用户名: 密码: 验证码:
耐冷苯胺降解菌的特性及其对苯胺废水处理的强化作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题在充分理解生物强化技术一般机理的前提下,以苯胺作为目标污染物,针对东北寒冷地区冬季水温低、特种工业废水生物处理工程效果差等问题,研究了高效耐冷苯胺降解菌JH-9的特性以及生物强化效能,并率先提出了“混合菌丝球”的概念。对发酵过程中产生的霉菌菌丝球进行了技术开发,采用混合菌种固定化技术将高效耐冷苯胺降解菌固定在霉菌Y3形成的纯生物质载体上。详细描述了混合菌丝球的形成过程及效能,并对成球机制进行了初步探讨。
     在低温下对吉林化工厂污水处理厂曝气池活性污泥、低温生活污水处理系统曝气池活性污泥、实验室菌种库保存的高效菌剂,以及以上三者的混合菌群四种样品进行了变温培养、驯化,筛选到低温下降解苯胺的高效菌群—吉化污泥。该菌群属于耐冷菌群,低温下对苯胺有较好的降解效果,菌胶团形成能力较强,并且表现出很强的生物絮凝能力。从吉化污泥中分离筛选到一株低温下(10℃)能够较好降解苯胺的耐冷菌株JH-9,它能以苯胺为唯一碳源、氮源生长,通过Sherlock脂肪酸鉴定系统、16S rRNA等分析方法初步鉴定为醋酸钙不动杆菌(Acinetobacter-calcoaceticus)。从环境因子、培养基组分、接菌量、底物多样性、共代谢、反应动力学等生理生态学角度对JH-9降解特性进行了研究,得出低温下其降解苯胺的最适条件为pH 7.0,C/P 1:1~2:1,接菌量为10%(v/v)。葡萄糖和微量元素可以促进JH-9对苯胺的降解;而苯酚会抑制其对苯胺的降解。当菌体起始浓度一定时,苯胺降解率及平均降解速率主要与苯胺初始浓度有关。在较低的苯胺浓度范围内,苯胺降解率和降解速率较高,遵循Monod方程;当苯胺浓度较高时,其降解过程以基质抑制型的Haldane方程为主。
     采用生物强化技术将菌株JH-9、吉化污泥及两者等量混合的菌群作为强化菌剂投加到SBR反应系统中,测定苯胺的去除能力是否提高,并考察TOC、TN及微生物活性等指标的变化,用DGGE的方法对投菌强化前后反应器中活性污泥系统菌群多样性进行分析。结果表明,在反应器内温度为12℃、摇床转速160r/min、pH 7.0、反应周期为48h等条件,三个强化系统都可以提高苯胺的降解能力,苯胺降解率在74.2%~100%,TOC的去除率83%~88.8%,而TN变化不明显。系统中异养菌的活性远远大于硝化细菌和亚硝化细菌。
     考察苯胺浓度冲击负荷、pH冲击负荷、苯酚毒物负荷及贫营养条件下系统生物强化效果,发现在不同冲击负荷条件下各个强化系统体现的降解苯胺的优势不同,在pH负荷下,单菌强化效果相对较好,在苯胺浓度负荷和苯酚毒物负荷冲击下,单菌和吉化污泥的混合菌群强化效果较好,在贫营养负荷冲击下,吉化污泥菌群强化效果较好。在整个强化实验中,强化系统对TOC的去除效果要好于对照系统,而对TN的去除却没有明显的优势。
     以霉菌Y3形成的菌丝球作为生物质载体分别采用同时培养法和吸附法对菌株JH-9进行固定化,并率先提出了一种新型固定化方法“同时培养法”。两种方法的对比结果表明:同时接种法在单位时间内可固定化细菌量更多、其堆积体积更大,成球总数量更多,球体直径较小,总重量和总相对密度也较小。同时培养法形成的混合菌丝球内部细菌是非常均匀的排列生长在每一根菌丝上,无论菌丝交联与否;而吸附法形成的混合菌丝球内部,细菌只存在于多条菌丝交叉形成平台的地方。
     对混合菌丝球的降解效能进行考察发现,混合菌丝球对苯胺保持了良好的降解效能,同时培养法形成的混合菌丝球对苯胺的降解效能要明显好于吸附法形成的混合菌丝球,且效果稳定、持久。与固定化陶粒相比,混合菌丝球对苯胺的降解能力略显优势。菌丝球再生实验表明:经过碎片繁殖再生的混合菌丝球能很好的保持对苯胺的降解能力。为了进一步在反应器中考察混合菌丝球的生物强化效能,将混合菌丝球、高效降解苯胺混合菌群和菌株JH-9作为强化菌剂应用于SBR工艺中。结果表明:针对初始苯胺浓度为130mg/L的苯胺废水,混合菌丝球从第三个运行周期开始即实现了出水苯胺的去除率达100%、COD的去除率在60%以上,并一直稳定维持到运行的第八个周期。通过考查混合菌丝球的形成过程及机制发现:曲霉Y3和菌株JH-9同时培养形成混合菌丝球经历4个阶段,静电引力和细胞表面的粘附力是混合菌丝球形成的主要原因。
The dissertation with the premise of the full understanding of the mechanism of bioaugmentation, and choose aniline as the target pollutants. In order to solve the problems such as the low temperature in cold northeast winter and poor effect of biological treatment engineering for special industrial wastewater, study of a highly efficient cold tolerance aniline degrading bacteria JH-9, as well as the characteristics of enhanced performance, and the first to put forward a "combined pellet" concept. The technic exploiture of mycelium pellet produced during fermentation process was developed. With the immobilization technique of mixed bacteria, the high effiency cold tolerance bacteria were fixed onto biomass carrier. Formation process and performance of the combined pellet was detailed descripted, and pellet formation mechanism has been discussed.
     An aniline-degrading flora, Jihua sludge, which has high efficiency at low temperature, was enriched by alternating temperature culture and screened out from four different samples. They were active sludge of aeration tank from wastewater treatment plant of Jilin chemical plant, active sludge of aeration tank from domestic wastewater treatment plant which applied at low temperature, high-efficiency bacterica preserved by laboratory and the mixture of them. As a psychrotroph flora, the flora prossessed high flocculating capability and forming zoogloea capability. Strain JH-9 which was able to use sole carbon and nitrogen source for grouth was isolated from jihua slduge at low temperature. It was classified as Acinetobacter-calcoaceticus by gas chromato-graphy of bacterial fatty acids with the MIDI Sherlock Microbial Identification System and 16S rRNA. Degradation of aniline by strain JH-9 was investigated in the physiological and ecological aspects such as environmental genes, the components of substrate, the quantity of inoculability, metabolism with two substrates mixing and the kinetics of the reaction. It was found that the optimum condition was pH 7.0, C/P 1:1~2:1, 10%(v/v) with the quantity of inoculability. Glucose and trace element could accelerate degradation of aniline while phenol was opposite. With same aniline concentration, the degradation rate depended on initial aniline concentration. With low organic compound concentration, the degradation rate was high and the degradation process was in accordance with Monod equation; with high organic compound concentration, the degradation rate was low and the degradation process was in accordance with Haldane equation.
     Aniline-degrading bacterica JH-9, jihua sludge, and the flora with the same amount of JH-9 and jihua sludge mixing were casted to SBRs to look into their ability to remove aniline and see out diversification of TOC, TN, interrelated index by microorganism from a fullscale biotreatment system treating aniline. Diversity of the communities was analysed before or after casting microorganisms by DGGE. It was found that at 12℃, rotate speed of 160r/min, pH of 5 and each cycle of 48h, three bioaugmentation systems enhanced aniline removal, the rate of aniline removal was 74.2%~100% and the rate of TOC removal was 83%~88.8%. The heterophic bacteria had the dominance than nitrobacteria in SBRs.
     Simultaneity we also reviewed the effect of bioaugmentation in different conditions with aniline concentration burthen, pH burthen, phenol burthen and starvling. It was found that each system emerged respective advantage. Strain JH-9 had the good effect of aniline removal in pH burthen while the flora was ascendant in aniline concentration burthen and phenol burthen. At last, jihua sludge had the finer rate of degradating aniline in hungered environment. During the experiments of bioagumentation, the effect of removal of TOC in the systems with aggrandizement was better than that in system for comparison, while there was no advantage for the removal of TN in all systems.
     Immobilized strain JH-9 with simultaneity culture and adsorption respectively, with mycelium pellet forming by aspergillus Y3 as the biomass carrier. It is the first time to propose a new immobilization method-simultaneity culture method. Comparative results of the two methods showed that: simultaneity culture method has many advantages such as more immobilization bacteria, bigger cumuli volum, more pellets, and shorter pellet diameter, light gross weight and small relative density. No matter mycelium crosslinking or not, bacteria within the combined pellet foaming by simultaneity culture method are growing equably on each of the mycelium. But the bacteria within the combined pellet forming by adsorption method are existted on the cross-platform forming with number of mycelium only. Then we review the degrading performance of the combined pellet. The result shows that it maintained a good performance of strain JH-9, combined pellet forming by simultaneity culture method has better steady and permanence degrading performance than that foaming by adsorption method. Compired with immbolized ceramsite, combined pellet has a small advantage in aniline degradation performance. The result of regeneration experiment shows that combined pellet regenerated by fragment breedding can keep high aniline degradationg ability. In order to text bioaugmentation performance of combined pellet in reactor, combined pellet, strain JH-9 and Jihua sludge was casted into SBRs. The result shows that the aniline removal rate of output was 100% and the COD removal rate above 60% from the third running period, as the input aniline concentration was 130mg/L, and this result was stay the course. Through tracing the formation process and mechanism of combined pellt, we found that combined pellet forming by simultaneity culture method with aspergillus Y3 and strain JH-9 experienced four stages, and the main pellet forming reasons are the electrostatic attraction and cell surface adhesion.
引文
1司航.化工产品手册—有机化工原料(第二版).化学工业出版社, 1995:32
    2 Kearney P C, Kaufman D, D. Herbicides Chemistry. Degradation and Mode of Action. 2nd ed. New York: Marcel Dekker, 1975:97~103
    3刘志培,杨惠芳,周培谨.微生物降解苯胺的特性及其降解代谢途径.应用于环境生物学报.1995,5(增刊):5~9
    4 Itoh, N. Naoki, M. and Toyoko, K. Oxidation of aniline to nitrobenzene by nonheme bromoperoxidase. Biochem. Mol. Biol.Intl, 1993, (29):785~791
    5陆昌淼,张忠祥.污水综合排放标准详解.中国标准出版社, 1991:127~128
    6于瑞莲,赵元慧,袁星.取代苯胺和苯酚类化合物对大型蚤的毒性及pH值对其毒性的影响.环境化学. 1998, 17(5):451~455
    7吴文新.苯胺.辽宁化工. 1990, (6):55~56
    8梁城.苯胺发展中应关注的不利因素.中国石油和化工. 2001, (5):54~55
    9王跃志.苯胺生产消费及市场需求预测.中国石油和化工. 2000, (7):54~55
    10吕永梅.我国苯胺生产现状与市场分析.中国石油和化工经济分析. 2006, (10):26~30
    11崔小明.我国苯胺生产消费现状及发展建议.中国石油和化工. 2002, (9):55~57
    12吕永梅.国内外苯胺的供需市场分析.石油化工技术经济. 2005,(2):39~43
    13伍桂松.我国苯胺行业发展态势.化工技术经济. 2005, 23(10):7~11
    14丁惠平.微生物法处理苯胺工业废水.广东化工. 2005, (12):20~22
    15 F. J. Oneill, K. C. A. Bromley-Challenor, J. S. Knapp, et al. Bacterial Growth on Aniline: Implications for the Biotreatment of Industrial Wastewater. Wat.Sci. 2000, (34):4397~4409
    16 Gheewaha, S. H. and A. P. Annachhatre. Biodegradation of Aniline. War.Sci.Tech, 1997, (36):53~63
    17章健,刘庆都.苯胺的微生物降解.安徽农业大学学报. 1997, 24 (3) :283~286
    18曾国驱,任随周,许玫英等.微生物降解苯胺的研究现状.中国医学生物技术应用杂志. 2003, (4):74~77
    19冯旭东,戴猷元.取代苯胺的生物降解性研究.水处理技术.2002, 28(5):266~268
    20甘平,朱婷婷,樊耀波等.氯苯类化合物的生物降解.环境污染治理技术与设备. 2000, 1(4): 1~12
    21王思菊,赵丽辉,匡欣等.某些芳香化合物生物降解性研究.环境科学学报. 1995,15 (4):407~415
    22 M.S.Sheludchenko,M.P.Kolomytseva,V.M.Travkin. Degradation of Aniline by Delftia Tsuruhatensis 14S in Batch and Continuous Processes. Applied Biochemistry and Microbiology, 2005, 5(41):530~534
    23 Schnell S, Schink B. Anaerobic aniline Degradation Viareductive Deamination of 4-aminobenzoyl-CoA in Desulfo Bacterium Aniline. Arch Microbiol. 1991, (153):183~190
    24 Giti Emtiazi,Mohamad Satarii,Fatemeh Mazaherion.The Utilization of Aniline,Chlorinated Aniline, and Aniline Lue as the only Source of Nitrogen by Fungi in Water. Wat.Res, 2001, 35(5):1219~1224
    25任随周,郭俊,曾国驱等.两株苯胺降解菌的分离鉴定及其降解特性研究.环境科学. 2006, 27(12):2525~2529.
    26周燕洁.高效复合菌降解氯代苯胺类化合物的特性研究.河海大学硕士论文. 2006:33~56
    27毕洪凯.高效苯胺降解细菌GXA7的筛选鉴定及其苯胺双加氧酶基因簇的克隆.广西大学硕士论文. 2004:12~20
    28刘志培,杨惠芳.苯胺降解菌的分离和特性研究.环境科学学报. 1999, (19):174~179
    29 Z. Liu, H. Yang, Z. Huang, P Zhou, et al. Degradation of Aniline by Newly Isolated, Extremely Aniline-tolerant Delftia sp. AN3. Appl. Microbiol. Biotech, 2002, (58):679~682
    30 Konopka, A., D. Knight, and R. F. Turco. Characterization of a Pseudomonas sp. Capable of Aniline Degradation in the Presence of Secondary Carbon Sources. Appl. Environ. Microbiol, 1989, (55):385~89.
    31 Wyndham, R. C. Evolved Aniline Catabolism in Acinetobacter Calcoaceticus during Continuous Culture of River Water. Cpl. Environ. Microbiol, 1986, (51):781~789
    32 Hyung-Yeel Kahng, Jerome J. Kukor, Characterization of Strain HY99, a Novel Microorganism Capable of Aerobic and Anaerobic Degradation of Aniline.FEMS Microbiology Letters,2000, (190):215~221
    33 McClure, N. C., W. A. Venables. PTDN1, a Catabolic Plasmid Involved in Aromatic Catabolism in Pseudomonas Putida mt-2.J.Gen.Microbiol, 1987, (133):2073~2077
    34 Saint, C. P., N. C. McClure, and W. A. Venables. Physical Map of the Aromatic Amine and M-toluate Catabolic Plasmid pTDNI in Pseudomonas Putida: Location of a Unique Meta-cleavage Pathway. J. Gen. Microbiol, 1990,(136):615~625
    35 Fukumori, F. and Saint, C. P. Analysis of the Aniline Degradation Pathway of Pseudomonas Putida UCC2(pTDNl). Fifth International Symposium on Pseudomonas Putida: Biotechnology and Molecular Biology, abstract, 1995,70
    36 Fukumori, F. and Saint, C. P Nucleotide Sequences and Regulation Analysis of Genes Involved in Conversion of Aniline to Catechol in Pseudomonas Putida UCC2(pTDNl). J. Bacteriol, 1997, (179):399~408
    37 Fujii, T., Takeo, M., and Macda, Y. Plasmid-encoded Genes Specifying Aniline Oxidation from Acinectobacter sp. Strain YAA. Microbiology, 1997, (43):93~99
    38 Fujii, T., Takeo, M., and Macda, Y. Sequence Analysis of the Genes Encoding a Multicomponent Dioxygenase Involved in Oxidation of Aniline and O-toluidine in Acinectobacter sp. strain YAA. J.Ferment. Bioeng, 1998,(85):17~24
    39 Fujii, T., Takeo, M., and Macda, Y et al. Cloning and Sequencing of a Gene Cluster for the Meta-cleavage Pathway of Aniline Degradation in Acinectobacter sp. Strain YAA. J. Ferment. Bioeng, 1998, (85):514~517
    40 Aoki, K., Ohtsuka, K., Shinke, R. et al. Rapid Biodegradation of Aaniline by Frateuria Species ANA-18 and its Aniline Metabolism. Agric. Biol. Chem, 1984, (48):865~872
    41 Aoki, K., Konobana, T., Shinke, R. et al. Two Catechol 1,2-dioxygenases from an Aniline-assimilating Bacteria, Frateuria Species ANA-18. Agric. Biol. Chem, 1984, (48):2097~2104
    42 Murakami, S., Takemoto, J., Aoki, K., et al. Purification and Characterization of two Muconate Cycloisomerase Isozymes from Frateuria Species ANA-18. BioscL Biotechnol. Biochem, 1998,(62):1129~1133
    43 Murakami, S., Takashima, A., T, Shinke. et al. Cloning and Sequence Analysis of two Catechol-degrading Gene Clusters from the Aniline-assimilatingBacterium Frateuria Species ANA-18. Gene, 1999,(226):189~198
    44 Takashima, A., Murakami, S., Aoki, K. et al. Regulation by two CatR Proteins that Differ in Binding Affinity to catB Promoters Expressing Two Cat Gene Clusters. Biosci. Biotechnol. Biochem, 2001,(65):2146~2153
    45 Murakami, S., Hayashi, M., Aoki, K. et al. Cloning and Functional Analysis of Aniline Dioxygenase Gene Cluster, from Frateuria Species ANA-18, that Metabolizes Aniline via an Ortho-cleavage Pathway of Catechol. Biosci. Biotechnol. Biochem, 2003,(67):2351~2358
    46 Kim, S. I., Leem, S. H., Choi, J. S. et al. Cloning and Characterization of Two CatA Genes in Acinetobacter Iwofi K24. J Bacteriol, 1997, (179):5226~5231
    47 Kim, S. I., Leem, S. H., Choi, J. S. et al. Organization and Transcriptional Characterization of the Cat, Gene Cluster in Acinetobacter Iwofi K24. Biochem. Biophys. Res. Commun, 1998, (243):289~294
    48 Kim, S. I., Ha, K. S., Leem, S. H. Differential organisms and Transcription of the Cat Gene Cluster in Aniline-as Similating Acinetobacter Lwoffii K24. J. Biosci. Bioeng, 1999,(88):250~257
    49 Kim, S. I., Yoo, Y C., Kahng, H. Y Complete Nucleotide Sequence and Overexpression of Cat Gene Cluster, and Roles of the Putative Transcriptional Activator CatRl in Acinetobacter Lwofi K24 Capable of Aniline Degradation. Biochem. Biophys. Res. Commun, 2001, (288):305~333
    50 Kim, S. l., Kim, S. J., Park, Y M. Proteome Analysis of Aniline-induced Proteins in Acinetobacter Iwoflii K24. Curr. Microbiol, 2002,(44):61~66
    51 Aoki, K., Shinke, R., and Nishira, H. Metabolism of Aniline by Rhodococcus Erythropolis AN-13.Agric. Biol. Chem, 1983, (47):1611~1616
    52 Murakami, S., Kodama, N., and Aoki, K. et al. Classification of Catechol 1,2-Dioxygenase Family: Sequence Analysis of a Gene for the Catechol 1,2-Dioxygenase Showing High Specificity for Methylcatechols from Gram' Aniline-assimilating Rhodococcus Erythropolis. AN-13. Gene, 1997, (185):49~54
    53 Emtiazi, G., Satarii, M. and Mazaherion, F. The Utilization of Aniline, Chlorinated Aniline, and Aniline Blue as the only Source of Nitrogen by Fungi in Water. Wat.Res, 2001,(35):1219~1224
    54 Michael, L., Christel, H., and Gunthre, D. et al. Arch. Microbial,1990,(155):56~61.
    55 Aoki, K., Kodama, N., Shinke, R. et al. A High level of Accumulation of 2-hydroxymuconic 6-semialdehyde from Aniline by the Transpositional Mutant Y-2 of Pseudomonas Species AW-2. Microbiol. Res, 1997, (152):2097~2104
    56 Murakami, S., Kodama, N., and Aoki, K. et al. Purification, Characterization, and Gene Analysis of Catechol 2,3-dioxygenase from the Aniline-assimilating Bacterium Pseudomonas Species AW-2. Biosci. Bfotechnol. Biochem, 1998,(62):1129~1133
    57 Boon, N., Goris, J., and Top, E. M. et al. Bioaugmentation of Activated Sludge by an Indigenous 3-chloroaniline-degrading Comamonas Testosterone Strain, 12gfp. Appl. Environ. Microbiol, 2000, (66): 2906~2913
    58 Brunsbach, F. R. and W. Reineke. Degradation of Chloroanilines in Soil Slurry by Specialized Organisms. Appl. Microbiol. Biotechnol, 1993,(40): 2~3
    59 Loidl, M., C. Hinteregger, and F. Streichsbier. Degradation of Aniline and Monochlorinated Anilines by Soil-borne Pseudomonas Acidovorans Strains. Arch. Microbiol, 1990, (155):56~61
    60 Boon, N., Goris, J., and Top, E. M. el al. Genetic Diversity Among 3-chloroaniiine- and Aniline-degrading Strains of the Comamonadaceae. Appl. Environ. Microbiol, 2001,(67):1107~1115
    61张忠祥,钱易.废水生物处理新技术.清华大学出版社, 2004:528~533
    62王建龙.生物固定化技术与水污染控制.科学出版社, 2002
    63王建芳,赵庆良,林佶侃.生物强化技术及其在废水生物处理中的应用.环境工程学报. 2007,1(9):40~45
    64 Alves C.F.,Melo L.F.,Vieira M.J. Influence of Medium Composition on the Characteristics of a Denitrifying Biofilm Formed by Alcaligenes Denitrificans in a fluidized Bedreactor. Process Biochem, 2002,37(8):837~845
    65 Fantroussi S E,Agathos S N. Is Bioaugmentation a Feasiblestrategy for Pollutant Removal and Site Remediation.Current Opinion in Microbiology, 2005, 8(3) :268~275
    66 Gentry T J,Rensing C,Pepper I L. New Approaches for Bioaugmentation as a Remediation Technology .Crit Rev En-viron Sci Technol, 2004, 34 (5) :447~494
    67 Wang Jianlong, Wu Libo, Han Liping, et al. Bioaugmentation as a Tool to Enthance the Removal of Refractory Compound in Coke Plant Wastewater.Process Biochem, 2002,(37):831~836
    68 Chin K K,Ong S L,Poh L H,et al. Wastewater Treat-ment with Bacterial Augmentation .Water Sci Technol, 1996, 33(8):17~22
    69 Boon N,Verstraete W,Steven D S. Bioaugmentation as a Tool to Protect the Structure and Function of an Activated-sludge Microbial Community Against a3-Chloroaniline Shock Load .Appl Environ Microbiol, 2003, 69(3):1511~1520
    70 Rittmann B.E,Whiteman R. Bioaugmentation:Acoming of Age.Wat.Qual.Int, 1994, (1) :12~16
    71全向春.生物强化技术及其在废水治理中的应用.环境科学研究. 1999,12(3):22~27
    72 Zaidi B R. Mehta N K. Inoculation of Microorganisms to Enhance Biodegradation of Phenolic Compounds in Industrial Wastewater: Isolation and Identification of Three Indigenous Bacterial Strains General and Applied Microbiology, 1996, 18(5): 249~256
    73全向春,施汉昌等. 4-氯酚存在对生物强化系统降解2,4-二氯酚的影响研究.环境科学学报.2003,23(1):69~73
    74 Anderson W.C. Innovative Site Remediation Technology: Bioremediation. 1995
    75韦朝海,任源,谢波,等.硝基苯与苯胺类废水生物降解协同作用研究.环境科学研究. 1999,12(3):10~13
    76 Jeffrey W T,Upal Cnosh. Particle-scale Understanding of The Bioavail-ability of PAHs in Sediment. Environ Sci Technol. 2002
    77 Chang C-W, Bumpus J A. Oligomers of 4-chloroaniline are Intermediates Formed During its Biodegradation by Phanerochaete Chrysosporium. FEMS Microbiology Letters, 1993, 107:337~ 342
    78姜燕,马毅,吴桂峰.添加不同共代谢基质处理苯胺废水的研究. 2007,32(11)1~3
    79沈东升,徐向阳,冯孝善.微生物共代谢在氯代有机物生物降解中的作用. 1994, 15(4):84~87
    80 Gregory, Kelvin B. Bioaugmentation of Fe (0) for the Remediation of Chlorinated Aliphatic Hydrocarbons. Environ. Eng. Sci. 2000, 17(3):169~181
    81 Grave J W, Joyce T W. A Critical Review of the Ability of Biological Treatment Systems to Remove Chlorinated Organics Discharged by the Paper Industry. Water S A, 1994, (20):155~160
    82 Speece R E. Anaerobic Biotechnology for Industrial Wastewater. Tennessee: Arche Press Pub, 1996: 221~244,276~278.
    83帖靖玺.生物强化技术处理焦化废水中难降解有机物及其相关性分析.西安建筑科技大学硕士毕业论文. 2003,4
    84雷萍,郭爱莲等.焦化废水降解的生物强化条件研究.西北大学学报. 2000,30(6):511~513
    85徐军祥,杨翔华,姚秀清.生物强化技术处理难降解有机污染物的研究进展.化工环保. 2007,27(2):129~133
    86李旭东,杨芸.废水生物处理新技术.精细与专用化学品. 2002,17(1):19~21
    87 Fantroussi S E, Agathos S N. Is Bioaugmentation a Feasible Strategy forPollutant Removal and Site Remediation. Current Opinion in Microbiology, 2005,8(3):268~275
    88 Vogel T M. Bioaugmentation as a Soil Bioremediation Approach. Environ Biotechnol, 1996,7(3):311~316
    89 Saravanane, R. Treatment of Anti-osmotic Drug Based Pharmaceutical Effluent in an Upflow Anaerobic Fluidizedbed System.Water Management,2001,21:563~568
    90 Saravanane, R. Bioaugmentation and Treatment Ocephalexin Drug-based Pharmaceutical Effluent in an Upflow Anaerobic Fluidizedbed System.Bioresource Technology,2001,76(3):279~281
    91徐向阳,张明洲,俞秀娥.高效脱色菌的特性及其在染化废水厌氧处理中的生物强化作用.中国沼气. 2001,19(2):3~8
    92 Zhongtang,Yu. Bioaugmentation with Resin-acid-degrading Bacteria Enhances Resinacid Removal in Sequencin Batchreactor Treating Pulp Mill Effluents.Water Research,2001,35(4):883~890
    93 Selvaratnam.C.Application of Microbiology.Biotechnology.1997,4(2):236~240
    94王连生,张金鸿,佟树敏.优势菌处理高浓度苯胺工业废水的研究.城市环境与城市生态. 1999, 12(3):13~16
    95顾加兵,雷俐玲. H.B.S.微生物生化法处理苯胺污水.工业用水与废水. 2000, 31(5):20~25
    96古杏红,耿书良,李峰.厌氧水解-生物接触氧化法处理苯胺类化土废水.给水排水. 2002, 28 (1): 69~70
    97杨颐康.微生物学.高等教育出版社, 1986:74
    98 Jarvinen K T, et al. High-rate Bioremediation of Chloropheno Contaminated Groundwaterat Low Temperature. Environ.Sci.Technol, 1994, 28:2387~2932
    99 Pignatello J. et al. Response of the Microflora in Outdoor Experimental Streams to Pentachlorophenol: Environmental Factors. Can. J. Microbiol, 1986, 32:38~46
    100姜安玺,韩晓云,何丽荣.投加复合耐冷菌提高低温生活污水处理效果的实验研究.黑龙江大学自然科学学报. 2005, 22(1):1~3
    101陈熹兮,李堃宝,李道棠.低温微生物及其在生物修复领域中的应用.自然杂志. 2002, 23(3):165~171
    102 R. Margesin, G. Feller, C. Gerday, N.J. Russell, Cold-adapted Microorganisms: Adaptation Strategies and Biotechnological Potential, in: G. Botton (Ed.), The Encyclopedia of Environmental Microbiology,vol. 2, Wiley, New York, 2002: 871~885
    103 Rosa Margesin, Pierre-Alain Fonteyne, Bernhard Redl. Low-temperature Biodegradation of High Amounts of Phenol by Rhodococcus spp. and Basidiomycetous Yeasts. Research in Microbiology, 2005,156:68~75
    104 N. Perron, U. Welander. Degradation of Phenol and Cresols at Low Temperatures using a Suspended-carrier Biofilm Process. Chemosphere, 2004, 55:45~50
    105 Jarvinen T K , Milln E S, Puhakka J A. High-rate Bioremediation of Chlorophenol-contaminated Groundwater at Low Temperature. Environ SciTechnol, 1994,28(13):2387~2392
    106 Margesin R., Schinner F. Biodegradation of the Anionic Surfactant Sodium Dodecyl Sulfate at Low Temperatures. International Biodeterioration&Biodegradation, 1998,41:139~143
    107尤勇军,安立超,潘伯宁.冷冻固定化硝化菌去除废水中氨氮的研究.化工环保. 2004,24(5):316~319
    108唐渭,苏凤,曾晓东.固定化微生物废水处理技术及其进展. 2006,19(1):8~10
    109刘效梅,辛宝平,徐文国.微生物颗粒在废水处理中的应用与研究.工业水处理. 2005, 25(8):87~91
    110 C. Domingues, et al. The Influence of Cultrure Condition on Mycelial Structure and Cellulose Productin by Trichoderma Reesei Rut C- 30. Microb. Technol,2000, 26(5-6):394~401.
    111 ho Sing, Jisn Yu. Copper Adsorption and Removal from Water by Living Mycelium of White-rot Fungus. Phanerochaete Chrysosporium. Wat. Res., 1998, 32(9):2746~2752.
    112 A. Sharma, S. R. Padwal-Desai. On the Relationship Between Pellet Size and Aflatoxin Yield in Asper Gillus Parasiticus. Biotechnol. and Bioeng, 1985, 27(11):1577~1580.
    113 S. Linko. Production and Characterization of Extracellularlignin Peroxidase from Immobilized Phanerochaete Chrysosporium in a 10L Bioreactor. Enzyme Microb-technol, 1988, 10(6):410~417.
    114林鹿,王双飞,陈嘉翔.白腐菌对蔗渣浆CEH漂白废水的脱色.工业水处理. 1996, 16(3):25-26.
    115 J. Prosser, A. J. Tough. Growth Mechanisms and Growth Kinetics of Filamentous Microorganism. Biotechnology, 1991, 10(4):253~274.
    116雷德柱,于淑娟.灰树花深层发酵过程中菌丝球形态结构的研究.食用菌学报. 2003, 10(1):6~11.
    117阳葵,王积分.形态解析法用于菌体生长.化工学报. 1999, 8(4);573~576
    118丁乐洪,储炬.产黄青霉形态的显微图像分析研究.中国抗生素杂志. 2003, 3(4):131~134
    119熊宗贵.发酵工艺原理.中国医药科技出版社, 1995, 114
    120 J. Nielsen, P. Krabben. Hyphal Growth and Fragmentation of P Chrysogenum in Suberged Cultrures. Biotechnol Bioeng, 1995,46:588
    121张敬泽,胡东维.立枯丝核菌菌丝隔膜超微结构的研究.菌物系统. 2003, 22(2):319~323
    122高敏.生物质载体菌丝球的形成机制及脱色效能的研究.哈尔滨工业大学硕士学位论文. 2006,7
    123 J. S. Knapp, Fu-m ing Zhang, K. N. Tapley. Decolourisation of Orange 11 by a Wood-rotting Fungus. Chem. Tech. Biotechnol, 1997, 69(3):289~296
    124 Elif Apohan, Ozfer Yesilada. Role of White Rot Fungus Funalia Trogii in Detoxification of Textile Dyes. Basic Microbiol, 2005, 45(2):99~105
    125 S. Kahraman, et al. Biosorption of Copper(II) by Live and Died Biomass of the White Rot Fungi Phanerochaete chrysosporium and Funalia trogii. Eng. Life Sci., 2005, 5(1):72~77
    126刘桂萍,刘长风.霉菌菌丝球对Pb2+的吸附研究.沈阳化工学院学报. 2005, 19(2):56~59
    127吴涓,肖亚中.黄孢原毛平革菌菌丝球对Pb2+的动态吸附及其洗脱.安徽大学学报. 2002, 26(1):26~30
    128胡勇有,刘铁梅.烟束曲霉HLS6的筛选及其对Cr(VI)的吸附特性.华南理工大学学报(自然科学版). 2005, 9(4):73~77
    129张书军,杨敏.应用青霉菌BX1活体吸附水中活性艳蓝KNR.环境科学. 2004, 25(1):26~32
    130辛宝平,邹其猛.吸附菌GX2对活性艳蓝KNR的脱色作用研究.环境科学学报. 2000, 20(5):164~168
    131成文,胡勇有.曲霉菌丝球HX对偶氮染料的吸附脱色.应用与环境生物学报. 2004, 10(4):489~492
    132刘效梅,辛宝平.开放系统中4株丝状真菌的成球生长及其对染料的吸附脱色.环境科学. 2005, 26(4):172~178
    133袁丽梅,张书军.应用气升式反应器培养草酸青霉菌菌丝球的研究.微生物学报. 2004, 44(3):326~33
    134黄锦丽,龙敏南,傅雅婕.产酸克雷伯氏菌的吸附固定及其产氢研究.厦门大学学报. 2005, 9(4):710~714
    135马放,任南琪,杨基先.污染控制微生物学实验.哈尔滨工业大学出版社, 2002:53~57, 67~84, 105
    136 MIDI Company’s writers. Manual-6.0 Illustration Rof Reader. USA, 2005:16,
    23~30
    137 P. Hugenholtz, B.M. Goebel, and N.R. Pace, Impact of Culture-independent Studies on the Emerging Phylogenetic View of Bacterial Diversity. J Bacteriol. 1998, 180(18):4765~4774
    138候宁.硝化混合菌群生理生态特性及应用研究.哈尔滨工业大学硕士论文. 2006:23~25, 31~32
    139国家环保局水和废水检测分析方法编委会.水和废水检测分析方法(第三版).中国环境科学出版社, 1989
    140管斌,丁友昉,谢来苏等.还原糖测定方法规范.无锡轻工大学学报. 1999, 18(3):74~78
    141 Schmidt S K, Scow K M. Kinetic of P-nitrophenol Mineralization by a Pseudomonas sp: Effects of Second Substrates. Appl Environ Microbiol, 1987, 53: 2617~2623
    142孙剑辉,梁志伟,孙靖宇.不同共基质下厌氧生物降解间苯二酚的研究.环境科学与技术. 2007, 30(5):24~26
    143苏丹,李培军,王鑫.共基质对10株细菌降解芘的作用.应用生态学报. 2007, 18(3):636~640
    144张瑞玲,廉景燕,黄国强等.共代谢基质对甲基叔丁基醚降解的影响.天津大学学报. 2007, 40(4):463~467
    145 Wang K W, Baltzis B C, Lewandowski G A. Kinetics of Phenol Biodegrad-ation in the Presence of Glucose. Biotechnology and Bioengineering, 1996, 51(1):87~94
    146 Lackmann R K, Maier W J. Removal of Chlorinated Organics by Conventional Biological Waste Treatment. Proceeding of the Thirty-Fifth Industrial Waste Conference .Purdue University, 1981, 502~515
    147韦朝海,任源,吴超飞等.专性好氧菌降解苯胺废水的动力学研究.环境科学研究. 1999, 12(4):15~18
    148顾夏声.废水生物处理数学模式(第二版).清华大学出版社, 1993, 52~53
    149 Eckenfelder W W.水污染控制实验.同济大学译.上海科学技术出版社, 1980:125~152
    150贾士儒.生物反应工程原理(第二版).科学出版社, 2003:61~65
    151沈耀良,王宝贞.废水生物处理新技术-理论与应用.中国环境科学出版社, 1999:67
    152上海市环境保护局编委会.废水生化处理.同济大学出版, 1999, 11
    153耿安朝,张洪林.废水生物处理发展与实践.东北大学出版社, 1997,10
    154罗国维,杨丹菁,林世光.投菌接触氧化法处理洁霉素废水的机理研究.环境科学. 1994, 15(6):20~32
    155贾省芬,刘志培,杨惠芳.厌氧-好氧投菌法处理印染废水.环境科学. 1992, 13(5):20~24
    156韩力平,王建龙,施汉昌等.固定化及游离态皮氏伯克霍尔德氏菌降解喹啉德实验研究.环境科学学报. 2000,20 (3):379~381
    157孙娜,林波,李风琴等.水处理填料的研究进展.江西化工. 2005(4):8~10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700