用户名: 密码: 验证码:
鸭瘟病毒gC基因疫苗在雏鸭体内的抗原表达时相和分布规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究围绕鸭瘟病毒(DPV)的纯化、DPV gC抗原检测方法的建立和优化、DPVgC基因疫苗(pcDNA-DPV-gC)在雏鸭体内的抗原表达时相和分布规律及DPV弱毒疫苗在雏鸭体内的增殖和分布规律等4个方面开展以下研究:①DPV的纯化和超显微结构观察;②特异性检测DPV gC抗原的间接免疫组化和间接免疫荧光方法的建立和优化;③将pcDNA-DPV-gC分别以每只6μg、3μg、1μg基因枪轰击和200μg、100μg、50μg肌肉注射免疫20日龄的雏鸭;④将100μg脂质体/DNA基因疫苗和壳聚糖/DNA基因疫苗以肌注、口服和滴鼻等不同免疫途径免疫20日周龄的雏鸭;⑤在对照组中,将0.5mL DPV弱毒疫苗、100μg空白质粒和0.5mL生理盐水以皮下和肌注等不同免疫途径免疫20日龄的雏鸭,免疫后不同的时间点(4h、12h、1d、3d、5d、7d、2w、4w、6w和10 w),随机采集雏鸭的心、肝、脾、肺、肾、胰、脑、食道、胸腺、法氏囊、哈氏腺、十二指肠、盲肠、直肠和注射部位等组织,通过建立的间接免疫组化和间接免疫荧光方法检测pcDNA-DPV-gC在雏鸭体内的抗原表达时相和分布规律及DPV弱毒疫苗在雏鸭体内的增殖和分布规律。获得结果如下:
     1.利用差速离心和蔗糖密度梯度离心法纯化DPV,在电镜下可观察到多量、纯净的病毒粒子,纯化DPV具有典型的疱疹病毒的形态结构;将纯化DPV抗原多次免疫家兔可获得效价为1:32的兔抗DPV高免血清,经饱和硫酸铵粗提和High-Q柱纯化可获得较纯的兔抗DPV IgG。
     2.建立的间接免疫组化和间接免疫荧光方法具有主观,敏感性强,特异性高等优点,是进行DPV gC抗原检测和定位的可靠方法,pcDNA-DPV-gC免疫后1d即可在雏鸭体内检测到DPV gC蛋白且持续表达至10 w。
     3.基因枪轰击和肌肉注射免疫pcDNA-DPV-gC在雏鸭体内的抗原表达时相和分布规律:各剂量免疫组第1d在肝、十二指肠、盲肠、直肠和注射部位检测到DPV gC蛋白,其中注射部位的阳性信号最强;第2w时各组织中的抗原表达量达到高峰,随着时间推移,阳性信号以不同速度逐渐衰减;第10w时各剂量免疫组仍在肝、法氏囊、脑、十二指肠、盲肠和直肠检测到持续表达DPV gC蛋白;而胰在所有时间点均未检出阳性信号;pcDNA-DPV-gC在不同组织的表达量也存在差异,肝、脾、法氏囊、脑、十二指肠、盲肠和直肠是DPV gC抗原主要的分布器官;阳性信号主要出现在肝脏的肝细胞、脾脏白髓或红髓淋巴细胞、法氏囊皮质或髓质淋巴细胞、脑皮质神经胶质细胞及肠黏膜上皮细胞和固有层细胞等部位。
     4.脂质体/DNA基因疫苗和壳聚糖/DNA基因疫苗在雏鸭体内的抗原表达时相和分布规律:肌注组免疫后1d,肝脏、法氏囊、十二指肠、盲肠和直肠出现阳性信号;滴鼻组免疫12 h,肺脏出现阳性反应细胞,免疫后1 d,哈氏腺和法氏囊检测到DPV gC蛋白;口服组免疫雏鸭12 h,食道出现中等强度的阳性染色,免疫后1d,法氏囊、十二指肠、盲肠和直肠检测到DPV gC蛋白。其中肺脏、食道、哈氏腺、法氏囊、十二指肠、盲肠和直肠阳性信号较强,且持续时间长。阳性信号主要出现在肺脏和食道的上皮细胞、法氏囊和哈氏腺淋巴细胞、肠黏膜上皮细胞和固有层细胞等部位。
     5.不同剂量pcDNA-DPV-gC在雏鸭体内的抗原表达时相和分布规律:不同剂量pcDNA-DPV-gC免疫雏鸭后,各组织的抗原表达量呈现的总体规律为6μg组>3μg组>1μg组,200μg组>100μg组>50μg组,说明基因疫苗pcDNA-DPV-gC的免疫剂量与DPV gC抗原的表达和分布呈现一定的正相关,但非等比例增长。
     6.不同免疫途径免疫pcDNA-DPV-gC在雏鸭体内的抗原表达时相和分布规律:基因枪轰击和肌肉注射免疫pcDNA-DPV-gC后,DPV gC抗原可在雏鸭体内广泛表达和分布。免疫早期,基因枪组各组织的DPV gC蛋白表达量大于肌注组,尤其是皮肤的DPV gC蛋白表达量高于注射部位肌肉;免疫中期,基因枪组和肌注组的阳性信号都有强烈的增加,肌注组略高于基因枪组,但差别不明显;免疫后期,基因枪组和肌注组各组织的阳性信号不断减少,免疫后10 w大部分组织检测不到阳性信号。肌注、滴鼻和口服免疫脂质体/DNA基因疫苗和壳聚糖/DNA基因疫苗后,阳性信号在雏鸭不同组织的分布也产生一定的差异,如滴鼻组哈氏腺的阳性信号比肌注组和口服组高,口服组食道的阳性信号比肌注组和口服组高,DPV gC抗原在雏鸭各组织中的表达量和持续时间的总体规律为肌注组>滴鼻组>口服组。
     7.不同免疫佐剂包裹的pcDNA-DPV-gC在雏鸭体内的抗原表达时相和分布规律:免疫佐剂脂质体和壳聚糖都能促进pcDNA-DPV-gC在雏鸭体内抗原的表达和分布。壳聚糖/DNA组在雏鸭各组织中的阳性信号强度比脂质体组更强,持续时间也比脂质体组长。因此壳聚糖可作为pcDNA-DPV-gC免疫佐剂的首选。
     8.DPV弱毒疫苗在雏鸭体内增殖和分布规律:DPV弱毒疫苗免疫雏鸭后,第12 h肝脏和脾脏检测到DPV抗原,随着时间推移,阳性信号在1 d-7 d呈现上升趋势,2w-4 w达到最大值,但免疫后10 w仍可在雏鸭大部分组织检测到DPV抗原。鸭瘟疫苗病毒对雏鸭各组织表现出强烈的泛嗜性,肝脏,法氏囊,胸腺、十二指肠、盲肠和直肠是DPV主要的易感器官,而心脏、胰脏和食道的检测率低。
In this paper, the study concentrates on the purification of duck plague virus (DPV), the detecting methods of DPV gC antigens, antigenic expression phase and distribution regularity of DPV gC gene vaccine, and proliferation and distribution regularity of attenuated DPV vaccine.①purification and microstructure morphology observation of DPV;②development and application of an indirect immunohistochemical method (IHC) and an indirect immunofluorescence assay (IFA) for detection of DPV gC antigens in paraffine sections;③the 20-day-old ducklings were immunized with different doses of pcDNA-DPV-gC gene vaccine via gene gun bombardment (6μg,3μg and 1μg) and intramuscular injection (200μg,100μg and 50μg), respectively;④the 20-day-old duckings were immunized with 100μg liposome/DNA gene vaccine and chitosan/DNA gene vaccine via intramuscular injection, oral administration and nasal administration, respectively;⑤In the control groups, the 20-day-old ducklings were subcutaneouly immunized 0,5 mL attenuated DPV vaccine, and other groups were intramuscularly inoculated with 0.5 mL sterile physiologic saline and 100μg blank plasmid. At intervals of 4h,12h,1d,3d,5d,7d,2w,4w,6w and 10w post-vaccination (p.v.),two ducklings were randomly euthanatized from the immunization group.After euthanasia, heart, liver, spleen, lung, kidney, pancreas, brain, esophagus, thymus, bursa of Fabricus (BF), Harderian gland, duodenum, caecum, rectum and injection site were collected. The control groups were processed in the same way.Development and application of the IHC and IFA were detected antigenic expression phase and distribution regularity of pcDNA-DPV-gC gene vaccine in the vaccinated ducklings, and the same methods were prepared to detect proliferation and distribution regularity of attenuated DPV vaccine. The results were showed as follow:
     1.The purification of DPV could be operated by conventional differential centrifugation and discontinuous sucrose-density gradient centrifugation. Many purification virus were examined by negative staining microscopy under transmission electron microscope(TEM). Some definite structures of mature DPV particles could be clearly observed with typical morphous structure of Herpervirus. Rabbit anti-DPV polyclonal serum was obtained from the rabbits immunized with purified DPV antigens, and the titers of specific antibody were more than 1:32 in the final injection. The DPV IgG was extracted by saturated ammonium sulfate method and purified through High-Q chromatograghy.
     2.Development and application of the IHC and IFA are subjective, sensitive and specificity, which is a reliable method for detecting dynamic distribution of DPV gC antigens, and the DPV gC protein could be distributed in the tissues of the vaccinated ducklings at 1 d p.v.,and exist in those at least 10 w p.v..
     3.The antigenic expression phase and distribution regularity of pcDNA-DPV-gC with gene gun bombardment and intramuscular injection:The positive immunoreactivity in different dose groups was found in the liver, duodenum, caecum, rectum and injected spot at 1 d p.v., and the immunoreactivity of injected spot was stronger than other organs.In addition, a drastic reduction of DPV gC antigen levels were observed after the highest immunoreactivity at 2 w p.v.,but still had a detectable vaccine antigen level in the liver, brain, duodenum, caecum and rectum at 10 w p.v.. Interestingly, the pancreas was scarcely detected positive signals at different time points; The antigen levels have a conspicuous discrepancy among the different tissues.The positive immunogenicity was mainly found in the liver, spleen, bursa of Fabricus, brain, duodenum, caecum and rectum, which served as the principal sites for antigen localization. The target cells had a ubiquitous distribution, especially in the hepatocyte of liver, the lymphocyte of splenic white pulp and red pulp, the lymphocyte of cortical substance and punctate substance of bursa of Fabricius, the neuroglia cells of brain pallium, cellula epithelialis and lamina propria mucosae of intestinal tract.
     4.The antigenic expression phase and distribution regularity of liposome/DNA gene vaccine and chitosan/DNA gene vaccine:The positive signals were observed in the liver, bursa of Fabricius (BF),duodenum, caecum and rectum in the intramuscular injection group at 1 d p.v.,and in the nasal administration group, the positive staining reaction were found in the lung at 12 h p.v.,and the DPV gC proteins were observed in the Harderian gland and BF at 1 d p.v. Moreover,the positive staining were firstly found in the esophagus in the oral administration group at 12 h p.v.,and the DPV gC proteins were observed in BF, duodenum, caecum and rectum at 1 d p.v. The positive immunogenicity was mainly found in the lung, esophagus, Harderian gland, BF, duodenum, caecum and rectum. The target cells had a ubiquitous distribution, especially in the cellula epithelialis of lung and esophagus, the lympholeukocyte of BF and Harderian gland, lamina propria and cellula epithelialis of intestinal tract.
     5.The antigenic expression phase and distribution regularity in the different doses of pcDNA-DPV-gC gene vaccine:The signal intensity and duration time of different doses were in below order:6μg groups>3μg groups>1μg groups,200μg groups>100μg groups>50μg groups. The results explained that there were the positive dependablity between the immunization doses and the dynamic expression regularity of DPV gC antigens.
     6.The antigenic expression phase and distribution regularity of pcDNA-DPV-gC gene vaccine in the different immunization-routes:The DPV gC antigens could distribute in the tissues of ducklings via the different immunization routes(gene gun bombardment and intramuscular injection).The expression level of DPV gC antigens in the gene gun groups were higher than the intramuscular injection groups in the early immunization period, especially DPV gC proteins of the skin were more than the muscle of injection site. The distinction could not be obvious because the number of positive immunoreactivity in all tissues of the gene gun groups and intramuscular injection groups had dramatically increased in the intermediate immunization stage. However, a drastic reduction of DPV gC antigen levels were observed, and most of tissues could not found the positive signals in the gene gun groups and intramuscular injection groups at 10 w p.v.. The antigen levels have a conspicuous discrepancy among the different tissues when the ducklings were immunized liposome/DNA gene vaccine and chitosan/DNA gene vaccine via the different immunization routes (intramuscular injection, oral administration and nasal administration). For example, the positive immunoreactivity of Harderian gland in the nasal administration groups were higher than the intramuscular injection groups and oral administrations groups, and the antigen levels of esophagus in the oral administration groups were more than the intramuscular injection groups and nasal administration groups. The signal intensity and duration time of different doses were in below order:intramuscular injection groups> nasal administration groups>oral administration groups.
     7. The antigenic expression phase and distribution regularity of pcDNA-DPV-gC gene vaccine in the different immunological adjuvant:The different immunization adjuvant could promote antigenic expression phase and distribution regularity of pcDNA-DPV-gC gene vaccine. The result showed that the persistence time and the positive signal intensity in the chitosan groups were more than the liposome groups. Chitosan was better immunological adjuvant as pcDNA-DPV-gC gene vaccine.
     8.The proliferation and distribution regularity of attenuated DPV vaccine:The first signals of DPV-specific antigens were observed in the liver and spleen at 12 h p.v., but no positive staining cells could be observed in the controls birds.The number of positive immunoreactivity in all tissues had dramatically increased to reach peak levels between 1 d and 7 d p.v.. The highest levels of positive staining reaction were found between 2 w and 4 w p.v.. The attenuated DPV vaccine appeared intense pantropic to the tissues of the vaccinated ducklings. The liver, BF, thymus, duodenum, caecum, rectum were served as the principal sites for antigens localization, but the heart, pancreas and esophagus had lower detection ratio.
引文
[1]Sandhu T. S.,Metwally S.A. Duck Virus Enteritis (Duck Plague).In:S.Y.M.,(Ed.), Diseases of poultry [M].Blackwell Publishing, Singapore,2008:384-393.
    [2]甘孟侯.中国禽病学[M].北京:中国农业出版社,1999:107-119.
    [3]Barr B.C.,Jessup D.A.,Docherty D.E.,et al. Epithelial intracytoplasmic herpes viral inclusions associated with an outbreak of duck virus enteritis[J].Avian Dis, 1992,36(1):164-168.
    [4]Baudet A. E. R. F. Mortality in ducks in the Netherlands caused by a filtrable virus; fowl plague [J].Tijdschr Diergeneeskd,1923,50:455-459.
    [5]Jasen J.S.,Kurst H. Is duck plague related to newscastle disease or fowl plague[J]. Proc 14th Int Vet Congr,1949,2:363-365.
    [6]Bos A. Some new cases of duck plague [J].Tijdschr Diergeneeskd,1942,69: 372-381.
    [7]黄引贤.拟鸭瘟的研究[J].华南农学院学报,1959,1(1):1-13.
    [8]廖德惠,张敏,张化贤,等.四川麻鸭鸭瘟的调查研究[J].四川农学院学报,1983,1:99-108.
    [9]Kaleta E.F. Herpesviruses of birds[J].Avian Pathol,1990,19(2):193-211.
    [10]Burgess E.C.,Ossa J.,Yuill T. M. Duck plague:a carrier state in waterfowl[J]. Avian Dis,1979,23(4):940-949.
    [11]刁有祥.禽病学[M].北京:中国农业科学技术出版社,2005:123-127.
    [12]Letchworth G.J.,Fishel J.R.,Hansen W. A monoclonal antibody to inclusion body disease of cranes virus enabling specific immunohistochemistry and competitive ELISA[J].Avian Dis,1997,41(4):808-816.
    [13]Deng M. Y.,Burgess E. C.,Yuill T. M. Detection of duck plague virus by reverse passive hemagglutination test[J].Avian Dis,1984,28(3):616-628.
    [14]Islam M. R.,Nessa J.,Halder K. M. Detection of duck plague virus antigen in tissues by immunoperoxidase staining[J].Avian Pathol,1993,22(2):389-393.
    [15]程安春,廖永洪,汪铭书,等.生物素标记寡核苷酸探针原位检测石蜡切片中鸭瘟病毒核酸[J].中国兽医学报,2009,29(4):403-408.
    [16]Hansen W. R.,Nashold S.W.,Docherty D.E.,et al.Diagnosis of duck plague in waterfowl by polymerase chain reaction[J].Avian Dis,2000,44(2):266-274.
    [17]程安春,汪铭书,刘菲,等.PCR在鸭瘟临床诊断和免疫及致病机理研究中的初步应用[J].病毒学报,2004,20(4):364-370.
    [18]Hansen W. R.,Brown S.E.,Nashold S.W.,et al.Identification of duck plague virus by polymerase chain reaction[J].Avian Dis,1999,43(1):106-115.
    [19]Qi X. F.,Yang X. Y,Cheng A. C.,et al.Replication kinetics of duck virus enteritis vaccine virus in ducklings immunized by the mucosal or systemic route using real-time quantitative PCR[J].Res Vet Sci,2009,86(1):63-67.
    [20]Qi X. F.,Yang X. Y,Cheng A. C.,et al. The pathogenesis of duck virus enteritis in experimentally infected ducks:a quantitative time-course study using TaqMan polymerase chain reaction[J].Avian Pathol,2008,37(3):307-310.
    [21]Guo Y. F.,Cheng A. C.,Wang M. S.,et al.Development of TaqMan MGB fluorescent real-time PCR assay for the detection of anatid herpesvirus 1[J].Virol. J,2009,6:71.
    [22]Proctor S.J. Pathogenesis of digestive tract lesions in duck plague[J].Vet Pathol, 1975,12(5-6):349-361.
    [23]Yuan G. P.,Cheng A. C.,Wang M. S.,et al. Electron microscopic studies of the morphogenesis of duck enteritis virus[J].Avian Dis,2005,49(1):50-55.
    [24]Islam M. R.,Khan M. A. An immunocytochemical study on the sequential tissue distribution of duck plague virus[J].Avian Pathol,1995,24(1):189-194.
    [25]程安春,汪铭书,刘菲,等.鸭瘟病毒弱毒株在免疫雏鸭体内的分布和排毒规律[J].中国兽医学报,2005,25(3):231-233.
    [26]Shawky S.Target cells for duck enteritis virus in lymphoid organs[J].Avian Pathol, 2000,29(6):609-616.
    [27]齐雪峰,罗薇,杨晓燕,等.鸭瘟病理组织学动态观察[J].中国预防兽医学报,2006,28(1):44-47.
    [28]Shawky S.,Sandhu T.,Shivaprasad H. L. Pathogenicity of a low-virulence duck virus enteritis isolate with apparent immunosuppressive ability[J].Avian Dis,2000, 44(3):590-599.
    [29]Jasen J. S.,Kurst H. The active immunization of duck plague[J].Tijdschr Diergeneeskd,1963,88:927-932.
    [30]Toth T. E. Active immunization of White Pekin ducks against Duck virus enteritis (duck plague) with modified-live-virus vaccine:serologic and immunologic response of breeder ducks[J]. Am J Vet Res,1971,32(1):75-81.
    [31]Kulkarni D.D.,James P. C.,Sulochana S.Assessment of the immune response to duck plague vaccinations[J].Res Vet Sci,1998,64(3):199-204.
    [32]Wolff J.A.,Malone R. W.,Williams P.,et al. Direct gene transfer into mouse muscle in vivo[J].Science,1990,247(4949):1465-1468.
    [33]Ulmer J.B.,Wahren B.,Liu M. A. Gene-based vaccines:recent technical and clinical advances[J].Trends Mol Med,2006,12(5):216-222.
    [34]Seo S.H.,Wang L., Smith R., et al.The carboxyl-terminal 120-residue polypeptide of infectious bronchitis virus nucleocapsid induces cytotoxic T lymphocytes and protects chickens from acute infection[J].J Virol,1997,71(10):7889-7894.
    [35]Kumar S.,Ahi Y. S.,Salunkhe S.S.,et al.Effective protection by high efficiency bicistronic DNA vaccine against infectious bursal disease virus expressing VP2 protein and chicken IL-2[J].Vaccine,2009,27(6):864-869.
    [36]Oveissi S.,Omar A. R.,Yusoff K.,et al. DNA vaccine encoding avian influenza virus H5 and Esat-6 of Mycobacterium tuberculosis improved antibody responses against AIV in chickens[J].Comp Immunol Microbiol Infect Dis,2009, (701-713): 1-13.
    [37]卢菲,程安春,汪铭书,等.不同剂量小鹅瘟病毒VP3基因疫苗肌肉注射诱导小鼠细胞免疫[J].中国兽医学报,2008,28(10):1158-1161.
    [38]陈金顶,廖明,赵明秋,等.鹅Ⅰ型禽副黏病毒F基因重组质粒的构建及其DNA免疫[J].中国兽医科技,2003,33(7):7-11.
    [39]Ranasinghe C.,Medveczky J.C.,Woltring D.,et al.Evaluation of fowlpox-vaccinia virus prime-boost vaccine strategies for high-level mucosal and systemic immunity against HIV-1[J].Vaccine,2006,24(31-32):5881-5895.
    [40]李晓英,王红宁,黄勇,等.禽传染性支气管炎脂质体、壳聚糖/DNA疫苗免疫效果比较研究[J].畜牧兽医学报,2006,37(12):1319-1322.
    [41]陆彬.药物新剂型与新技术[M].北京:人民卫生出版社,1998:107-110.
    [42]Hoffman W. K.,Lalley P.,Butler J. D.,et al. Lipochromosome mediated gene transfer:identification and probable specificity of localization of human chromosomal material and stability of the transferees[J].In Vitro,1981,17(8): 735-740.
    [43]Ostro M.J.,Giacomoni D.,Lavelle D.,et al.Evidence for translation of rabbit globin mRNA after liposome-mediated insertion into a human cell line[J].Nature, 1978,274(5674):921-923.
    [44]Mukherjee A. B.,Orloff S.,Butler J. D.,et al.Entrapment of metaphase chromosomes into phospholipid vesicles (lipochromosomes):carrier potential in gene transfer[J].Proc Natl Acad Sci U S A,1978,75(3):1361-1365.
    [45]Okumura K.,Nakase M.,Inui M.,et al. P3.01.Antitumor activity of cationic liposome-mediated Bax mRNA transfer in squamous cell carcinoma KB cells[J]. Oral Oncol,2009,3(Suppl 1):201-236.
    [46]Ninomiya A.,Ogasawara K.,Kajino K.,et al.Intranasal administration of a synthetic peptide vaccine encapsulated in liposome together with an anti-CD40 antibody induces protective immunity against influenza A virus in mice[J].Vaccine, 2002,20(25-26):3123-3129.
    [47]Iinuma H.,Nerome K.,Yoshioka Y.,et al. Characteristics of cytotoxic T lymphocytes directed to influenza virus haemagglutinin elicited by immunization with muramyldipeptide-influenza liposome vaccine[J].Scand J Immunol,1995, 41(1):1-10.
    [48]Afrin F.,Ali N.Adjuvanticity and protective immunity elicited by Leishmania donovani antigens encapsulated in positively charged liposomes[J].Infect Immun, 1997,65(6):2371-2377.
    [49]Afrin F.,Ali N. Isotype profiles of Leishmania donovani-infected BALB/c mice: preferential stimulation of IgG2a/b by liposome-associated promastigote antigens[J].J Parasitol,1998,84(4):743-748.
    [50]Afrin F., Anam K.,Ali N. Induction of partial protection against Leishmania donovani by promastigote antigens in negatively charged liposomes[J].J Parasitol, 2000,86(4):730-735.
    [51]Fraser-Smith E. B.,Eppstein D.A.,Larsen M. A. Protective effect of muramyldi peptide analogen capsula tedinor mixed with liposomes against Candida albicans infection[J].Infect Immun,1983,39:172-178.
    [52]Joseph A.,Louria-Hayon I.,Plis-Finarov A.,et al.Liposomal immunostimulatory DNA sequence (ISS-ODN):an efficient parenteral and mucosal adjuvant for influenza and hepatitis B vaccines[J]. Vaccine,2002,20(27-28):3342-3354.
    [53]Babai I.,Samira S.,Barenholz Y.,et al.A novel influenza subunit vaccine composed of liposome-encapsulated haemagglutinin/neuraminidase and IL-2 or GM-CSF. II. Induction of TH1 and TH2 responses in mice[J].Vaccine,1999, 17(9-10):1239-1250.
    [54]Babai I.,Samira S.,Barenholz Y,et al. A novel influenza subunit vaccine composed of liposome-encapsulated haemagglutinin/neuraminidase and IL-2 or GM-CSF. I.Vaccine characterization and efficacy studies in mice[J].Vaccine,1999, 17(9-10):1223-1238.
    [55]Guliyeva U.,Oner F.,Ozsoy S.,et al.Chitosan microparticles containing plasmid DNA as potential oral gene delivery system[J].Eur J Pharm Biopharm,2006,62(1): 17-25.
    [56]Opanasopit P.,Techaarpornkul S.,Rojanarata T.,et al.Nucleic Acid Delivery with Chitosan Hydroxybenzotriazole[J].Oligonucleotides,2010,13(756):625-626.
    [57]Jiang H. L.,Kim Y. K.,Lee S.M.,et al. Galactosylated chitosan-g-PEI/DNA complexes-loaded poly(organophosphazene) hydrogel as a hepatocyte targeting gene delivery system[J].Arch Pharm Res,2010,33(4):551-556.
    [58]Sato T.,Ishii T.,Okahata Y. In vitro gene delivery mediated by chitosan. effect of pH, serum, and molecular mass of chitosan on the transfection efficiency[J]. Biomaterials,2001,22(15):2075-2080.
    [59]Simon R.,Heithoff D.M.,Mahan M. J.,et al. Comparison of tissue-selective proinflammatory gene induction in mice infected with wild-type, DNA adenine methylase-deficient, and flagellin-deficient Salmonella enterica[J].Infect Immun, 2007,75(12):5627-5639.
    [60]Jean M.,Smaoui F.,Lavertu M.,et al. Chitosan-plasmid nanoparticle formulations for IM and SC delivery of recombinant FGF-2 and PDGF-BB or generation of antibodies[J]. Gene Ther,2009,16(9):1097-1110.
    [61]张馨玉,金华利,杨若耶,等.壳聚糖对口蹄疫DNA疫苗黏膜免疫的影响[J].中国农业大学学报,2005,10(5):21-25.
    [62]Roy K.,Mao H. Q.,Huang S.K.,et al.Oral gene delivery with chitosan--DNA nanoparticles generates immunologic protection in a murine model of peanut allergy[J].Nat Med,1999,5(4):387-391.
    [63]Rajesh Kumar S.,Ishaq Ahmed V. P.,Parameswaran V,et al. Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in Asian sea bass (Lates calcarifer) to protect from Vibrio (Listonella) anguillarum[J].Fish Shellfish Immunol,2008,25(1-2):47-56.
    [64]Zou Q.,Sun K. F.,Cheng A. C.,et al.Detection of anatid herpersvirus 1 gC gene by TaqMan fluorescent quantitative real-time PCR with specific and probe[J]. Virology J,2010,7:37:
    [65]黎敏,程安春,汪铭书,等.基因枪轰击不同剂量小鹅瘟病毒VP3基因疫苗在雏鹅体内的动态分布[J].畜牧兽医学报,2007,38(11):1204-1210.
    [66]Haines D.M.,West K. H. Immunohistochemistry:forging the links between immunology and pathology[J].Vet. Immunol. Immunopathol.,2005,108(1-2): 151-156.
    [67]Garcia N.,Tomas M.,Santafe M. M.,et al.Localization of brain-derived neurotrophic factor, neurotrophin-4, tropomyosin-related kinase b receptor, and p75 receptor by high-resolution immunohistochemistry on the adult mouse neuromuscular junction[J].J Peripher Nerv Syst,2010,15(1):40-49.
    [68]Mokhtari M.,Mesbah A.,Rajabi P.,et al. Determination of the relationship between Basal cell carcinoma and human papilloma virus, based on immunohistochemistry staining method[J].Indian J Dermatol,2009,54(3):225-228.
    [69]Moreira R. K.,Revetta F.,Koehler E.,et al.Diagnostic utility of IgG and IgM immunohistochemistry in autoimmune liver disease[J].World J Gastroenterol,2010, 16(4):453-457.
    [70]蔡文琴,王伯法.实用免疫细胞化学与核酸分子杂交技术[M].成都:四川科学技术出版社,1994:72-97.
    [71]蒲阳,程安春,汪铭书.免疫组化技术在病原微生物检测中的应用[J].黑龙江畜牧兽医,2008,5:20-21.
    [72]沈福晓,程安春,汪铭书.免疫荧光技术在家禽传染病研究和诊断中的应用[J].中国家禽,2009,31(1):30-34.
    [73]Minz R. W.,Chhabra S.,Singh S.,et al.Direct immunofluorescence of skin biopsy: perspective of an immunopathologist[J].Indian J Dermatol Venereol Leprol,2010, 76(2):150-157.
    [74]Phetsouvanh R.,Blacksell S.D.,Jenjaroen K.,et al.Comparison of indirect immunofluorescence assays for diagnosis of scrub typhus and murine typhus using venous blood and finger prick filter paper blood spots[J].Am J Trop Med Hyg, 2009,80(5):837-840.
    [75]Yan B.,Cheng A. C.,Wang M. S.,et al. Application of an indirect immunofluorescent staining method for detection of Salmonella enteritidis in paraffin slices and antigen location in infected duck tissues[J].World J Gastroenterol,2008,14(5):776-781.
    [76]陈舜.雏鹅新型病毒性肠炎病毒强毒生物学特征研究[M].雅安:四川农业大学,2009.
    [77]文明.DEV基因文库构建、核衣壳蛋白基因的发现及克隆与表达[M].雅安:四川农业大学,2005.
    [78]Guo Y. F.,Shen C.,Cheng A. C.,et al.Anatid herpesvirus 1 CH virulent strain induces syncytium and apoptosis in duck embryo fibroblast cultures[J].Vet. Microbiol.,2009,138(3-4):258-265.
    [79]郭宇飞,程安春,汪铭书,等.鸭胚成纤维细胞中鸭瘟病毒的增殖特征研究[J].病毒学报,2008,24(5):352-356.
    [80]Guo Y. F.,Cheng A. C.,Wang M. S.,et al. Purification of anatid herpesvirus 1 particles by tangential-flow ultrafiltration and sucrose gradient ultracentrifugation[J].J Virol Methods,2009,161(1):1-6.
    [81]郭宇飞,程安春,汪铭书,等.鸭瘟病毒纯化及电镜复染观察[J].中国兽医科学,2008,38(5):393-396.
    [82]汪国政,范明.蛋白技术手册[M].北京:科学出版社,2001:45-47.
    [83]Li C.F.,Shen C.J.,Cheng A. C.,et al. Development and application of an indirect immunoperoxidase assay for the detection of Duck swollen head hemorrhagic disease virus antigen in Pekin ducks (Anas platyrhynchos)[J].J. Vet. Diagn. Invest., 2010,22(1):10-19.
    [84]Cheng Y,Nilsson A.,Tomquist E.,et al.Purification, characterization, and expression of rat intestinal alkaline sphingomyelinase[J].J Lipid Res,2002,43(2): 316-324.
    [85]Lerner A. M. Concentration and Purification of Viruses with Special Reference to Reoviruses[J].Bacteriol Rev,1964,28:391-396.
    [86]Mould D.L. Application of methods of physical chemistry for the isolation of virus and subcellular particles from biological tissue[J].Arch Biochem Biophys,1962, Suppl 1:30-38.
    [87]Walin L.,Tuma R.,Thomas G. J.,Jr.,et al. Purification of viruses and macromolecular assemblies for structural investigations using a novel ion exchange method[J].Virology,1994,201(1):1-7.
    [88]文明,程安春,汪铭书,等.鸭瘟病毒提纯方法比较[J].山地农业生物学报,2006,25(2):115-120.
    [89]文明,程安春,汪铭书,等.鸭病毒性肠炎病毒的提纯及其结构蛋白SDS-PAGE分析[J].中国兽医学报,2006,36(3):243-245.
    [90]贾仁勇,程安春,汪铭书,等.鸭肠炎病毒CHv强毒株超微结构研究[J].病毒学报,2007,23(3):202-206.
    [91]文喻玲,赵庆欢,于洋,等.氯化铯密度梯度离心轮状病毒[J].中国现代内科学杂志,2007,4(3):195-197.
    [92]Breese S.S.,Jr.,Dardiri A. H. Electron microscopic characterization of duck plague virus[J].Virology,1968,34(1):160-169.
    [93]Bergmann V.,Kinder E. Morphology maturation and effect of duck plague in host tissue.Electron microscopic study[J].Arch Exp Vet Med,1982,36(3):455-463.
    [94]Salguero F. J.,Sanchez-Cordon P. J.,Nunez A.,et al.Histopathological and ultrastructural changes associated with herpesvirus infection in waterfowl[J].Avian Pathol,2002,31(2):133-140.
    [95]郭宇飞,程安春,汪铭书,等.鸭病毒性肠炎病毒CH强毒株在鸭胚成纤维细胞的超微结构观察[J].中国兽医学报,2005,25(6):632-635.
    [96]郭宇飞,程安春,汪铭书,等.鸭病毒性肠炎病毒CH强毒株在鸭胚成纤维细胞中形态发生学的观察[J].畜牧兽医学报,2006,37(3):274-208.
    [97]袁桂萍,程安春,汪铭书,等.鸭病毒性肠炎病毒强毒在人工感染鸭体内形态结构和发生学的电镜观察[J].畜牧兽医学报,2005,36(5):486-491.
    [98]陈海军.鸭肝炎病毒人工感染雏鸭病理发展规律及免疫组化与免疫荧光检测病原侵染规律的研究[M].雅安:四川农业大学,2007.
    [99]黎敏.小鹅瘟病毒VP3基因疫苗在免疫雏鸭体内动态分布及表达规律的研究[M].雅安:四川农业大学,2007.
    [100]徐超,程安春,汪铭书,等.间接酶免疫组化检测DPV在感染鸭体内细胞定位的研究和应用[J].中国兽医学报,2007,27(5):640-644.
    [101]黎敏,程安春,汪铭书,等.基因枪轰击不同剂量小鹅瘟病毒VP3基因疫苗在雏鹅体内的动态分布[J].畜牧兽医学报,2007,38(11):1204-1210.
    [102]温剑平,杨贵贞.乙肝表面抗原核酸疫苗在小鼠体内的阳性表达[J].中国免疫学杂志,2002,18(3):159-161.
    [103]Kim B.M.,Lee D.S.,Choi J.H.,et al.In vivo kinetics and biodistribution of a HIV-1 DNA vaccine after administration in mice[J].Arch Pharm Res,2003,26(6): 493-498.
    [104]李万奎,程安春,汪铭书,等.用原位杂交检测基因枪轰击小鹅瘟病毒VP3基因疫苗在小鼠体内分布规律[J].中国动物传染病学报,2009,17(2):43-49.
    [105]Nishikawa M.,Takemura S.,Yamashita F.,et al.Pharmacokinetics and in vivo gene transfer of plasmid DNA complexed with mannosylated poly(L-lysine) in mice[J].J Drug Target,2000,8(1):29-38.
    [106]Kang E.S.,Kim C.Y.,Kim.S.B.,et al.In vivo kinetics and biodistribution of HB-110,a novel HBV DNA vaccine,after administration in mice[J].Arch Pharm Res,2007,30(3):355-360.
    [107]Sheets R. L.,Tein J. S.,Manetz T. S.,et al.Biodistribution of DNA plasmid vaccines against HIV-1,Ebola, Severe Acute Respiratory Syndrome, or West Nile virus is similar, without integration, despite differing plasmid backbones or gene inserts[J].Toxicol Sci,2006,91(2):610-619.
    [108]Tuomela M.,Malm M.,Wallen M.,et al. Biodistribution and general safety of a naked DNA plasmid, GTU-MultiHIV, in a rat, using a quantitative PCR method[J]. Vaccine,2005,23(7):890-896.
    [109]Morris-Downes M. M.,Phenix K. V.,Smyth J.,et al.Semliki Forest virus-based vaccines:persistence, distribution and pathological analysis in two animal systems[J].Vaccine,2001,19(15-16):1978-1988.
    [110]Han I.K.,Kim M. Y.,Byun. H. M.,et al.Enhanced brain targeting efficiency of intranasally administered plasmid DNA:an alternative route for brain gene therapy[J].J Mol Med,2007,85(1):75-83.
    [111]Falo L.D.,Jr. Targeting the skin for genetic immunization[J].Proc Assoc Am Physicians,1999,111(3):211-219.
    [112]Sudowe S.,Ludwig-Portugall I.,Montermann E.,et al.Transcriptional targeting of dendritic cells in gene gun-mediated DNA immunization favors the induction of type 1 immune responses[J].Mol Ther,2003,8(4):567-575.
    [113]Pertmer T. M., Eisenbraun M. D.,McCabe D.,et al. Gene gun-based nucleic acid immunization:elicitation of humoral and cytotoxic T lymphocyte responses following epidermal delivery of nanogram quantities of DNA[J].Vaccine,1995, 13(15):1427-1430.
    [114]Wang S.,Zhang C.,Zhang L.,et al.The relative immunogenicity of DNA vaccines delivered by the intramuscular needle injection, electroporation and gene gun methods[J].Vaccine,2008,26(17):2100-2110.
    [115]Fynan E.F.,Webster R. G.,Robinson H. L.,et al. DNA vaccine, protective immunization by parenteral,mucosal,and gene gun inoculation[J].Natl Acad Sci, 1993,90:11478-11482.
    [116]马正海,余兴聋,涂长春,等.猪瘟病毒E2基因疫苗表达抗原在小白鼠胫前肌的分布及消长[J].中国兽医科技,1999,29(7):3-5.
    [117]Acsadi G.,Jiao S.S.,Jani A.,et al. Direct gene transfer and expression into rat heart in vivo[J].New Biol,1991,3(1):71-81.
    [118]Davis H. L.Use of CpG DNA for enhancing specific immune responses[J].Curr Top Microbiol Immunol,2000,247:171-183.
    [119]Pitard B.,Pollard H.,Agbulut O.,et al. A nonionic amphiphile agent promotes gene delivery in vivo to skeletal and cardiac muscles[J].Hum Gene Ther,2002,13(14): 1767-1775.
    [120]Georgousakis M. M.,McMillan D.J.,Batzloff M. R.,et al. Moving forward:a mucosal vaccine against group A streptococcus[J].Expert Rev Vaccines,2009,8(6): 747-760.
    [121]Adair B.M. Nanoparticle vaccines against respiratory viruses[J].Wiley Interdiscip Rev Nanomed Nanobiotechnol,2009,1(4):405-414.
    [122]Mao S.,Chen J.,Wei Z.,et al. Intranasal administration of melatonin starch microspheres[J].Int J Pharm,2004,272(1-2):37-43.
    [123]Venkatesan N.,Vyas S.P. Polysaccharide coated liposomes for oral immunization--development and characterization[J].Int J Pharm,2000,203(1-2): 169-177.
    [124]Alpar H.O.,Somavarapu S.,Atuah K. N.,et al.Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery[J].Adv Drug Deliv Rev,2005,57(3):411-430.
    [125]Irie T.,Watarai S.,Kodama H. Humoral immune response of carp (Cyprinus carpio) induced by oral immunization with liposome-entrapped antigen[J].Dev Comp Immunol,2003,27(5):413-421.
    [126]Minato S.,Iwanaga K.,Kakemi M.,et al. Application of polyethyleneglycol (PEG)-modified liposomes for oral vaccine:effect of lipid dose on systemic and mucosal immunity[J].J Control Release,2003,89(2):189-197.
    [127]刘晓东,程安春,汪铭书,等.荧光定量PCR检测小鹅瘟病毒VP3基因疫苗在小鼠体内的动态分布[J].中国兽医杂志,2008,44(8):15-17.
    [128]Fodor I.,Kucsera L.,Fodoe N.,et al.Gene immunization of mice with plasmid DNA expressing rabies virus glycoprotein[J].Acta Vet Hung,2000,48(2):229-236.
    [129]刘新宇,梁东春,张镜宇.三种非病毒载体转染方法的比较[J].中国医科大学学报,2003,9(4):456-458.
    [130]Fang N.,Chan V.,Mao H. Q.,et al.Interactions of phospholipid bilayer with chitosan:effect of molecular weight and pH[J].Biomacromolecules,2001,2(4): 1161-1168.
    [131]Ishii T.,Okahata Y,Sato T. Mechanism of cell transfection with plasmid/chitosan complexes[J].Biochim Biophys Acta,2001,1514(1):51-64.
    [132]Thanou M.,Florea B.I.,Geldof M.,et al.Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines[J].Biomaterials,2002,23(1):153-159.
    [133]Bozkir A.,Saka O.M. Chitosan-DNA nanoparticles:effect on DNA integrity, bacterial transformation and transfection efficiency[J].J Drug Target,2004,12(5): 281-288.
    [134]程安春,韩晓英,朱德康,等.间接免疫荧光染色检测石蜡切片中的鸭病毒性肠炎病毒和抗原定位[J].中国兽医学报,2008,28(8):871-875.
    [135]程安春,韩晓英,汪铭书,等.用间接免疫荧光染色法检测鸭病毒性肠炎病毒在人工感染鸭体内的侵染过程和分布规律[J].畜牧兽医学报,2007,38(9):942-946.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700