用户名: 密码: 验证码:
岩溶隧道突水风险评价与预警机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国西部大开发战略的快速推进,西部地区交通、能源等基础建设大幅度展开,长大岩溶隧道建设越来越多。岩溶地区长大隧道修建过程中,经常遇到突水突泥、岩爆、瓦斯等地质灾害,其中突水突泥尤为严重。突水突泥灾害轻则冲毁机具、贻误工期,重则造成人员伤亡和重大财产损失,岩溶隧道突水风险评价与预警机制已成为亟待解决的问题。
     湖北沪蓉西高速公路乌池坝隧道隧址区存在多条地下暗河系统,地下水位150m左右,与已发生突水的宜万铁路马鹿箐隧道平面相距2-4kmm,同处一个大的水文地质单元;齐岳山隧道穿越齐岳山背斜、两条断层和2条地下暗河系统,最高地下水位超过100m,与发生多次突(涌)水的齐岳山铁路隧道同处一个水文地质单元,地表岩溶洼地等岩溶形态极为发育;龙潭隧道穿越3条断层和覃春泉暗河地下水系统,水位最高可达100m左右,均存在严重突水突泥风险。为保证施工和运营安全,本文以这些突水高风险岩溶隧道为研究对象,运用岩溶学、地质学、模糊数学、物探技术等手段,研究了岩溶隧道突水风险评价及预警机制,取得了一系列有价值的研究成果。
     在系统分析文献与现场调研的基础上,分析了岩溶发育的基本规律,研究了岩溶发育的主控因素,即岩溶发育主要受地层岩性、地下水动力分带、地质构造和地形地貌等因素控制。通过在沪蓉西高速公路沿线几座高风险岩溶隧道开展突水地质灾害控制实践研究和宜万铁路高风险岩溶隧道突水地质灾害调研,研究了湖北沪蓉西高速公路沿线岩溶发育的基本规律,提出了沿线发生突水灾害的主要蓄水构造类型。
     岩溶隧道突水受多种因素的综合影响,突水风险评价还处于起步阶段。在研究岩溶隧道突水主要影响因素的基础上,提出了岩溶隧道突水风险的主要依据,建立了突水风险评价指标体系。利用层次分析法对影响突水的各因素进行权重分析,得出各指标的权重;采用调查统计方法确定各指标的隶属度,利用模糊综合评判方法建立了突水风险评价模型,提出了4级突水风险分级标准,实现了隧道突水风险定量化。
     利用风险评价方法得出的突水高风险地段范围较大,不能得山具体哪一个位置会发生突水,为缩小范围,建立了岩溶隧道突水风险源辨识-隧道综合超前地质预报技术体系。通过大量岩溶隧道综合超前预报实践,分析了各种预报方法的优缺点和对不同地质体的响应机理,针对突水风险源的特点和各种预报仪器对突水风险源的敏感度,针对不同风险等级的区段,制定不同的适合突水风险源辨识的综合超前地质预报方案,以找出突水的重点预警地段。
     岩溶隧道突水预警机制是隧道突水防灾减灾的重要手段。根据隧道突水能造成的危害、紧急程度和发展态势,将预警等级分为四级,依次用红、橙、黄、蓝四种颜色表示,即四色预警。根据隧道施工特点,制订了预警机制流程和预警发布流程;建立了隧道突水预警指标体系,分析了预警体系各预警指标的分级标准,提出了隧道突水的预警警度和警限;针对不同的预警等级,提出了突水灾害预控对策。
     为减轻突水造成的灾害程度,制订了隧道突水应急预案。重点分析了隧道突水时,水在隧道中的流动规律,优化了逃生路线。根据隧道施工实际情况,制定了应急演练方案,并实施了应急演练,为防灾减灾提供了依据。
     在湖北沪蓉西高速公路乌池坝隧道、齐岳山隧道、龙潭隧道等高风险岩溶隧道施工过程中,进行了突水风险评价、突水风险源辨识、四色预警和基于应急预案的应急演练,多次避免和降低了突水突泥灾害造成的损失,保证了施工安全和施工进度。
Accompanying the enforcement of strategy to develop western regions, transport, energy and other infrastructures of western China expand substantially and the long tunnel construction in karst zone increases dramatically. In the process of long tunnel construction, geological hazards such as water inrush and mud outburst, rock burst, gas, and etc. often occur. Water inrush and mud outburst are particularly serious which often lead to destroyed equipments and delayed construction, even cause casualties and economic losses. Water inrush risk evaluation and early warning have been the issues that require to be solved urgently.
     There are several underground rivers in the area of Wuchiba Tunnel and the groundwater level is about 150m. It is about 2-4km near to Maluqing Tunnel in the same hydrology geology unit. Qiyueshan Tunnel crosses Qiyueshan anticline, two faults and two underground rivers. The groundwater level is about 100m. It is at the same hydrology geology unit with the Qiyueshan Railway Tunnel which had occurred water inrush many times. The karst is very developed in the area. Longtan Tunnel crosses three faults and Qinchunhe Underground River. The groundwater level is about 100m. All the tunnels mentioned above have seriously water inrush risk. To ensure the safety of tunneling and operation, according to the high risk karst tunnels of Hubei Hurongxi highway, the water inrush risk and early warning mechanism were studied and some meaningful results were obtained by applying the method of karstology, geology, geophysical exploration technique.
     The basic karst development rule was analyzed based on studying the literatures and doing research. The main controlling factors of karst development, which are affected by stratum lithology, underground water hydrodynamic zoning, geological structure, landform and etc., were mentioned. Through implementing water inrush geological disasters controlling research on the high water inrush risk tunnels of Hurongxi highway and researching karst water inrush into tunnel disasters of Yichang-Wanzhou Railway, the basic law of karst development of the highway was studied and the main types of water storage structures along the highway were proposed.
     Water inrush into karst tunnel is comprehensively influenced by various factors and karst tunnel water inrush risk evaluation is still at the starting stage. The main basis of water inrush is proposed and the evaluation index system is established based on the research on main influence factors of water inrush into karst tunnel. The weight of index is obtained by AHP (The Analysis Hierarchy Process) and the membership degree is gained by statistical methods. The water inrush risk is evaluated by fuzzy comprehensive evaluation method. The risk is quantized by the fuzzy comprehensive evaluation method.
     The high risk water inrush scope given by the risk evaluation means is large. To reduce the scope, it is necessary to establish the identification of risk sources system which is comprehensive advanced geological forecast. At different risk grading part along the tunnel, different programs on identifying the water inrush risk sources are made. The key locality of water inrush can be found for the early warning indexes monitoring.
     Early warning mechanism of water inrush into karst tunnels is one of the most important means for disaster prevention and reduction. The early warning grading was devided into four classes, which was represented by red, orange, yellow and blue according to the damage, emergency degree and development situation. The early warning mechanism flow and early warning publishing procedure is made according to the characteristics of tunneling. The early warning indexes system is established. The standard of each index is put forward and the warning degree and warning limit of water inrush are proposed. Different pre-control measures are mentioned for different warning grade.
     The emergency plan is formulated to reduce the damage of water inrush. The law of water flow in tunnel when water inrush into tunnel was analyzed and the escape route was optimized. According to the actual construction situations, the emergency training scheme was made and emergency training was implemented with basis of disaster prevention and reduction.
     In the construction of Wuchiba Tunnel, Qiyueshan Tunnel, Longtan Tunnel and etc., water inrush risk evaluating, identification of waterinrush risk sources and four color early warning were implemented. Losses caused by water inrush and mud burst were avoided and decreased many times by implementing the results.The construction safety and construction period were guaranteed.
引文
[1]王梦恕.21世纪山岭隧道修建的趋势[J].铁道标准设计,2004,9:38-40.
    [2]黄镇东,巩德顺,邹广严等.西部大开发交通要先行[N].人民日报,2000年08月28日第012版/专版.
    [3]林蓉辉.减轻自然灾害预警系统国际讨论会在德国举行[J].国际地震动态,1999(3):16-18.
    [4]中国国际减灾十年委员会.中华人民共和国减灾规划[J].中国减灾,1997,7(3):1-6.
    [5]陈福生,陈振骅译,米契尔著.商业循环问题及其调整[M].北京:商务印书馆,1962.07.
    [6]朱应庚,王锟,哈伯勒.繁荣与萧条[M].北京:商务印书馆,1963.07.
    [7]张泽厚.中国国经济波动与监测预警[M].北京:中国统计出版社,1992:56-62.
    [8]第42届联合国大会第169号决议[J].中国减灾,1991,1:11-12.
    [9]第44届联合国大会.国际减轻自然灾害十年国际行动纲领[J].中国减灾,1991,1:12-14.
    [10]Smith K. Environmental hazards:assessing risk and reducing disaster. Routledge, London. 1996.
    [11]John Twigg. The human factor in early warnings:Risk perception and appropriate communications. In:Jochen Zschau, Andreas N. Kuppers(Eds.). Early warning systems for natural disaster reduction. Springer.2003,19-25.
    [12]张之淦.岩溶圈系统及其研究方法[J].中国岩溶,2007,26(1):1-10.
    [13]Robert L. Folk. Practical Petrographic Classification of Limestones. AAPG Bulletin [J], 1959, Vol.43(1):1-38.
    [14]James Lee Wilson. Characteristics of Carbonate-Platform Margins [J]. AAPG Bulletin. 1974, Vol. (5):810-824.
    [15]Robin G.C. Bathurst. Carbonate sediments and their diagnosis [M]. Elsevier scientific publishing company,1976.
    [16]Burger, A., Dubertret, L.. Hydrogeology of karstic terrains. Published by IAH, Paris,1975.
    [17]Quinlan J. F.. Special problems of ground-water monitoring in karst terrains, Ground water and vadose zone monitoring, ASTMSTP1053,1990.
    [18]Filipponi M, Jeannin PY, Parriaux A. Improvements for the prediction of karst occurrences in tunneling. geoscience-meeting.scnatweb.ch,2001.
    [19]Philipp Hauselmann, Pierre-Yves Jeannin, Thomas Bitterli. Relationships between karst and tectonics:case-study of the cave system north of Lake Thun (Bern, witzerland) Relations entre karst et tectonique:I'exemple du reseau speleologique du nord du lac de Thoune (Berne, Suisse). Geodinamica Acta, Volume 12, Issue 6, November 1999, Pages 377-388.
    [20]L. Plan, K. Decker, R. Faber attributed sinks-a GIS-tool quantifying morphological vulnerability parameters in karstic catchment area, geophysical research abstract,10280, 2003(vol15),European geophysical society 2003.
    [21]Pascal Fenart, N.N. Cat, Claude Drogue, Doan Van Canh, Severin Pistre. Influence of tectonics and neotectonics on the morphogenesis of the peak karst of Halong Bay, Vietnam. Geodinamica Acta, Volume 12, Issues 3-4, May-August 1999:193-200.
    [22]Randall C. Orndorff, George E. Harlow, Hydrogeologic framework of the northern Shenandoah valley carbonate aquifer system, US geological survey karst interest group proceedings, Shepherdstown, west Virginia, August,20-22,2002.
    [23]Randall C. Orndorff, David J. Weary, Stanka Sebela, geologic framework of the ozarka of south-central Missouri-contributions to a conceptual model of karst, geological survey karst interest group proceedings, water-resources investigations report 01-4011,2001.
    [24]卢耀如.中国南方喀斯特发育基本规律的初步研究[J].地质学报,1965,45(1):108-128.
    [25]任美锷,刘振中,王飞燕等.中国岩溶发育规律的若干问题[J].南京大学学报(自然科学版),1979,4:95-108.
    [26]易志雄.醴陵市区岩溶发育规律与岩溶地基工程分类[J].湖南地质,1998,17(2):127-131.
    [27]陈佑德.贵阳市开阳县香火岩风景区的岩溶风景类型及成因探讨[J].地质地球化学,2001,29(2):100-103.
    [28]沈继方,李焰云,徐瑞春等.清江流域岩溶研究,北京:地质出版社,1996,8.
    [29]王增银,万军伟,姚长宏.清江流域溶洞发育特征[J].中国岩溶,1999,18(2):151-158.
    [30]Alvin K. Benson. Applications of ground penetrating radar in assessing some geological hazards:examples of groundwater contamination, faults, cavities[J]. Journal of Applied Geophysics,1995,33(1-3):177-193.
    [31]Ulriksen C. Peter F.. Application of impulse radar to civil engineering [M]. Lund:Dept. of Engineering Geology,1982.
    [32]Kevin Black, Peter Kopac. The application of ground penetrating radar in highway engineering [J].Public Roads,1992,56(3):96-103.
    [33]Casas A, Lazaro R, Vilas M, et al. Detecting karstic cavities with ground penetrating radar at different geological environments in Spain[C]// Proceedings of the 6th International Conference on Ground Penetrating Radar. Sendai, Japan,1996:455-460.
    [34]John W. Brooks, Applications of GPR Technology to Humanitarian Demining Operations in Cambodia:Some Lessons, Brooks Enterprises International, Inc.,1996.
    [35]Christian D. Klose fuzzy rule-based expert system for short-range seismic prediction [J]. Computers & Geosciences,2002,28(3):377-386.
    [36]T. Inazaki, H. Isahai Stepwise application of horizontal seismic profiling for tunnel prediction ahead of the face, The Leading Edge,1999,18(12):1429-1431.
    [37]Nobuyuki Shimizu, Takuro Kato. Development and application of seismic reflection survey in a tunnel using hydraulic impactor and Vibrator, SEGJ International Symposium,2004.
    [38]Edward Button, Hetfried Bretterebner and Peter Schwab, The Application of TRT-Ture Reflection Tomogaphy-at the Unterwald Tunnel, Geophysics,2002, No.2, P:51-56.
    [39]Ioannis F. Louis, Antonios P. Vafidis, Filippos I. Louis, Nikolaos Tassopoulos. The use of geophysical prospecting for imaging the aquifer of Lakka carbonate [J]. Mandoudi Euboea, Greece, journal of the Balkan geophysical society,2002, Vol.5(3):97-106.
    [40]Franjo Sumanovac, Mario Weisser, Evaluation of resistivity and seismic methods for hydrogeologycal mapping in karst terrains, Journal of Applied geophsics,2001,7:13-38.
    [41]Pitambar Gautam, Surendra Raj Pant, Hisao Ando. Mapping of subsurface structure with gamma ray and electrical resistivity profiles:a case study from Pokhara valley, central Nepal [J]. Journal of applied geophysics 2000,45(2):97-110.
    [42]王梦恕.对岩溶地区隧道施工水文地质超前预报的意见[J],铁道勘查,2004,1:7-10.
    [43]白冰,周健.探地雷达测试技术发展概况及其应用现状[J].岩石力学与工程学报,2001,20(4):527-531.
    [44]吴俊,毛海和,应松,等.地质雷达在公路隧道短期地质超前预报中的应用[J].岩土力学,2003,24(supp):154-157.
    [45]余志雄,薛桂玉,周创兵.复信号分析技术及其在地质雷达数字处理中的应用[J].岩石力学与工程学报,2005,24(5):798-802.
    [46]刘斌,李术才,李树忱等.复信号分析技术在地质雷达预报岩溶裂隙水中的应用研究[J],岩土力学,30(7):2191-2196.
    [47]柳刚,李术才‘,薛诩国等.基于小波变换的雷达低信噪比信号处理技术及应用研究[J].工程勘察,2009,9:85-90.
    [48]上鹰,陈强,魏有仪,等.红外探测技术在圆梁山隧道突水预报中的应用[J].岩石力学与工程学报,2003,22(5):855-857.
    [49]李貅,郭文波.瞬变电磁法在煤田矿井涌水通道勘察中的应用[J],西安工程学院学报,2000,22(3):35-38.
    [50]李貅,武军杰,曹大明等.一种隧道水体不良地质体超前地质预报方法一瞬变电磁法[J]工程勘察,2006,3:70-75.
    [51]苏茂鑫,李术才,李貅.瞬变电磁三维成像技术在地质预报中的应用[J].山东大学学报(工学版),2009,39(4):61-64.
    [52]吴有信.宜万铁路马鹿箐隧道瞬变电磁法勘察效果[J].工程地球物理学报,2007,4(1):21-26.
    [53]肖书安,G. Sattel.瑞士隧道工程中的地质超前预报测量[J].广东公路交通,1998,S1:115-120.
    [54]齐传生.TSP202隧道地震波超前地质预报系统的应用[J].世界隧道,1999,(1):36-40.
    [55]刘志刚.隧道地震勘探(TSP)在工程中的应用[J].铁道建筑技术,2001,(5):]-3.
    [56]刘志刚,刘秀峰.TSP(隧道地震勘探)在隧道隧洞超前预报中的应用与发展[J].岩石力学与工程学报,2003,22(88):1399-1402.
    [57]刘秀峰,李忠.TSP探测数据采集和处理中应注意的几个问题[J].石家庄铁道学院学报,2002,15(2):56-59.
    [58]李忠,刘秀峰,黄成麟.提高TSP202超前预报系统探测距离的技术措施的研究[J].岩石力学与工程学报,2003,22(3):472-475.
    [59]薛翊国,李术才,张庆松等.TSP203超前预报系统探测岩溶隧道的应用研究[J].地下空间与工程学报,2007,3(7):1187-1191.
    [60]许振浩,李术才,张庆松.TSP超前地质预报地震波反射特性研究[J].地下空间与工程学报,2008,4(4):640-644.
    [61]孙克国,李术才,张庆松.TSP在岩溶区山岭隧道预报中的应用研究[J].山东大学学报(工学版),2008,38(1):74-79.
    [62]钟世航.陆地声纳法的原理及其在铁路地质勘测和隧道施工中的应用[J].中国铁道科学,1995,16(4):48-55.
    [63]钟世航,曹大明.隧道中用陆地声纳法在开挖的岩面或衬砌表面测围岩松弛带深度[J].岩石力学与工程学报,2005,24(10):1722-1727.
    [64]朱劲,李天斌,李永林等.Beam超前地质预报技术在铜锣山隧道中的应用[J].工程地质学报,2007,15(2):258-262.
    [65]杨卫国,王立华,王力民.BEAM法地质预报系统在中国TBM施工中应用[J].辽宁工程技术大学学报,2006,(S2)
    [66]孙广忠.军都山隧道快速施工超前地质预报指南[M].北京:中国铁道出版社,1990.
    [67]刘志刚.概论岩溶或地质复杂隧道隧洞地质灾害超前预报技术[J].铁道建筑技术,2003(2):1-5.
    [68]曲海峰,刘志刚,朱合华.隧道信息化施工中综合地质预报技术[J].岩石力学与工程学报,2006,25(6):1246-1251.
    [69]齐传生,王洪勇.圆梁山隧道综合超前地质预报技术[J].铁道勘察,2004,(5):52-56.
    [70]C. W. Zang, H. W. Huang, Z. X. Zhang. Forecasting the strata condition of along road tunnel by using synthetic judgement[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41, (3):406-407.
    [71]谢勇谋.国道317线鹧鸪山隧道施工地质预报研究[D].成都理工大学,2004.
    [72]闫红江.牛岭界隧道施工综合地质预报技术[J].现代隧道技术,2005,42(5):60-65.
    [73]王锦山,王力,曹志刚等.厦门海底隧道综合超前地质预报实践[J].岩石力学与工程学报,2007,26(11):2309-2317.
    [74]李术才,薛翊国,张庆松,等.高风险岩溶地区隧道施工地质灾害综合预报预警关键技术研究[J].岩石力学与工程学报,2008,27(7):1297-1307.
    [75]李术才,李树忱,张庆松,等.岩溶裂隙水与不良地质情况超前预报研究[J].岩石力学与工程学报,2007,26(2):217-224.
    [76]张庆松,李术才,韩宏伟等.岩溶隧道施工风险评价与突水灾害防治技术研究[J].山东大学学报(工学版),2009,39(3):106-110.
    [77]薛翎国,李术才,张庆松等.隧道信息化施工岩溶裂隙水超前地质预报[J].岩土力学, 2008,29(12):3360-3364.
    [78]Einstein H H, Vick S G. Geological model for tunnel cost model[J]. Proc Rapid Excavation and Tunneling Conf,2nd,1974:1701-1720.
    [79]Einstein H. H., Chiabverio F, Koppel U. Risk analysis for Alder tunnel[J]. Tunnels & Tunneling,1994,26(11):28-30.
    [80]Einstein H. H., Risk and risk analysis in rock engineering[J], Tunneling & Underground Space Technology,1996:141-155.
    [81]Snel A. J. M., Van Hasselt D.R.S.. Risk management in the Amsterdam North/South Metro line A matter of process-communication insteas of calculation[A]. Proceedings of the world tunnel congress 99,1999,179-186.
    [82]Snel A J M. Society, Tolerable and the ALARP principle[J]. In:Melchers RE, Stewart MG, Editors. Probabilistic risk and hazard assessment. Netherlands:Balkema,1993:243-295.
    [83]Sharp J V, Kam J C, Birkinshaw M. Review of criteria for inspection and maintenance and artic engineering[J](OMAE 1993),1993,2:363-371.
    [84]R·Stuzk, L. Olsson, U·Uohansson, Risk and Decision Analysis for Large Underground Projects as Applied to the Stock holm Ring Road Tuniels[J], Tunnelling and Underground Space Technology,1996,11 (2):157-164.
    [85]B. Nilsen, A. palmstrom, H. Stille, Quality control of a sub-sea tunnel project in complex ground conditions[J], Challenges for the 21st century Century Proceedings of World Tunnel Congress'99. Balkema, Oslo,1992,137-145.
    [86]Heinz D. Challenges to Tunnelling Engineers[J]. Tunnelling and Underground Space Technology,1996,11(1):5-10.
    [87]Isaksson T. Model for estimation of time and cost, based on risk evaluation applied to tunnel projects[D]. Division of Soil and Rock Mechanics, Royal Institute of Technology, Stock holm,2002.
    [88]左藤久,田中胜雄.日本隧道工程的发展和灾害情祝的统计[J].先明其译.隧道及地下工程,1998,(4):9.
    [89]先明其.隧道工程灾害事例调查报告[J].隧道译丛,1994,(5):63.
    [90]Reilly, J. J.. The management process for complex underground and tunneling projects[J]. Tunnelling and Underground Space Technology,2000,15 (1):31-44.
    [91]G. T. Clark, A. Borst. Addressing risk in Seattle's underground[J]. PB Network,2002, (1): 34-37.
    [92]S(?)ren Degn Eskesen, Per Tengborg, Jorgen Kampmann, et al. Guidelines for tunnelling risk management:International Tunnelling Association, Working Group No.2 [J]. Tunnelling and Underground Space Technology[J].2004,19(3):217-237.
    [93]Reilly, Brown. Management and Control of Cost and Risk for Tunneling and Infrastructure Projects[C]. Proceedings of the30th ITA-AITES World Tunnel Congress, Singapore, May 2004:22-27.
    [94]范益群.地下工程深基坑施工过程安全性分析若干理论问题研究及其工程应用[D].大连理工大学,1998.
    [95]1. McFeat-Smith, K.W. Harman. IMS risk evaluation system for financing and insuring tunnel projects[J]. Tunnelling and Underground Space Technology,19(4-5):334.
    [96]黄慷,杨林德.崇明越江盾构隧道工程耐久性失效风险研究[J].现代隧道技术,2004,41(2):8-13.
    [97]陶履彬.工程风险分析理论与实践-上海崇明越江通道工程风险分析[M].上海:同济大学出版社,2006.
    [98]黄宏伟.隧道及地下工程建设中的风险管理研究进展[C].2005全国地铁与地下工程技术风险管理研究会论文集,2005,]:16-26.
    [99]陈龙.盾构隧道施工期风险分析与评估研究[D].同济大学,2004.
    [100]杨林德,黄慷.水底隧道管片构件耐久性失效风险研究[J].地下空间与工程学报,2004,24(1):1-6.
    [101]陶履彬,张奎鸿,汪炳(?).长江口越江工程桥隧方案比选风险评估[J].上海公路,2004,1:43-47.
    [102]苏燕,周健.隧道抗震风险评估初探[J].福州大学学报(自然科学版),2004,32(1):65-68.
    [103]王岩,黄宏伟.地铁区间隧道安全评估的层次-模糊综合评判法[J].地下空间与工程学报,2004,24(3):301-305.
    [104]黄宏伟,朱琳,谢雄耀.上海地铁11号线关键节点工可阶段工程风险评估[J].岩土工程学报,2007,29(7):1103-1107.
    [105]闰玉茹,黄宏伟,胡群芳等.大连湾海底隧道钻爆法施工风险评估研究[J].岩石力学与
    工程学报,2007,26(S2):3616-3624.
    [106]尤建新,谭旋,杜学美.以风险管理为核心的地铁工程一体化体系整合[J].地下空间与工程学报,2006,2(1):28-31.
    [107]姚浩,周红波,蔡来炳等.软土地区土压盾构隧道掘进施工风险模糊评估[J].岩土力学,2007,28(8):1753-1756.
    [108]沈荣喜,吴秀仪,刘长武等.海底隧道施工过程中突水风险研究[J].武汉理工大学学报(交通科学与工程版),2008,32(3):385-388.
    [109]李剑.基于模糊综合评价的水中悬浮隧道风险分析[J].地下空间与工程学报,2008,4(2):383-386.
    [110]赵延喜,徐卫亚.基于AHP和模糊综合评判的TBM施工风险评估[J].岩土力学,2009,30(3):793-798.
    [111]刘丹,杨立中.利用环境同位素预测秦岭特长隧道的突水风险[J].西南交通大学学报,2003,38(6):629-632.
    [112]韩行瑞.岩溶隧道涌水及其专家评判系统[J].中国岩溶,2004,23(3):213-218.
    [113]白明洲,许兆义,王连俊,等.深埋隧道岩溶突水灾害的地质条件研究[J],铁道工程学报.2006,3:21-24.
    [114]白明洲,许兆义,王连俊,等.复杂岩溶地区隧道施工突水地质灾害研究[J],中国安全学报,2006,16(1):114-118.
    [115]李冰,白明洲,许兆义.宜万铁路野三关隧道施工期岩溶灾害危险性分析与安全对策研究[J],中国安全学报,2006,Vol.16(1):114-118.
    [116]余昆.成昆线南段泥石流预警系统的研制和应用[J].铁道工程学报,1986,3(4):18-25.
    [117]刘传正.关于地质灾害涵义及其分类分级的探讨.中国地质灾害与防治学报[J],1994,5(S1):398-401.
    [118]刘传正.地质灾害预警工程体系探讨[J].水文地质工程地质,2000,4:1-4.
    [119]刘传正.区域滑坡泥石流灾害预警理论与方法研究[J].水文地质工程地质,2004,3:1-6.
    [120]刘传正.突发性地质灾害的监测预警问题[J].水文地质工程地质,2001,2:1-4.
    [121]廖育民.地质灾害预报预警与应急指挥及综合防治实务全书[J].哈尔滨:哈尔滨地图出版社,2003.
    [122]佘廉,姚志勋,茅荃.公路交通灾害预警管理[M].河北科学技术出版社,2004,01.
    [123]佘廉,李睿,李红九.铁路交通灾害预警管理[M].河北科学技术出版社,2004,01.
    [124]佘廉,王超,陈胜军等.水运交通灾害预警管理[M].河北科学技术出版社,2004,01.
    [125]李红杰,吴荣俊,许永胜等.采掘业灾害预警管理[M].石家庄:河北科学技术出版社,2004,01.
    [126]刘志刚,赵勇.隧道隧洞施工地质技术[M].中国铁道出版社,2001,12.
    [127]隋海波,程久龙.矿井工作面底板突水安全预警系统构建研究[J].矿业安全与环保,2009,36(1):58-60.
    [128]霍灵军,张炜,王志山.余吾煤业公司奥灰突水水质分析预警系统的开发及应用[J].煤,2008,17(9):4-6.
    [129]高延法,章延平,张慧敏等.底板突水危险性评价专家系统及应用研究[J].岩石力学与工程学报,2009,28(2):253-258.
    [130]胡子平.复杂岩溶隧道突水突泥防灾报警系统设计[J].现代隧道技术,2009,44(6):48-54.
    [131]刘国昌.地质力学及其在水文地质工程地质方面的应用[M].北京:地质出版社,1979.
    [132]ZHANG Zhigan. Karst type in China[J]. Geojournal,1980,4(6):541-570.
    [133]王增银,沈继方,徐瑞春等.鄂西清江流域岩溶地貌特征及演化[M].地球科学,22(4):439-444.
    [134]王之汉,李卧东,李启光等.岩爆预测的模糊数学综合评判方法[J].岩石力学与工程学报,1998,17(5):493-501.
    [135]刘端伶,谭国焕,李启光,等.岩石边坡稳定性和Fuzzy综合评判法[J].岩石力学与工程学报,1999,18(2):170-175.
    [136]许传华,任青文.地下工程围岩稳定性的模糊综合评判法[J].岩石力学与工程学报2004,23(11):1852-1855.
    [137]刘伟韬,张文泉,李加祥.用层次分析-模糊评判进行底板突水安全性评价[J].煤炭学报,2000,25(3):278-282.
    [138]刘伟韬,李加祥,张文泉.顶板涌水等级评价的模糊数学方法[J].煤炭学报,2001,26(4):399-403.
    [139]王彩华,宋连天.模糊论方法学[M].北京:中国建筑工业出版社,1988.2.
    [140]肖盛燮.模糊数学与工程应用[M].成都:成都科技大学出版社,1993.9.
    [141]赵焕臣,许树伯,和金生.层次分析法-一种简易的新决策方法[M].北京:科学出版
    社,1986.
    [142]秦寿康.综合评价原理与应用[M].北京:电子工业出版社,2003.
    [143]黄顺康.公共危机预警机制研究[J].西南师范大学学报(人文社会科学版),2006,32(6):115-119.
    [144]张曹力.关于我国公共危机预警机制的研究[D].西南交通大学,2007.
    [145]杨军.关于防灾减灾预警机制及预警工程的若干讨论[J].防灾减灾工程学报,2003,23(2):1-9.
    [146]张维平.突发公共事件社会预警机制的建构基础[J].西安交通大学学报(社会科学版),2006,26(1):14-17.
    [147]Peter L. deFur, Michelle Kaszuba. Implementing the precautionary principle [J]. The Science of the Total Environment,2002,288(1-2):155-165.
    [148]董华,张吉光.城市公共安全-应急与管理[M].北京:化学工业出版社,2006,5.
    [149]中交第一公路工程局有限公司.公路隧道施工技术细则JTG/T F60-2009[S].北京:人民交通出版社,2009.
    [150]重庆交通科研设计院.公路隧道设计规范JTG D70-2004 [S].北京:人民交通出版社,2004.
    [151]中华人民共和国交通部.公路隧道施工技术规范JTJ 042-1994[S].北京:人民交通出版社,1995.
    [152]Kostas G. Zografos, Teti Nathanailand Panos Michalopoulos. Analytical Framework for Minimizing Freeway-Incident Response Time [J]. Journal of Transportation Engineering. 1993,119(4):535-549.
    [153]Fraser-Mitchell, J. N. An object-oriented simulation (CRISP II) for fire risk assessment. Fire Safety Science,1994,4:793-804.
    [154]Fiedrich, F. Gehbauer, U. Rickers. Optimized resource allocation for emergency response after earthquake disasters[J]. Safety Science,2000,35:41-57.
    [155]付恩俊,唐安东.井下火灾期间最佳避灾路线的选择[J].煤矿安全,2006,10:32-34.
    [156]肖国清,温丽敏,陈宝智.基于遗传算法的毒气泄漏时最佳疏散路径的研究[J].湘潭矿业学院学报,2001,16(4):9-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700