. Mechanisms of drying of skin-forming materials. III. Droplets of natural products [J]. Drying Technology,1993,11(7):1765-1782.
    [17]Buege J A, Aust S D. Microsomal lipid peroxidation [J]. Methods in Enzymology,1978,52: 302-310.
    [18]崔宏博,薛勇,宿玮,薛长湖.南美白对虾即食虾仁加工工艺和贮藏研究[J].食品科学,2012,33(4):257-261.
    [19]Dobarganes M C, and Velasco J. Analysis of lipid hydroperoxides [J]. European Journal of Lipid Science and Technology,2002,104:420-428.
    [20]Melton S L. Methodology for following lipid oxidation in muscle foods [J]. Food Technology, 1983,37:105-111.
    [21]Ruiz A, Ayora-Canada M J, and Lendl B A. rapid method for peroxide value determination in edible oils based on flow analysis with Fourier transform infrared spectroscopic detection [J]. The Analyst,2001,126:242-246.
    [22]Shahidi F, and Wanasundara U N. In C. C. Akoh, and D. B. Min (Eds.), Food lipids: Chemistry, nutrition and biotechnology (2nd Ed.) [M]. New York:Marcel Dekker,2002. p. 465-487.
    [23]Wang L Z, Yang B, Yan B L, Yao X C. Supercritical fluid extraction of astaxanthin from Haematococcus pluvialis and its antioxidant potential in sunflower oil [J]. Innovative Food Science and Emerging Technologies,2012,13:120-127.
    [24]何志平,庞林江.油脂氧化检测方法研究进展[J].安徽农业科学,2010,38(21):11460-11462
    [25]Mottram D S. Flavor formation in meat and meat products:a review [J]. Food Chemistry, 1998,62(4):415-424.
    [1]Hou H, Li B, Zhao X, Zhuang Y, et al. The effect of pacific cod (Gadus macrocephalus) skin gelatin polypeptides on UV radiation-induced skin photoaging in ICR mice [J]. Food Chem. 2009,115:945-950.
    [2]弗雷德里克·E·斯通,罗纳德·W·哈.胡光中译.液化鱼蛋白和酸性稳定的鲜贮饲料的营养价值[J].水利渔业,1989(3):52-55.
    [3]Adler-Nissen J. Determination of the degree of hydrolysis of food protein hydrolysates by Trinitrobenzenesulfonic acid [J]. Journal of Agricultural and Food Chemistry,1979,27(6): 1256-1262.
    [4]蒋菁莉.牦牛乳酪蛋白降血压肽酶法制备及功能评价[D].北京:中国农业大学,2007.
    [5]任艳.南极磷虾蛋白加工利用的初步研究[D].青岛:中国海洋大学,2009.
    [6]熊芳,易伟亮,戴华.用全自动凯氏定氮仪测定酱油中铵盐含量[J].中国卫生检验杂志,2002(4):198.
    [7]李红艳.南极磷虾蛋白加工利用的初步研究[D].青岛:中国海洋大学,2011.
    [8]万凌燕,黄春.影响酱油中氨基酸态氮检测数据准确性的原因[J].计量与测试技术,2009(3):79,81.
    [9]李大锦,王汝珍.酶制剂在酱油酿造中应用的现状和发展[J].中国酿造,2002(4):1-3.
    [10]Sjodahl J, Emmer A, Karlstam B, Vincent J, Roeraade J. Separation of proteolytic enzymes originating from Antarctic krill (Euphausia superbd) by capillary electrophoresis [J]. J. Chromatogr. B,1998,705:231-241.
    [11]Sjodahl J, Emmer A, Vincent J, Roeraade J. Characterization of proteinases from Antarctic krill (Euphausia superbd) [J]. Protein Expression and purification,2002,26:153-161.
    [12]Kubota M, Sakai K. Autolysis of Antarctic krill protein and its inactivation by combined effects of temperature and pH [J]. Trans. Tokyo Univ. Fish.,1978,2:53-63.
    [13]Kawamura Y, Nishimura K, Igarashi S, Doi E, Yonezawa D. Characteristics of autolysis of Antarctic krill [J]. Agric. Biol. Chem.,1981,45:93-100.
    [14]Ellingsen T E. Biokjemiske studier over Antarktis krill, PhD. Thesis [D]. Institutt for teknisk biokjemi, Norges tekniske h(?)gskole, Unvivetsitet i Trondeim, Norway,1982. p.382.
    [15]Kawamura Y, Nishimura K, Matoba T, Yonezawa D. Effects of protease inhibitors on the autolysis and protease activities of Antarctic krill [J]. Agric. Biol. Chem.,1984,48:923-930.
    [16]Ellingsen T E, Mohr V. Biochemistry of the autolytic processes in Antarctic krill post mortem, Autoproteolysis [J]. Biochem. J.,1987,246:295-305.
    [17]徐伟.鱿鱼加工废弃物低盐鱼酱油速酿工艺及生化特性研究[D].青岛:中国海洋大学,2008.
    [18]陈祖杰,邓后勤,甄涛,夏立新,曹小彦.酶解鲢鱼肉生产复合调味料[J].食品与机械,2009,25:153-156.
    [19]侯温甫,黄泽元,汪秀文,等.淡水鱼加工下脚料速酿低盐鱼露的工艺研究[J].食品科学,2009,30(23):322-325.
    [20]周明明.鲤鱼酶解过程及其加工利用的初步研究[D].青岛:中国海洋大学,2010.
    [21]郑捷,王平,尹诗,范艳丽,刘彦平,刘安军.酶解虾下脚料制备海鲜味复合调味料[J].中国调味品,2011,36:48-54.
    [22]薛佳,曾名湧,董士远,等.罗非鱼加工下脚料速酿低盐优质鱼露的研究[J].中国调味品,2011,36(4):41-47.
    [23]姚芳,祁兴普,刘萍.淡水鱼下脚料酶解酿制风味调味汁[J].食品科学,2012,33:44-49.
    [24]赵德安.酶制剂应用于传统大豆发酵食品酿造的探讨[J].中国酿造,2004(4):58-61.
    [25]郭勇.酶工程(第二版)[M].北京:科学出版社,2004.
    [26]李卫东.酱油中铵盐的形成途径及防止办法[J].中国调味品,2001(8):25-27.
    [27]Kolakowski E. Changes of non-protein nitrogens fractions in Antarctic krill (Euphausia superba Dana) during storage at 3° and 20℃ [J]. Z Lebensm Unters Forsch,1986,183: 421-425.
    [28]Bottino N R. Lipid composition of two species of Antarctic krill:Euphausia superba and E. crystallorophias [J]. Comp. Biochem. Physiol. B.,1975,50,479-484.
    [29]辛若竹,肖金艳,郭赫宇.酿造酱油生产过程中铵盐含量超标的处理方法[J].中国调味品,2006(2):29-31.
    [30]韩春然.传统食品发酵工艺学[M].北京:化学工业出版社,2010.
    [31]王健,尹衍利,朱宪国.低温浓缩工艺在酱油生产中的应用[J].中国调味品,1993(3):1-3.
    [32]杨少华.5款食用菌酱油加工技术[J].农村新技术,2009(14):55-56.
    [1]任艳.南极磷虾蛋白加工利用的初步研究[D].青岛:中国海洋大学,2011.
    [2]王镜岩,朱圣庚,徐长法.生物化学(第三版,上册)[M].北京:高等教育出版社,2002.
    [3]章超桦,邓尚贵,洪鹏志.刀额新对虾的快速自溶技术[J].水产学报,1999,23(4):387-391.
    [4]郑丽,汪秋宽,谢智芬,汪涛.扇贝加工废弃物自溶技术的研究[J].大连水产学院学报,2007,22(1):49-52.
    [5]章超桦,邓尚贵,杨丽明,陆海燕,左建东,常德秘,郑伟.紫外线和温度对虾快速自溶的影响——水产品快速自溶影响因素探讨之一[J]。湛江水产学院学报,1994,14(2):51-55.
    [6]Hou H, Li B, Zhao X, Zhuang Y, et al. The effect of pacific cod (Gadus macrocephalus) skin gelatin polypeptides on UV radiation-induced skin photoaging in ICR mice [J]. Food Chem. 2009,115:945-950.
    [7]班军艳,张彦茹.关于酱油全氮利用率提高的技术措施[J].中国调味品,2000(1):20-21.
    [8]Bottino N R. Lipid composition of two species of Antarctic krill:Euphausia superba and E. crystallorophias [J]. Comp. Biochem. Physiol. B.,1975,50,479-484.
    [9]张岩,吴燕燕,李来好,杨贤庆,宫晓静.酶法制备海洋活性肽及其功能活性研究进展[J].生物技术通报,2012(3):42-48.
    [10]WHO/FAO/UNU. Protein and amino acid requirements in human nutrition. Report of a joint WHO/FAO/UNU expert consultation. WHO Technical Report Series 935 [R]. World Health Organization:Geneva, Switzerland,2007.
    [11]郡司笃孝(日).食品添加剂手册[M].刘纯洁,张娟婷,译.北京:中国展望出版社,1988.:157-160.
    [12]孙雷,周德庆,盛晓风.南极磷虾营养评价与安全性研究[J].海洋水产研究,2008,29(2):57-64.
    [13]李小勇,李洪军.高F值寡肽研究进展[J].粮食与油脂,2006(6):9-11.
    [14]李峰,徐军庆.高F值寡肽的研究与开发[J].食品与药品,2005,7(1):43-44.
    [15]陈石良,吴建平,谷文英.高F寡肽的研究进展[J].食品与机械,1998(4):12-14.
    [16]Fischer J E. Amino acids in hepatic coma [J]. Digestive Diseases and Sciences,1982,27: 97-102.
    [17]Tanimoto S, Tanabe S Watanabe M and Arai S. Enzymatic modification of zein to produce a non-bitter peptide fraction with a very high fisher ratio for patients with hepatic encephalopathy [J]. Agric. Biol. Chem.,1991,55(4):1119-1123.
    [18]金宏,许志勤,王先远,等.支链氨基酸提高大鼠游泳耐力作用探讨[J].营养学报,2001,23(1):48-50.
    [19]王梅,谷文英.高F值寡肽混合物的制备及抗疲劳与抗氧化作用[J].粮油食品科技,1999(3):6-7.
    [20]孙冀平,谷文英.蛋白肽饮料的醒酒机理和制备工艺的探讨[J].食品与发酵工业,1999,25(4):64-66.
    [21]沈蓓英,孙冀平.高F值寡肽生理功能和制备[J].粮食与油脂,1992(2):27-30.
    [22]尤新,唐是雯,金宗濂.功能性发酵制品[M].北京:中国轻工业出版社,2000:224-228.
    [1]汪东风.食品化学[M].北京:化学工业出版社,2007.
    [2]黄江艳,李秀娟,潘思轶.固相微萃取技术在食品风味分析中的应用[J].食品科学,2012,33(7):289-296.
    [3]徐伟.鱿鱼加工废弃物低盐鱼酱油速酿工艺及生化特性研究[D].青岛:中国海洋大学,2008.
    [4]任艳.南极磷虾蛋白加工利用的初步研究[D].青岛:中国海洋大学,2009.
    [5]米恒振.鲲鱼酶解液中不良风味成分的吸附脱除[D].青岛:中国海洋大学,2010.
    [6]李红艳.南极磷虾蛋白加工利用的初步研究[D].青岛:中国海洋大学,2011.
    [7]李学英,杨宪时,吕传萍,郭全友.一种利用生石灰降低南极磷虾酶解液中氟含量的方法[P].中国专利:201110259184.X,2012-02-08.
    [8]吴正奇,张红宇.钙铁锌复合强化酱油的研究.中国调味品,1999(6):11-13.
    [9]凌关庭.食品添加剂手册[M].北京:化学工业出版社,1990.
    [10]赵二红.高钙酱油—浅谈补钙产品[J].发酵科技通讯,2006,35:34.
    [11]李一铷.普钙高氟废水处理[J].化工环保,1992,12(6):341-350.
    [12]Saha S. Treatment of Aqueous Effluent for Fluoride Removal [J]. Water Res.,1993,27 (8): 1347-1350.
    [13]Funatsu Y, Kawasaki K, Konagaya S. Efficient utilization of frigate mackerel caught in a large quantity by set-net fisheries in Toyama Bay-Processing of a Surimi-Based Product and Utilization of the Waste Discharaged from the Processing [J]. Toyama Pref. Food Res. Inst., 2004,5:31-44.
    [14]徐伟,石海英,朱奇,彭向前,薛勇,薛长湖.低盐鱼酱油挥发性成分的固相微萃取和气相色谱-质谱法分析[J].食品工业科技,2010,31(3):102-105.
    [15]赵庆喜,薛长湖,徐杰,等.微波蒸馏-固相微萃取-气相色谱-质谱-嗅觉检测器联用分析鳙鱼鱼肉中的挥发性成分[J].色谱,2007,25(2):1-5.
    [16]严留俊,张艳芳,陶文沂,王利平,吴胜芳.顶空固相微萃取-气相色谱-质谱法快速测定酱油中的挥发性风味成分[J].色谱,2008,26(3):285-291.
    [17]食品伙伴网.食品添加剂基本信息查询[EB/OL]. [2012-08-27]. http://db.foodmate.net/additive.
    [18]杨景田,顾国兴,金锡华,云桂春.酱油辐照灭菌后的风味改善研究[J].中国调味品, 1987(1):13-17.
    [19]张海珍.酿造酱油发酵过程风味变化规律及工艺优化的研究[D].杭州:浙江工商大学,2010.
    [20]江津津,曾庆孝,朱志伟,黎海彬,李崇高.潮汕鱼酱油中香气活性化合物的研究[J].食品科技,2010,35(8):294-296,300.
    [21]Mottram D S. Flavor formation in meat and meat products:a review [J]. Food chem.,1998, 62(4):415-424.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700