用户名: 密码: 验证码:
若干类生物动力系统的复杂性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用非线性动力系统理论,广义系统理论以及相关控制理论,研究了若干类生物动力系统的复杂性,其中包括正常生物种群动力系统的动态特性,广义生物经济系统的动态特性和混杂生物经济系统的动态特性.研究的主要内容涉及到这些系统的稳定性,各类分岔和混沌现象,脉冲现象以及脉冲状态反馈控制和混沌稳定控制等问题.全文工作包括如下几个方面:
     (1)介绍了生物动力系统的研究现状和进展,主要包括传染病动力学的研究进展,浮游生态系统动力学的研究进展和种群动力学的研究进展.特别地,列举出了与本文工作相关的若干类生物种群动力系统的模型,并介绍了目前这些生物模型的研究现状.此外,还介绍了广义生物动力系统的研究现状.
     (2)本文研究了两类具有Beddington-DeAngelis功能性反应和收获的捕食生物模型的动态复杂性.功能反应函数表示捕食者与食饵的相互作用关系Beddington-DeAngelis功能反应兼具HollingⅡ类功能性反应和比率型功能性反应的特点,而且避免了它们的缺陷,因而更为接近现实.但目前,还没有关于带有Beddington-DeAngelis功能性反应的离散捕食模型和脉冲状态反馈作用下这类捕食模型的分岔及周期解方面的研究.本文的研究填补了这方面研究的空白.考虑到生物种群世代不重叠性,首先研究了该类离散捕食生物模型的动态复杂性和控制,利用中心流形定理和分岔理论,获得了系统出现Flip分岔和Hopf分岔的分岔条件,通过绘制分岔图和Lyapunov(?)指数图,证明了混沌现象的存在性,进一步地,设计的状态延时反馈控制器有效消除了分岔和混沌现象,并从生物意义角度给出了该控制器的合理解释.另一方面,讨论了该类生物模型在脉冲状态反馈控制下的动态复杂性,应用脉冲控制理论,得到了两个Poincare映射,给出了周期解的存在及其稳定条件,同时分岔图显示出系统复杂的动态行为,包括倍周期分岔,混沌吸引子和周期窗等;此外,通过将固定时刻脉冲控制与脉冲状态反馈控制进行对比,说明脉冲状态反馈控制可以更有效地使生物种群密度保持在稳定区域内.
     (3)本文首次将分布式时滞引入到文中的浮游植物-浮游动物-鱼类海洋生态模型中,研究了一类具有分布式时滞的浮游生物-鱼类海洋生态模型的动态复杂性.
     一般来说,捕食者种群在捕食结束后并不会立刻将能量转化给下一代,常常有孕育期.数学上往往通过在模型中引进时滞的方法来描述这一现象.目前,大部分有关浮游生态模型的研究都集中考虑了确定性时滞.然而,由于生物的生长过程往往是一个漫长且积累的过程,不是仅仅与过去某一特定时刻有关的,所以分布式时滞的研究是有现实意义和背景的.通过运用中心流形定理和规范形理论,研究结果表明,当平均时滞超过某一临界值时,系统失稳并出现Hopf分岔,且在正平衡点附近出现一族周期解.另外,还得到了分岔周期解的稳定性,方向以及一些相关性质.同时,对相关的生物意义作出了诠释.
     (4)本文将时滞和阶段结构,以及扩散行为引入到广义食饵-捕食者生物经济系统中,丰富了广义生物系统的研究.利用广义系统理论和分岔理论,文中主要研究了具有时滞和阶段结构的广义食饵-捕食者生物经济系统,以及具有扩散行为的广义食饵-捕食者生物经济系统的动态复杂性.研究结果表明,当捕获行为的经济利润由负变为正并通过零时,两类系统在正平衡点附近均发生奇异诱导分岔,这意味着某种生物种群密度在短时间内剧增,并导致其对有限生存资源的大量需求和占有,严重破坏了生态的平衡.另一方面,时滞表示捕食者捕获食饵种群后,将这种能量转化为自身能量所需要的时间,研究发现,较长的时间延迟会导致生物种群密度产生波动,破坏生物种群的可持续生长;但是,在幼年种群十分充足的条件下,时滞抑制了捕食者种群的过度繁殖.除此以外,考虑到生物种群在其生存区域间的迁徙活动,本文又研究了扩散行为对系统动态性的影响,结果表明,当扩散系数超过某一阈值时,生物种群系统的稳定性将会发生改变,生物种群密度出现周期振荡现象,且较大的扩散率有利于种群的持久生存.
     (5)本文首次建立了一个由微分-差分-代数方程构成的混杂捕食生物经济模型,其中微分方程是由食饵种群的动态行为确立的,差分方程是由捕食者种群的动态特性确立的,经济利润则确定了代数方程.目前,对正常生物动力系统的复杂动态行为的研究已经取得了很多可喜的成果,同时,也可以找到一些研究广义生物动力系统的相关文献.但是,对于混杂生物系统复杂动态性的研究却很少见.从建模上看,混杂系统比正常系统和广义系统都复杂得多,它主要由微分,差分和代数方程共同构成,另外,研究过程中要分别考虑采样间隔和采样时刻两种情况对系统的影响.这些都给研究混杂生物模型增加了难度.文中针对所提出的混杂捕食生物经济模型,研究了该模型发生鞍结分岔,奇异诱导分岔和Neimark-Sacker分岔的分岔条件.并在此基础上,设计了状态反馈控制器,该控制器可以有效消除分岔现象的发生,并使得系统在给定经济利益条件下能够保持稳定.
By utilizing nonlinear dynamical system theory, differential-algebraic system theory and its associated control theory, this dissertation investigates dynamical complexity for some classes of biological dynamical systems, including normal bio-logical dynamical system, singular biological economic system and hybrid biological economic system. The main content consists of stability, bifurcation, chaos, impul-sive phenomenon, impulsive state feedback control, chaotic stability control and so on. This dissertation is organized as follows:
     (1) The current research status and development of biological dynamical sys-tem are introduced, such as epidemic dynamics, plankton dynamics and population dynamics. In particular, some classes of biological dynamical systems relating to this dissertation are enumerated. At the same time, the current research status of these biological models is presented. Furthermore, the current research status of singular biological dynamical systems is also introduced.
     (2) This dissertation investigates the complex dynamics of two classes of prey-predator systems with Beddington-DeAngelis functional response and har-vest. Functional response represents the relationship between prey and predator. Beddington-DeAngelis functional response has the advantage of HollingⅡand ratio-dependent models and avoids their disadvantage. Hence, it is close to realistic bi-ological relationship. However, considering the Beddington-DeAngelis functional response, the reports of discrete prey-predator model and biological model with im-pulsive state feedback control are few. At first, since some species have no overlap between successive generations, this dissertation investigates bifurcation and control of a discrete harvested prey-predator system with Beddington-DeAngelis functional response. By using center manifold theorem and bifurcation theory, bifurcation conditions for Flip bifurcation and Hopf bifurcation are obtained. Bifurcation dia-grams and Lyapunov exponent plot show the existence of chaos. Moreover, a state delayed feedback control method is proposed to eliminate bifurcation and chaotic phenomena. And biological implications are discussed. On the other hand, a class of Beddington-DeAngelis prey-predator system with harvest and impulsive state feedback control is studied. Based on impulsive control theory, two Poincare maps are obtained. Conditions for existence and stability of periodic solution are also obtained. Computer simulations show that this impulsive system displays a se-ries of complex phenomena, including period-doubling bifurcation, period window and chaotic bands. Compared with impulsive fixed-time control, the superiority of impulsive state feedback control strategy is also exhibited.
     (3) Distributed delay is introduced into phytoplankton-zooplankton-fish model. This dissertation studies a plankton-fish model with distributed delay in the con-text of marine plankton interaction together with predation by planktotrophic fish. Generally speaking, predator need take a period of time to convert the prey into its growth, which is defined with gestation period. This phenomenon is expressed as time delay in theory. At present, most of plankton models are focus on dis-crete time delay. However, biological growth is always an endless and accumulated process, which is related with the entire past history. Therefore, the research on distributed delay is significant. By using the normal form and center manifold the-ory, the research results show that the system occurs Hopf bifurcation and exists periodic solutions when the average time delay increases through critical values. In addition, stability, direction and other properties of bifurcating periodic solutions are derived. The related biological implications are given.
     (4) Time delay, stage structure and diffusion behavior are introduced into sin-gular biological economic system, which enriches the theory on singular biological system. By using differential-algebraic system theory and bifurcation theory, com-plex dynamical behaviors of two classes of singular biological economic systems are analyzed, which are singular delayed prey-predator economic model with stage structure and singular biological economic model with diffusion. The research re-sult shows that the two systems occur singularity induced bifurcation when the economic interest of harvesting increases through zero. Singularity induced bifur-cation implies that biological population expanses rapidly and struggles for limited nature resource, which destroys ecological balance. On the other hand, time delay implies that the predator takes a period of time to convert the food into its growth when predating behavior is happened. Long time delay can result in population fluctuation and destroy sustainable development of all population in the ecosystem. However, although immature prey is available in abundance, the overflow of preda-tor population will not happen due to time delay. In addition, considering migration behavior of biological population between different survival environment, the effect of diffusion is studied. When the diffusion coefficient crosses a critical value, there will be a stability switch and periodic fluctuation occurs. And greater diffusion rate is favorable for persistence of biological population.
     (5) For the first time, this dissertation proposes a hybrid prey-predator eco-nomic model, which is formulated by differential-difference-algebraic equations. The dynamics of prey population is governed by differential equation, predator popula-tion governed by difference equation and economic theory by algebraic equation. At present, there are many results on the complex dynamical behavior for normal biological dynamical systems. At the same time, some literature relating to singu-lar biological dynamical system also can be found. However, the reports of hybrid biological systems are few. From the aspect of model formulation, hybrid systems, consisting of differential equations, difference equations and algebraic equations, are more complex than normal systems and singular systems. In addition, hybrid sys-tems have quite different types of bifurcations at the intersampling instants and sampling instants. These factors increase researching difficult on hybrid biological system. By analysis and computation, bifurcation conditions of saddle-node bifurca-tion, singularity induced bifurcation and Neimark-Sacker bifurcation are obtained. Moreover, a state feedback controller is designed so that bifurcation behavior can be eliminated and biological population can be driven to steady states.
引文
1裴铁璠,于系民,金昌杰,姬兰柱,关德新.生态动力学[M],北京:科学出版社,2001.
    2徐利治.数学辞海[M],北京:中国科学技术出版社,2002,527-528.
    3马国芳.生物数学的应用和发展[J],生物学教学,1997,10:42-43.
    4刘旭阳.生物数学与生态数学模型[J],湖北大学学报(自然科学版),1996,18(1):1-6.
    5 Bernoulli D. Essai d'une nouvelle analyse de la mortalite Causee Par la pe-tite Verole et des avantages de I'inoculation pour al prevenir. In Memoires de Mathematiques et de physique[M], Paris:Academic Royale des Sciences,1760, 1-45.
    6 Hamer W H. Epidemic disease in England[J], Lancet,1960,1:733-739.
    7 Kermack W O, McKendrick A G. Contributions to the mathematical theory of epidemics:Part Ⅰ[J], Proceedings of the Royal Society,1927, A115:700-721.
    8 Kermack W O, McKendrick A G. Contributions to the mathematical theory of epidemics:Part Ⅱ[J], Proceedings of the Royal Society,1932, A138:55-83.
    9马知恩,周义仓,王稳地,靳祯.传染病动力学的数学建模与研究[M],北京:科学出版社,2001.
    10陆征一,周义仓.数学生物学进展[M],北京:科学出版社,2006.
    11 Anderson R M, May R M. Infectious diseases of humans, dynamics and con-trol[M], Oxford:Oxford University Press,1991.
    12 Mena-Lorca J, Hethcote H W. Dynamic models of infectious diseases as reg-ulators of population sizes[J], Journal of Mathematical Biology,1992,30(7): 693-716.
    13 Zhang T L, Teng Z D. Permanence and extinction for a nonautonomous SIRS epidemic model with time delay[J], Applied Mathematical Modelling,2009, 33(2):1058-1071.
    14 Xu R, Ma Z E. Stability of a delayed SIRS epidemic model with a nonlinear incidence rate[J], Chaos, Solitons and Fractals,2008, doi: 10.1016/j.chaos.2008.09.007 [Online article].
    15 Xiao B, Liu B W. Exponential convergence of an epidemic model with con-tinuously distributed delays[J], Mathematical and Computer Modelling,2008, 48(3-4):541-547.
    16 Pang G P, Chen L S. A delayed SIRS epidemic model with pulse vaccination[J], Chaos, Solitons and Fractals,2007,34(5):1629-1635.
    17 Gao S J, Teng Z D, Xie D H. Analysis of a delayed SIR epidemic model with pulse vaccination [J], Chaos, Solitons and Fractals,2007, doi: 10.1016/j.chaos.2007.08.056 [Online article].
    18 Ma W, Takeuchi Y, Hara T, Beretta E. Permanence of an SIR epidemic model with distributed time delays [J], Tohoku Mathematical Journal,2002,54(4):581-591.
    19 Shi R Q, Chen L S. The effect of impulsive vaccination on an SIR epidemic model[J], Applied Mathematics and Computation,2009, doi: 10.1016/j.amc.2009.02.017 [Online article].
    20 Georgescu P, Zhang H. An impulsively controlled predator-pest model with dis-ease in the pest[J], Nonlinear Analysis:Real World Applications,2008, doi: 10.1016/j.nonrwa.2008.10.060 [Online article].
    21 Kang A H, Xue Y K, Jin Z. Dynamic behavior of an eco-epidemic system with impulsive birth[J], Journal of Mathematical Analysis and Applications,2008, 345(2):783-795.
    22 Zhang H, Chen L S, Nieto J J. A delayed epidemic model with stage-structure and pulses for pest management strategy [J], Nonlinear Analysis:Real World Applications,2008,9(4):1714-1726.
    23 Banks H T, Bokil V A, Hu S H. Monotone approximation for a nonlinear size and class age structured epidemic model[J], Nonlinear Analysis:Real World Applications,2007,8(3):834-852.
    24 Feng Z L, Huang W Z, Castillo-Chavez C. Global behavior of a multi-group SIS epidemic model with age structure[J], Journal of Differential Equations,2005, 218(2):292-324.
    25 Xiao Y N, Chen L S. A SIS epidemic model with stage structure and a delay [J], Acta Mathematicae Applicatae Sinica,2002,18:607-618.
    26 Li X Y, Wang W D. A discrete epidemic model with stage structure[J], Chaos Solitons and Fractals,2005,26(3):947-958.
    27 Xiao Y N, Chen L S. On an SIS epidemic model with stage structure[J], Journal of Systems Science and Complexity,2003,16(2):275-288.
    28 Liu S Y, Pei Y Z, Li C G, Chen L S. Three kinds of TVS in a SIR epidemic model with saturated infectious force and vertical transmission [J], Applied Mathemat-ical Modelling,2009,33(4):1923-1932.
    29焦建军,蔡绍洪,陈兰荪.一类具有垂直传染与接种的Ds-I-R传染病模型研究[J], 应用数学,2008,31(6):1089-1095.
    30杨建雅,张凤琴.一类具有垂直传染的SIR传染病模型[J],生物数学学报,2006, 21(3):341-344.
    31 Brauer F,Van den Driessche P.Models for transmission of disease with immi-gration of infectives[J],Mathematical Biosciences,2001,171(2):143-154.
    32 White M C, Zhao X Q. Threshold dynamics in a time-delayed epi-demic model with dispersal[J],Mathematical Biosciences,2009, doi: 10.1016/j.mbs.2009.01.004[Online article].
    33 Wang W D,Zhao X Q.An epidemic model with population dispersal and infec-tion period[J],SIAM Journal on Applied Mathematics,2006,66(4):1454-1472.
    34 Wang F,Ma Z E.Persistence and periodic orbits for an SIS model in a polluted environment[J],Computers and Mathematics with Applications,2004,47(4-5): 779-792.
    35 Culshaw R V,Ruan S,Webb G.A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay[J],Journal of Mathematical Biology,2003, 46(5):425-444.
    36 Lou J,Ma Z E,Shao Y M,Han L T.Modelling the interaction of T-cells, antigen presenting cells,and HIV-1 in vivo[J],Computers and Mathematics with Applications,2004,48(1-2):9-33.
    37 Feng Z L,Castillo-Chavez C,Capurro A F.A model for tuberculosis with ex-ogenous reinfection[J],Theoretical Population Biology,2000,57(3):235-247.
    38 Ball F,Britton T.An epidemic model with infector and exposure dependent severity[J],Mathematical Biosciences,2009,218(2):105-120.
    39 Li M Y,Muldowney J S.Global stability for the SEIR model in epidemiology[J], Mathematical Biosciences,1995,125(2):155-164.
    40 Herzog G,Redheffer R.Nonautonomous SEIRS and Thron models for epidemi-ology and cell biology[J],Nonlinear Analysis:Real World Applications,2004, 5(1):33-44.
    41 Li M Y,Graef J R,Wang L C,Karsai J.Global dynamics of a SEIR model with varying total population size[J], Mathematical Biosciences,1999,160(2): 191-213.
    42 Zhang J,Li J Q,Ma Z E.Global dynamics of an SEIR epidemic model with im-migration of different compartments[J],Acta Mathematica Scientia,2006,26(3): 551-567.
    43 Zhang T L, Teng Z D. Pulse vaccination delayed SEIRS epidemic model with saturation incidence[J], Applied Mathematical Modelling,2008,32(7):1403-1416.
    44 Ma J L, Ma Z E. Epidemic threshold conditions for seasonally forced SEIR models [J], Mathematical Biosciences and Engineering,2006,3(1):161-172.
    45 Zhang J, Lou J, Ma Z E, Wu J H. A compartmental model for the analysis of SARS transmission patterns and outbreak control measures in China[J], Applied Mathematics and Computation,2005,162(2):909-924.
    46 Chakraborty S, Roy S, Chattopadhyay J. Nutrient-limited toxin production and the dynamics of two phytoplankton in culture media:A mathematical model[J], Ecological Modelling,2008,213(2):191-201.
    47 Pal S, Chatterjee S, Chattopadhyay J. Role of toxin and nutrient for the occur-rence and termination of plankton bloom-Results drawn from field observations and a mathematical model[J], BioSystems,2007,90(1):87-100.
    48 Chattopadhyay J, Sarkar R R. Chaos to order:preliminary experiments with a population dynamics models of three trophic levels [J], Ecological Modelling, 2003,163(1-2):45-50.
    49 Mandal S, Ray S, Roy S, Jorgensen S E. Order to chaos and vice versa in an aquatic ecosystem[J], Ecological Modelling,2006,197(3-4):498-504.
    50 Huppert A, Blasius B, Olinky R, Stone L. A model for seasonal phytoplankton blooms[J], Journal of Theoretical Biology,2005,236(3):276-290.
    51 Roy S, Chattopadhyay J. Enrichment and ecosystem stability:Effect of toxic food[J], Biosystems,2007,90(1):151-160.
    52 Chattopadhyay J, Sarkar R R, Pal S. Mathematical modeling of harmful algal blooms supported by experimental findings [J], Ecological Complexity,2004,1(3): 225-235.
    53 Chowdhury T, Roy S, Chattopadhyay J. Modeling migratory grazing of zoo-plankton on toxic and non-toxic phytoplankton[J], Applied Mathematics and Computation,2008,197(2):659-671.
    54 Pal S, Chatterjee S, Das K, Chattopadhyay J. Role of competition in phytoplank-ton population for the occurrence and control of plankton bloom in the presence of environmental fluctuations[J], Ecological Modelling,2009,220(2):96-110.
    55 Gakkhar S, Negi K. A mathematical model for viral infection in toxin producing phytoplankton and zooplankton system [J], Applied Mathematics and Computa-tion,2006,179(1):301-313.
    56 Sarkar R R, Pal S, Chattopadhyay J. Role of two toxin-producing plankton and their effect on phytoplankton-zooplankton system-a mathematical study sup-ported by experimental findings[J], Biosystems,2005,80(1):11-23.
    57 Zhao J T, Wei J J. Stability and bifurcation in a two harmful phytoplankton-zooplankton system [J], Chaos Solitons and Fractals,2007, doi: 10.1016/j.chaos.2007.05.019 [Online article].
    58 Sole J, Garcia-Ladona E, Estrada M. The role of selective predation in harmful algal blooms[J], Journal of Marine Systems,2006,62(1-2):46-54.
    59 Huang D W, Wang H L, Feng J F, Zhu Z W. Hopf bifurcation of the stochastic model on HAB nonlinear stochastic dynamics[J], Chaos Solitons and Fractals, 2006,27(4):1072-1079.
    60冯剑丰.浮游生态系统非线性动力学与赤潮的预测预警研究[D],天津:天津大学博士学位论文,2005.
    61 Mukhopadhyay B, Bhattacharyya R. Role of gestation delay in plankton-fish model under stochastic fluctuations [J],2008,215(1):26-34.
    62 Bandyopadhyay M, Saha T, Pal R. Deterministic and stochastic analysis of a delayed allelopathic phytoplankton model with fluctuation environment [J], Non-linear Analysis:Hybrid Systems,2008,2(3):958-970.
    63 Huang D W, Wang H L, Feng J F, Zhu Z W. Modelling algal densities in harmful algal blooms (HAB) with stochastic dynamics [J], Applied Mathematical Mod-elling,2008,32(7):1318-1326.
    64 Karouby O, Iliadis A, Durbec J P, Riandey V, Carlotti F. Stochastic modelling for determining zooplankton abundance[J], Ecological Modelling,2007,204(3-4): 272-286.
    65 Ripley B J, Caswell H. Recruitment variability and stochastic population growth of the soft-shell clam, Myearenaria[J], Ecological Modelling,2006,193(3-4):517-530.
    66 Seuront L. Small-scale turbulence in the plankton:low-order deterministic chaos or high-order stochasticity?[J], Physica A:Statistical Mechanics and its Appli-cations,2004,341(1):495-525.
    67 Ordemann A, Balazsi G, Moss F. Pattern formation and stochastic motion of the zooplankton Daphnia in a light field [J], Physica A:Statistical Mechanics and its Applications,2003,325(1-2):260-266.
    68 Malthus T R. An essay on the principle of population, as it affects the future improvement of society with remarks on the speculations of MR. Godwin, M. Condorcet, and other writers[M], Bibliobazaar,1798.
    69 Hu D W, Zhang Z Q. Four positive periodic solutions to a Lotka-Volterra coop-erative system with harvesting terms [J], Nonlinear Analysis:Real World Appli-cations,2009, doi:10.1016/j.nonrwa.2009.02.002 [Online article].
    70 Meng X Z, Chen L S. Almost periodic solution of non-autonomous Lotka-Volterra predator-prey dispersal system with delays [J], Journal of Theoretical Biology, 2006,243(4):562-574.
    71 Liang Y L, Li L J, Chen L S. Almost periodic solutions for Lotka-Volterra systems with delays [J], Communications in Nonlinear Science and Numerical Simulation, 2009, doi:10.1016/j.cnsns.2009.01.027 [Online article].
    72 Zhang L, Li H X, Zhang X B. Periodic solutions of competition Lotka-Volterra dynamic system on time scales [J], Computers and Mathematics with Applica-tions,2009,57(7):1204-1211.
    73 Wang C Z, Shi J L. Positive almost periodic solutions of a class of Lotka-Volterra type competitive system with delays and feedback controls [J], Applied Mathe-matics and Computation,2007,193(1):240-252.
    74 Fang H, Xiao Y F. Existence of multiple periodic solutions for delay Lotka-Volterra competition patch systems with harvesting [J], Applied Mathematical Modelling,2009,33(2):1086-1096.
    75 Nie L F, Peng J G, Teng Z D, Hu L. Existence and stability of periodic solution of a Lotka-Volterra predator-prey model with state dependent impulsive effects [J], Journal of Computational and Applied Mathematics,2009,224(2):544-555.
    76 Tineo A. Asymptotic behavior of an invading species [J], Nonlinear Analysis:Real World Applications,2008,9(1):1-8.
    77 Wei F Y, Wang K. Global stability and asymptotically periodic solution for nonautonomous cooperative Lotka-Volterra diffusion system [J], Applied Mathe-matics and Computation,2006,182(1):161-165.
    78 Qiu J L, Cao J D. Exponential stability of a competitive Lotka-Volterra system with delays[J], Applied Mathematics and Computation,2008,201(1-2):819-829.
    79 Yan X P, Chu Y D. Stability and bifurcation analysis for a delayed Lotka-Volterra predator-prey system[J], Journal of Computational and Applied Mathematics, 2006,196(1):198-210.
    80 Fang H, Wang Z C. Existence and global attractivity of positive periodic solutions for delay Lotka-Volterra competition patch systems with stocking[J], Journal of Mathematical Analysis and Applications,2004,293(1):190-209.
    81 Ahmad S, Stamova I M. Almost necessary and sufficient conditions for survival of species[J], Nonlinear Analysis:Real World Applications,2004,5(1):219-229.
    82 Zhao J D, Fu L P, Ruan J. Extinction in a nonautonomous competitive Lotka-Volterra system[J], Applied Mathematics Letters,2009,22(5):766-770.
    83 Hu H X, Teng Z D, Jiang H J. On the permanence in non-autonomous Lotka-Volterra competitive system with pure-delays and feedback controls [J]. Nonlinear Analysis:Real World Applications,2009,10(3):1803-1815.
    84 Cui J G, Chen L S. Permanence and extinction in Logistic and Lotka-Volterra systems with diffusion[J], Journal of Mathematical Analysis and Applications, 2001,258(2):512-535.
    85 Chen F D. Permanence in a discrete Lotka-Volterra competition model with deviating arguments[J], Nonlinear Analysis:Real World Applications,2008,9(5): 2150-2155.
    86 Fang N, Chen X X. Permanence of a discrete multispecies Lotka-Volterra com-petition predator-prey system with delays [J], Nonlinear Analysis:Real World Applications,2008,9(5):2185-2195.
    87 Li J X, Yan J R. Partial permanence and extinction in an N-species nonau-tonomous Lotka-Volterra competitive system[J], Computers and Mathematics with Applications,2008,55(1):76-88.
    88 Liao X Y, Zhou S F, Chen Y M. Permanence for a discrete time Lotka-Volterra type food-chain model with delays[J], Applied Mathematics and Computation, 2007,186(1):279-285.
    89 Li J X, Yan J R. Persistence for Lotka-Volterra patch-system with time delay [J], Nonlinear Analysis:Real World Applications,2008,9(2):490-499.
    90 Bandyopadhyay M, Banerjee S. A stage-structured prey-predator model with discrete time delay [J], Applied Mathematics and Computation,2006,182(2): 1385-1398.
    91 Ge Z H, He Y N, Song L Y. Traveling wavefronts for a two-species ratio-dependent predator-prey system with diffusion terms and stage structure[J], Nonlinear Analysis:Real World Applications,2009,10(3):1691-1701.
    92 Li Z, Chen F D. Extinction in periodic competitive stage-structured Lotka-Volterra model with the effects of toxic substances [J], Journal of Computational and Applied Mathematics,2009, doi:10.1016/j.cam.2009.02.004.
    93 Huang C Y, Zhao M, Zhao L C. Permanence of periodic predator-prey system with two predators and stage structure for prey[J], Nonlinear Analysis:Real World Applications,2009, doi:10.1016/j.nonrwa.2009.01.001 [Online article].
    94 Song X Y, Hao M Y, Meng X Z. A stage-structured predator-prey model with dis-turbing pulse and time delays[J], Applied Mathematical Modelling,2009,33(1): 211-223.
    95 Wu H H, Xia Y H, Lin M R. Existence of positive periodic solution of mutualism system with several delays[J], Chaos, Solitons and Fractals,2008,36(2):487-493.
    96 Liu Z J, Tan R H, Chen Y P, Chen L S. On the stable periodic solutions of a delayed two-species model of facultative mutualism [J], Applied Mathematics and Computation,2008,196(1):105-117.
    97 Zhang L, Teng Z D. Permanence for a delayed periodic predator-prey model with prey dispersal in multi-patches and predator density-independent [J], Journal of Mathematical Analysis and Applications,2008,338(1):175-193.
    98 Lisena B. A new contribution to periodic competition systems with delays [J], Nonlinear Analysis:Real World Applications,2009,10(4):2256-2263.
    99 Yuan S L, Zhang W G, Han M A. Global asymptotic behavior in chemostat-type competition models with delay [J], Nonlinear Analysis:Real World Applications, 2009,10(3):1305-1320.
    100 Liu Z J, Chen L S. Periodic solution of a two-species competitive system with toxicant and birth pulse [J], Chaos, Solitons and Fractals,2007,32(5):1703-1712.
    101 Gao S J, Chen L S, Sun L H. Optimal pulse fishing policy in stage-structured models with birth pulses[J], Chaos, Solitons and Fractals,2005,25(5):1209-1219.
    102 Gao S J, Chen L S. The effect of seasonal harvesting on a single-species discrete population model with stage structure and birth pulses [J], Chaos, Solitons and Fractals,2005,24(4):1013-1023.
    103 Tang S Y, Chen L S. Multiple attractors in stage-structured population models with birth pulses [J], Bulletin of Mathematical Biology,2003,65(3):479-495.
    104 Gakkhar S, Naji R K. Chaos in seasonally perturbed ratio-dependent prey-predator system [J], Chaos Solitons and Fractals,2003,15(1):107-118.
    105 Gakkhar S, Negi K, Sahani S K. Effects of seasonal growth on ratio depen-dent delayed prey predator system [J], Communications in Nonlinear Science and Numerical Simulation,2009,14(3):850-862.
    106 Connelly D P, Statham P J, Knap A H. Seasonal changes in speciation of dissolved chromium in the surface Sargasso Sea[J], Deep Sea Research Part Ⅰ: Oceanographic Research Papers,2006,53(12):1975-1988.
    107 Wang W D, Ma Z E. Permanence of populations in a polluted environment [J], Mathematical Biosciences,1994,122(2):235-248.
    108 Sinha S, Misra O P, Dhar J. A two species competition model under the si-multaneous effect of toxicant and disease[J], Nonlinear Analysis:Real World Applications,2009, doi:10.1016/j.nonrwa.2009.02.007 [Online article].
    109 Zeng G Z, Chen L S, Chen J F. Persistence and periodic orbits for two-species nonautonomous diffusion lotka-volterra models[J], Mathematical and Computer Modelling,1994,20(12):69-80.
    110 Xu R, Ma Z E. Global stability of a reaction-diffusion predator-prey model with a nonlocal delay [J], Mathematical and Computer Modelling,2009, doi: 10.1016/j.mcm.2009.02.011 [Online article].
    111 Zhang L, Teng Z D. Permanence for a class of periodic time-dependent predator-prey system with dispersal in a patchy-environment [J], Chaos, Solitons and Frac-tals,2008,38(5):1483-1497.
    112 Filotas E, Grant M, Parrott L, Rikvold P A. Community-driven dispersal in an individual-based predator-prey model[J], Ecological Complexity,2008,5(3): 238-251.
    113 Agiza H N, ELabbasy E M, EL-Metwally H, Elsadany A A. Chaotic dynamics of a discrete prey-predator model with Holling type Ⅱ[J], Nonlinear Analysis: Real World Applications,2009,10(1):116-129.
    114 Yang X T. Uniform persistence and periodic solutions for a discrete predator-prey system with delays[J], Journal of Mathematical Analysis and Applications, 2006,316(1):161-177.
    115 Alligood K, Sauer T, Yorke J. Chaos:an introduction to dynamical system[M], New York:Springer,1997.
    116 Guckenheimer J, Holmes P. Nonlinear oscillations, dynamical systems, and bi-furcations of vector field[M], New York:Springer,1983.
    117 Gu E G. The nonlinear analysis on a discrete host-parasitoid model with pesti-cidal interference [J], Communications in Nonlinear Science and Numerical Sim-ulation,2009,14(6):2720-2727.
    118 Zhao M, Zhang L M. Permanence and chaos in a host-parasitoid model with prolonged diapause for the host[J], Communications in Nonlinear Science and Numerical Simulation,2009, doi:10.1016/j.cnsns.2009.02.014 [Online article].
    119 Yu H G, Zhao M, Lv S J, Zhu L L. Dynamic complexities in a parasitoid-host-parasitoid ecological model[J], Chaos, Solitons and Fractals,2009,39(1): 39-48.
    120 Yang W S, Li X P. Permanence for a delayed discrete ratio-dependent predator-prey model with monotonic functional responses [J], Nonlinear Analysis:Real World Applications,2009,10(2):1068-1072.
    121 Liao X Y, Zhou S F, Chen Y M. Permanence and global stability in a discrete n-species competition system with feedback controls [J], Nonlinear Analysis:Real World Applications,2008,9(4):1661-1671.
    122 Chen F D. Permanence for the discrete mutualism model with time delays [J], Mathematical and Computer Modelling,2008,47(3-4):431-435.
    123 Muroya Y. Persistence and global stability in discrete models of Lotka-Volterra type[J], Journal of Mathematical Analysis and Applications,2007,330(1):24-33.
    124 Li Y K, Zhang H T. Existence of periodic solutions for a periodic mutualism model on time scales[J], Journal of Mathematical Analysis and Applications, 2008,343(2):818-825.
    125 Solis F J. Self-limitation in a discrete predator-prey model [J], Mathematical and Computer Modelling,2008,48(1-2):191-196.
    126 Saker S H. Periodic solutions, oscillation and attractivity of discrete nonlinear delay population model[J], Mathematical and Computer Modelling,2008,47(3-4):278-297.
    127 Zhang Y, Zhang Q L, Zhao L C, Yang C Y. Dynamical behaviors and chaos control in a discrete functional response model[J], Chaos, Solitons and Fractals, 2007,34(4):1318-1327.
    128 Edmunds J L. Multiple attractors in a discrete competition model[J], Theoret-ical Population Biology,2007,72(3):379-388.
    129 Zhang W P, Zhu D M, Bi P. Multiple positive periodic solutions of a delayed dis-crete predator-prey system with type IV functional responses [J], Applied Math-ematics Letters,2007,20(10):1031-1038.
    130 Kumar S, Srivastava S K, Chingakham P. Hopf bifurcation and stability anal-ysis in a harvested one-predator-two-prey model[J], Applied Mathematics and Computation,2002,129(1):107-118.
    131 Gakkhar S, Singh B. The dynamics of a food web consisting of two preys and a harvesting predator [J], Chaos, Solitons and Fractals,2007,34(4):1346-1356.
    132 Negi K, Gakkhar S. Dynamics in a Beddington-DeAngelis prey-predator system with impulsive harvesting[J], Ecological Modelling,2007,206(3-4):421-430.
    133 Liu Z J, Tan R H. Impulsive harvesting and stocking in a Monod-Haldane functional response predator-prey system [J], Chaos, Solitons and Fractals,2007, 34(2):454-464.
    134 Kar T K, Pahari U K. Modelling and analysis of a prey-predator system with stage-structure and harvesting [J], Nonlinear Analysis:Real World Applications, 2007,8(2):601-609.
    135 Lu D C, Gu J J, Wang X M. Optimal harvesting problems for an age-dependent n-dimensional food chain model with diffusion [J], Applied Mathematics and Computation,2007,184(2):659-668.
    136 Luo Z X. Optimal harvesting control problem for an age-dependent competing system of n species[J], Applied Mathematics and Computation,2006,183(1): 119-127.
    137 Xiao D M, Li W X, Han M A. Dynamics in a ratio-dependent predator-prey model with predator harvesting[J], Journal of Mathematical Analysis and Ap-plications,2006,324(1):14-29.
    138 Frisman E Y, Last E V, Skaletskaya E I. Population dynamics of harvested species with complex age structure (for Pacific salmons fish stocks as an exam-ple)[J], Ecological Modelling,2006,198(3-4):463-472.
    139 He Z R. Optimal harvesting of two competing species with age dependence[J], Nonlinear Analysis:Real World Applications,2006,7(4):769-788.
    140 Liu C, Zhang Q L, Zhang Y, Duan X D. Bifurcation and control in a differential-algebraic prey-predator system with stage structure for predator [J], International Journal of Bifurcation and Chaos,2008,18(10):2883-2892.
    141 Zhang Y, Zhang Q L. Chaotic control based on descriptor bioeconomic sys-tems[J], Control and Decision,2007,22(4):445-452.
    142 Zhang Y, Zhang Q L, Zhao L C. Bifurcations and control in singular biological economical model with stage structure [J], Journal of Systems Engineering,2007, 22(3),232-238.
    143 Liu P Y, Zhang Q L, Yang X G, Yang L. Passivity and optimal control of de-scriptor biological complex systems [J], IEEE Transactions on Automatic Control (Joint Issue),2008,58:122-125.
    144张悦,张庆灵,赵立纯,刘佩勇.广义生物经济系统的混沌跟踪控制[J],东北大学学报(自然科学版),2007,28(2):157-160.
    145杨光,张庆灵,刘佩勇.乙型病毒性肝炎数学模型及其控制[J],东北大学学报,2007,28(3):308-311.
    146 Ayasun S, Nwankpa C O, Kwatny H G. Computation of singular and singularity induced bifurcation points of differential-algebraic power system model[J], IEEE Transaction on Circuits and Systems I,2004,51(8):1525-1538.
    147 Riaza R. Singularity-induced bifurcations in lumped circuits[J], IEEE Transac-tion on Circuits and Systems I,2005,52(7):1442-1450.
    148 Krishnan H, McClamroch N H. Tracking in nonlinear differential-algebra control systems with applications to constrained robot systems[J], Automatica 1994,30: 1885-1897.
    149 Bloch A M, Reyhanoglu M, McClamroch N H. Control and stabilization of nonholonomic dynamic systems[J], IEEE Transactions on Automatic Control, 1992,37:1746-1757.
    150 Luenberger D J. Nonsingular descriptor system [J], Journal of Economic Dy-namics and Control,1979,1:219-242.
    151 Guo H J, Chen L S. The effects of impulsive harvest on a predator-prey system with distributed time delay [J], Communications in Nonlinear Science and Numerical Simulation,2009,14(5):2301-2309.
    152 Wang F Y, Zeng G Z. Chaos in a Lotka-Volterra predator-prey system with periodically impulsive ratio-harvesting the prey and time delays [J], Chaos, Soli-tons and Fractals,2007,32(4):1499-1512.
    153 Gui Z J, Ge W G. The effect of harvesting on a predator-prey system with stage structure[J], Ecological Modelling,2005,187(2-3):329-340.
    154 Wang F Y, Hao C P, Chen L S. Bifurcation and chaos in a Monod-Haldene type food chain chemostat with pulsed input and washout [J], Chaos, Solitons and Fractals,2007,32(1):181-194.
    155 Wang F Y, Zhang S W, Chen L S, Sun L H. Bifurcation and complexity of Monod type predator-prey system in a pulsed chemostat [J], Chaos, Solitons and Fractals,2006,27(2):447-458.
    156 Song X Y, Li Y F, Dynamic complexities of a Holling Ⅱ two-prey one-predator system with impulsive effect [J], Chaos, Solitons and Fractals,2007,33(2):463-478.
    157 Peng R, Wang M X. Global stability of the equilibrium of a diffusive Holling-Tanner prey-predator model[J], Applied Mathematics Letters,2007,20(6):664-670.
    158 Huang Y J, Chen F D, Zhong L. Stability analysis of a prey-predator model with holling type Ⅲ response function incorporating a prey refuge [J], Applied Mathematics and Computation,2006,182(1):672-683.
    159 Zhang S W, Tan D J, Chen L S. Chaos in periodically forced Holling type IV predator-prey system with impulsive perturbations [J], Chaos, Solitons and Fractals,2006,27(4):980-990.
    160 Xu R, Chaplain M A J, Davidson F A. Periodic solutions for a predator-prey model with Holling-type functional response and time delays [J], Applied Math-ematics and Computation,2005,161(2):637-654.
    161 Sugie J. Two-parameter bifurcation in a predator-prey system of Ivlev type[J], Journal of Mathematical Analysis and Applications,1998,217(2):349-371.
    162 Kooij R E, Zegeling A. A Predator-prey model with Ivlev's functional re-sponse[J], Journal of Mathematical Analysis and Applications,1996,198(2): 473-489.
    163 Xu C Y, Wang M J. Permanence for a delayed discrete three-level food-chain model with Beddington-DeAngelis functional response[J], Applied Mathematics and Computation,2007,187(2):1109-1119.
    164 Zhang J M, Wang J. Periodic solutions for discrete predator-prey systems with the Beddington-DeAngelis functional response [J], Applied Mathematics Letters, 2006,19(12):1361-1366.
    165 Bohner M, Fan M, Zhang J M. Existence of periodic solutions in predator-prey and competition dynamic systems [J], Nonlinear Analysis:Real World Applica-tions,2006,7(5):1193-1204.
    166张琪昌,王洪礼,竺致文,沈菲,任爱娣,刘海英.分岔与混沌理论及应用[M],天津:天津大学出版社,2005.
    167盛昭瀚,马军海.非线性动力系统分析引论[M],北京:科学出版社,2001.
    168 Jiang G R, Lu Q S. Impulsive state feedback control of a predator-prey model[J], Journal of Computational and Applied Mathematics,2007,200(1):193-207.
    169 Jiang G R, Lu Q S, Qian L N. Complex dynamics of a Holling type II prey-predator system with state feedback control[J], Chaos Solitons and fractals,2007, 31(2):448-461.
    170 Cantrell R S, Cosner C. On the dynamics of predator-prey models with the Beddington-DeAngelis functional response[J], Journal of Mathematical Analysis and Applications,2001,257(1):206-222.
    171 Simeonov P E, Bainov D D. Orbital stability of periodic solutions of autonomous systems with impulse effect [J], International Journal of Systems Science,2007, 200(1):193-207.
    172 Pei Y Z, Chen L S, Zhang Q R, Li C G. Extinction and permanence of one-prey multi-predators of Holling type II function response system with impulsive biological control[J], Journal of Theoretical Biology,2005,235(4):495-503.
    173 Song X Y, Xiang Z Y. The prey-dependent consumption two-prey one-predator models with stage structure for the predator and impulsive effects[J], Journal of Theoretical Biology,2006,242(3):683-698.
    174陈维桓.微分流形初步[M],北京:高等教育出版社,2001.
    175 May R M. Biological populations with non-overlapping generations:stable points, stable cycles and chaos [J], Science,1974,186:645-647.
    176 May R M. Simple mathematical models with very complex dynamics[J], Nature, 1976,261:459-467.
    177 May R M, Oster G F. Bifurcations and dynamic complexity in simple ecological models [J], American Naturalist,1976,110:573-599.
    178 Abdllaoui A E, Chattopadhyay J, Arino O. Comparisons, by models, of some basic mechanisms acting on the dynamics of the zooplankton-toxic phytoplank-ton system [J], Mathematical Models and Methods in Applied Science,2002, 12(10):1421-1451.
    179 Sarkar R R, Mukhopadhyay B, Bhattacharyya R, Banerjee S. Time lags can control algal bloom in two harmful phytoplankton-zooplankton system [J], Ap-plied Mathematics and Computation,2007,186(1):445-459.
    180 Mehner T, Padisak J, Kasprzak P, Koschel R, Krienitz L. A test of food web hypotheses by exploring time series of fish, zooplankton and phytoplankton in an oligo-mesotrophic lake[J], Limnologica-Ecology and Management of Inland Waters,2008,38(3-4):179-188.
    181 Mandal S, Ray S, Roy S K. Study of biocomplexity in an aquatic ecosystem through ascendency [J], Biosystems,2009,95(1):30-34.
    182 Bacelar F S, Dueri S, Hernandez-Garcia E, Zaldivar J M. Joint effects of nutri-ents and contaminants on the dynamics of a food chain[J], Mathematical Bio-sciences,2008, doi:10.1016/j.mbs.2008.12.002 [Online article].
    183 Corsolini S. Industrial contaminants in Antarctic biota [J], Journal of Chro-matography A,2009,1216(3):598-612.
    184 MacDonald N. Time lags in biological models[M], Heidelberg:Springer,1978.
    185 Kuang Y. Delay differential equations with applicaions in population dynam-ics[M], New York:Academic Press,1993.
    186 Volterra V. Remarques sur la note de M. Regnier et Mlle. Lambin(Etude d'un cas d'antagonisme microbien) [J], Comptes Rendus de l'Academie des Sciences, 1934,199:1684-1686.
    187 Hassard B D, Kazarinoff N D, Wan Y H. Theory and applications of Hopf bifurcation[M], Cambridge:Cambridge University Press,1981.
    188 Fleming R H. The control of diatom populations by grazing[J], Journal du Conseil Permanent International pour I'Exploration de la Mer,1939,14:210-227.
    189 Ivlev V S. Biologicheskaya produktibnost'vodoemov[J], Uspekhi Sovremennoi Biologii,1945,19:98-120.
    190 Riley G A. Factors controlling phytoplankton populations on Georges Bank[J], Journal of Marine Research.1946,6(1):54-73.
    191 Odum H T. Primary production in flowing waters [J], Limnology and Oceanog-raphy,1956,1(2):102-117.
    192 Hrbacek J, Dvorakova M, Korinek V, Prochazkova L. Demonstration of the ef-fect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association [J], Verhandlungen-Interna-tionale Vereinigung fuer Theoretische und Angewandte Limnologie,1961,14: 192-195.
    193 Brooks J L, Dodson S I. Predation, body size and complsition of plankton, Science,1965,150(3692):28-35.
    194 Marszalek W G, Trzaska Z M. Singularity-induced bifurcations in electrical power system[J], IEEE Transactions on Power System,2005,20(1):302-310.
    195 Yue M, Schlueter R. Bifurcation subsystem and its application in power system analysis[J], IEEE Transactions on Power Systems,2004,19(4):1885-1893.
    196 Guo T Y, Schlueter R A. Identification of generic bifurcation and stability problems in power system differential-algebraic model [J], IEEE Transactions on Power Systems,1994,9(2):1032-1044.
    197 Luenberger D G, Arbel A. Singular dynamic Leontief system [J], Econometrics, 1997,45(32):991-995.
    198张金水.广义系统经济控制论[M],北京:清华大学出版社,1990.
    199 Dai L. Singular control systems[M], Berlin:Springer-Verlag,1989.
    200蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制研究的若干问题[J],控制与决策,2002,17(4):385-390.
    201 Silva M, De Lima T. Looking for nonnegative solutions of a Leontief dynaamic model[J], Linear Algebra and its Applications,2003,364(1):281-316.
    202 Campbell S. Singular systems of differential equations[M], London:Pitman, 1980.
    203 Muller P. Linear mechanical descriptor systems:identification, analysis and de-sign[C], IFAC International Conference on Control of Industrial Systems, Belfort, France, May,1997,501-506.
    204 Willox R, Grammaticos B, Carstea A S, Ramani A. Epidemic dynamics: discrete-time and cellular automaton models [J], Physica A:Statistical Mechanics and its Applications,2003,328(1-2):13-22.
    205 Bai Y P, Jin Z. Prediction of SARS epidemic by BP neural networks with online prediction strategy [J], Chaos, Solitons and Fractals,2005,26(2):559-569.
    206 Draief M. Epidemic processes on complex networks [J], Physica A:Statistical Mechanics and its Applications,2006,363(1):120-131.
    207 Venkatasubramanian V, Schattler H, Zaborszky J. Local bifurcation and fea-sibility regions in differential-algebraic systems[J], IEEE Transactions on Auto-matic Control,1995,40(12):1992-2013.
    208 Gordon H S. Economic theory of a common property resource:the fishery [J], Journal of Political Economy,1954,63:116-124.
    209 Li F, Woo P Y. Fault detection for linear analog IC-the method of short-circuit admittance parameters[J], IEEE Transaction on Circuits and Systems Ⅰ,2002, 49(1):105-108.
    210 Ding X Q, Wang F F. Positive periodic solution for a semi-ratio-dependent predator-prey system with diffusion and time delays [J], Nonlinear Analysis:Real World Applications,2008,9(2):239-249.
    211 Zhou X Y, Shi X Y, Song X Y. Analysis of nonautonomous predator-prey model with nonlinear diffusion and time delay [J], Applied Mathematics and Computa-tion,2008,196(1):129-136.
    212 Chen S H, Wang F, Young T. Positive periodic solution of two-species ratio-dependent predator-prey system with time delay in two-patch environment [J], Applied Mathematics and Computation,2004,150(3):737-748.
    213 Chen F D, Xie X D. Permanence and extinction in nonlinear single and multiple species system with diffusion[J], Applied Mathematics and Computation,2006, 177(1):410-426.
    214 Gakkhar S, Sahani S K, Negi K. Effects of seasonal growth on delayed prey-predator model [J], Chaos, Solitons and Fractals,2007, doi:10.1016/j.chaos.2007.01.141 [Online article].
    215马知恩,周义仓.常微分方程定性与稳定性方法[M],北京:科学出版社,2001.
    216郑祖庥.泛函微分方程理论[M],合肥:安徽教育出版社,1994.
    217 Lakshmikantham V, Bainov D D, Simeonov P S. Theory of impulsive differential equations[M], Singapore:World Scientific,1989.
    218 Murray J D. Mathematical biology[M], New York:Springer-Verlag,1998.
    219陈兰荪,陈健.非线性生物动力系统[M],北京:科学出版社,1993.
    220张炳根.生态学数学模型[M],青岛:青岛海洋大学出版社,1990.
    221马知恩.种群生态学的数学建模与研究[M],合肥:安徽教育出版社,1996.
    222 Chen L N, Tada Y, Okamoto H, Tanabe R, Ono A. Optimal operation solutions of power systems with transient stability constraints [J], IEEE Transaction on Circuits and Systems Ⅰ,2001,48(3):327-339.
    223 Watanabe M, Aihara K, Kondo S. A dynamical neural network with temporal coding and functional connectivity[J], Biological Cybernetics 1998,78:87-93.
    224 Abeles M, Bergman H, Margalit E, Vaadia E. Spatiotemporal firing patterns in the frontal cortex of behaving monkeys[J], Journal of Neurophysiology,1993, 70(4):1629-1638.
    225 Chen L N, Aihara K. Global searching ability of chaotic neural networks[J], IEEE Transaction on Circuits and Systems I,1999,46(8):974-993.
    226 Somogyi R, Sniegoski C. Modeling the complexity of genetic networks:Under-standing multigenic and pleiotropic regulation [J], Complexity,1996,1(6):45-63.
    227 McAdams H, Shapiro L. Circuit simulation of genetic networks [J], Science,1995, 269(4):650-656.
    228 Chen L N, Aihara K. Stability and bifurcation analysis of differential-difference-algebraic equations [J], IEEE Transactions on Circuits and Systems Ⅰ,2001,48(3): 308-326.
    229 Matsumoto G, Aihara K, Hanyu Y, Takahashi N, Yoshizawa S, Nagumo J. Chaos and phase locking in normal squid axons[J], Physics Letters A,1987, 123(4):162-166.
    230 Herrera R, Suyama K, Horio Y, Aihara K. IC implementation of a switched-current chaotic neuron[J], IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,1999, E82(9):1776-1782.
    231 Someya H, Fujita A, Sekine Y, Aihara K. Hardware model of an active axon[J], IEICE Transactions on Fundamentals of Electronics, Communications and Com-puter Sciences,1999, J82(12):655-661.
    232 Gardner T S, Cantor C R, Collins J J. Construction of a genetic toggle switch in escherichia coli[J]. Nature,2000,403(20):339-342.
    233 Smolen P, Baxter D A, Byrne J H. Mathematical modeling of gene networks review[J], Neuron,2000,26(3):567-580.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700