用户名: 密码: 验证码:
Runx2调控小鼠成牙本质细胞与成釉细胞的分化以及牙齿矿化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Runx2是一种在成骨细胞分化及牙齿的发育过程中起着重要作用的转录因子,牙齿以及骨组织中的特异性基质蛋白在转录水平均受其调控。Runx2缺陷导致包括牙齿在内的全身硬组织疾病,如锁骨颅骨发育异常(CCD)。Runx2基因敲除表现出严重的骨及牙齿发育障碍。结合Runx2的转录因子特性,以及在牙齿发育过程中的表达特征,可以推测Runx2可能也是牙齿发育和矿化的重要转录调控因子。最近有研究发现,在牙胚发育过程中Runx2存在着表达的时空性,并且证实Runx2可以调控牙齿发育中的某些特异性基质蛋白的表达。同时,有结果显示,釉原蛋白基因的启动子(-1641、+92)和牙本质涎磷蛋白基因的启动子(-3950、-3106)上存在Runx2结合位点, Runx2可以通过该位点显著上调这两种基因的表达。目前,在细胞水平上已经证实,Runx2调控着多种与矿化相关蛋白的表达,但在动物水平上,Runx2又是如何调控蛋白表达以及对矿化又有哪些影响呢?
     因此,本课题通过转基因手段分别建立在成釉细胞与成牙本质细胞中特异性过表达Runx2的小鼠模型,研究Runx2对分化晚期的成釉细胞与成本质细胞分化的影响以及因此造成的牙釉质与牙本质矿化的表型改变。为此,我们的课题共分为两部分:
     第一部分构建转基因小鼠
     我们分别构建pBluescript II KS(+)-Amelogenin Promoter-Runx2和pBluescript II KS(+)-DSPP Promoter-Runx2质粒载体。通过显微注射,将线性化的质粒注入小鼠受精卵中,构建转基因小鼠,并且设计特异性引物,利用PCR技术,鉴定转基因小鼠的基因整合和表达情况。通过qRT-PCR筛选表达高的鼠系进行表型的分析。
     第二部分转基因小鼠表型分析
     实验一DSPP Promoter-Runx2转基因小鼠表型分析
     在牙本质形成的启始阶段,转基因小鼠成牙本质细胞完全丧失本身的高柱状形态和极化方向,前期牙本质和牙本质小管结构消失,牙本质变薄呈均质状的骨基质样结构,并且髓腔中出现新生的骨样结构,表明Runx2抑制了成牙本质细胞的最终分化成熟,并诱导处于分化晚期状态的成牙本质细胞向成骨细胞分化。同时,强烈抑制DSPP的表达和牙本质的形成,形成类骨基质样组织替代正常的牙本质。
     实验二Amelogenin Promoter-Runx2转基因小鼠表型分析
     结果发现,转基因小鼠成釉细胞失去原有的高柱状形态和极化特征,釉基质的形成受到抑制,釉基质在成釉细胞分泌早期阶段就已被阻断,并且釉原蛋白表达下调明显,表明Runx2抑制了釉原蛋白的表达和成釉细胞的分化,导致釉基质形成障碍,造成釉质形成不全,并诱导了成釉细胞的转移分化。
Runx2 is an important transcription factor in osteoblast differentiation and dental development. Most of the specific matrix proteins expressed in tooth and bone were regulated by Runx2 at transcriptional level. Runx2 gene deficiency results in Systemic hard tissue diseases including tooth, for example: cleidocranial dysplasia (CCD). Severe aberration of bone and dental development appeared in Runx2 gene knockout mice. Combining transcription characteristics of Runx2 with its expression feature in tooth development, we think Runx2 may be one of the most important transcription factor in tooth mineralization and development. Latest research shows that Runx2 expressed temprally and spacially in tooth germ development and proves that Runx2 can regulate the expression of some specific matrix protein in tooth development. Meanwhile, finding reveals that there are binding sites for Runx2 at Amelogenin promotor(-1641、+92)and DSPP promotor(-3950、-3106), and Runx2 can up-ragulate the expression of the two proteins by this binding sites. Recently, there is proof that many matrix proteins related to mineralization are regulated by Runx2 at cellular level. But we do not know what effection and function of Runx2 would be in animals?
     Thus, in this study, two transgenic mice were generated, in which Runx2 was over expressed in ameloblast or odontoblast respectively. Next, the differentiation of ameloblast as well as odontalblast was studied and the mineralization of enamel and dentin were characterized. So our studies included
     two parts:
     Part one: Construction of transgenic mice
     We generated pBluescript II KS(+)-Amelogenin Promoter-Runx2 and pBluescript II KS(+)-DSPP Promoter-Runx2 plasmids, respectively. Then we generated transgenic mice by microinjecting linearized plasmids into oosperm, and designed the primers to identify the gene integration and overexpression of the transgene by PCR. We selected highly expressed lines to analyze the phenotype of the transgenic mice.
     Part two: Phenotypic anylasis of transgenic mice
     1. Phenotypic anylasis of DSPP Promoter-Runx2 transgenic mice During the initiation and formation of dentin, the odontoblasts lost their tall columnar shape and polarization gradually. The structure of predentin and dentin tubuleswere lost and the osteoblast-like cells appeared, dentin became thinner, exhibitting homogeneous bone matrix-like structure. Some bone-like tissuesgrew into dental pulp chamber.These findings indicated Runx2 inhibited the terminal differentiation and maturationof odontoblast andinduced the transdifferentiation from odontoblast to osteoblast.Meanwhile, the DSPP expression level in dentin and dentin formation were dramatically reduced by Runx2, and Runx2 forced the transdifferentiated odontoblasts to secrete osteo-matrix instead of normal dentin matrix.
     2. Phenotypic anylasis of Amelogenin Promoter-Runx2 transgenic mice
     During the initiation and formation of enamel, ameloblasts lost their tall columnar shape and polarization gradually. Enamel matrix formation was dramatically inhibited.The formation of enamel matrix was blocked at the very beginning of the enamel matrix secreting stage, and the expression of amelogenin was down-regulated obviously. Conclusively, Runx2 induced the transdifferentiation of ameloblast and inhibited the expression of amelogenin and ameloblast differentiation, which resulted in enamel matrix lost and amelogenesis imperfecta,
引文
1.顾新丰,蒋垚, RUNX2研究进展.医学分子生物学杂志, 2006. 3(001): p. 52-54.
    2. Gergen, J.P. and E.F. Wieschaus, The localized requirements for a gene affecting segmentation in Drosophila: Analysis of larvae mosaic for runt* 1. Developmental biology, 1985. 109(2): p. 321-335.
    3. Ogawa, E., et al., PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proceedings of the National Academy of Sciences of the United States of America, 1993. 90(14): p. 6859.
    4. Javed, A., et al., Groucho/TLE/R-esp proteins associate with the nuclear matrix and repress RUNX (CBF (alpha)/AML/PEBP2 (alpha)) dependent activation of tissue-specific gene transcription. Journal of cell science, 2000. 113: p. 2221.
    5. Komori, T., et al., Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 1997. 89(5): p. 755-764.
    6. Otto, F., et al., Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell, 1997. 89(5): p. 765-771.
    7. Brenner, O., et al., Loss of Runx3 function in leukocytes is associated with spontaneously developed colitis and gastric mucosal hyperplasia. Proceedings of the National Academy of Sciences of the United Statesof America, 2004. 101(45): p. 16016.
    8. Lian, J.B., et al., Runx1/AML1 hematopoietic transcription factor contributes to skeletal development in vivo. Journal of cellular physiology, 2003. 196(2): p. 301-311.
    9. Yoshida, C.A., et al., Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes & development, 2004. 18(8): p. 952.
    10. Okada, H., et al., AML1 (-/-) embryos do not express certain hematopoiesis-related gene transcripts including those of the PU. 1 gene. Oncogene, 1998. 17(18): p. 2287.
    11. Miyamoto, T., I.L. Weissman, and K. Akashi, AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8; 21 chromosomal translocation. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(13): p. 7521.
    12. Li, Q.L., et al., Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell, 2002. 109(1): p. 113-124.
    13. Levanon, D., et al., The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. The EMBO Journal, 2002. 21(13): p. 3454-3463.
    14. Levanon, D., et al., AML1, AML2, and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosomal localization. Genomics, 1994. 23(2): p. 425-432.
    15. Zhang, Y.W., et al., The cDNA cloning of the transcripts of human PEBP2alphaA/CBFA1 mapped to 6p12. 3-p21. 1, the locus for cleidocranial dysplasia. Oncogene, 1997. 15(3): p. 367.
    16. Li, Y. and Z. Xiao, Advances in Runx2 regulation and its isoforms.Medical hypotheses, 2007. 68(1): p. 169-175.
    17. Ducy, P., et al., Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell, 1997. 89(5): p. 747-754.
    18. Wang, S., et al., Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor. Molecular and cellular biology, 1993. 13(6): p. 3324.
    19. Meyers, S., J. Downing, and S. Hiebert, Identification of AML-1 and the (8; 21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Molecular and cellular biology, 1993. 13(10): p. 6336.
    20. Huang, G., et al., Dimerization with PEBP2|? protects RUNX1/AML1 from ubiquitin¨Cproteasome-mediated degradation. The EMBO Journal, 2001. 20(4): p. 723-733.
    21. Wang, S. and N.A. Speck, Purification of core-binding factor, a protein that binds the conserved core site in murine leukemia virus enhancers. Molecular and cellular biology, 1992. 12(1): p. 89.
    22. Westendorf, J.J., Transcriptional co?\repressors of Runx2. Journal of cellular biochemistry, 2006. 98(1): p. 54-64.
    23. Zeng, C., et al., Intranuclear targeting of AML/CBFalpha regulatory factors to nuclear matrix-associated transcriptional domains. Proc Natl Acad Sci U S A, 1998. 95(4): p. 1585-9.
    24. Thirunavukkarasu, K., et al., Two domains unique to osteoblast-specific transcription factor Osf2/Cbfa1 contribute to its transactivation function and its inability to heterodimerize with Cbfbeta. Molecular and cellular biology, 1998. 18(7): p. 4197.
    25. Ducy, P., et al., A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes & development, 1999. 13(8): p. 1025.
    26.郭婷,核心结合因子α1对小鼠牙本质涎磷蛋白基因转录调控的研究. 2005,第四军医大学.
    27. Geoffroy, V., P. Ducy, and G. Karsenty, A PEBP2 alpha/AML-1-related factor increases osteocalcin promoter activity through its binding to an osteoblast-specific cis-acting element. J Biol Chem, 1995. 270(52): p. 30973-9.
    28. Merriman, H.L., et al., The Tissue-Specific Nuclear Matrix Protein, NMP-2, Is a Member of the AML/PEBP2/Runt Domain Transcription Factor Family: Interactions with the Osteocalcin Gene Promoter. Biochemistry, 1995. 34(40): p. 13125-13132.
    29. Ducy, P. and G. Karsenty, Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Molecular and cellular biology, 1995. 15(4): p. 1858.
    30. Inada, M., et al., Maturational disturbance of chondrocytes in Cbfa1?\deficient mice. Developmental Dynamics, 1999. 214(4): p. 279-290.
    31. Kim, I., et al., Regulation of chondrocyte differentiation by Cbfa1. Mechanisms of development, 1999. 80(2): p. 159-170.
    32. Golan, I., et al., Early craniofacial signs of cleidocranial dysplasia. International Journal of Paediatric Dentistry, 2004. 14(1): p. 49-53.
    33. Mundlos, S., et al., Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell, 1997. 89(5): p. 773-779.
    34. Visosky, A.M.B., et al., Otolaryngological manifestations of cleidocranial dysplasia, concentrating on audiological findings. The Laryngoscope, 2003. 113(9): p. 1508-1514.
    35. Otto, F., H. Kanegane, and S. Mundlos, Mutations in the RUNX2 gene in patients with cleidocranial dysplasia. Human mutation, 2002. 19(3): p. 209-216.
    36. Pratap, J., et al., Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer and Metastasis Reviews, 2006. 25(4): p. 589-600.
    37. Geoffroy, V., et al., High bone resorption in adult aging transgenic mice overexpressing cbfa1/runx2 in cells of the osteoblastic lineage. Molecular and cellular biology, 2002. 22(17): p. 6222.
    38. Liu, W., et al., Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. The Journal of cell biology, 2001. 155(1): p. 157.
    39. Xiao, Z.S., A.B. Hjelmeland, and L. Quarles, Selective deficiency of the ?°bone-related?±Runx2-II unexpectedly preserves osteoblast-mediated skeletogenesis. Journal of Biological Chemistry, 2004. 279(19): p. 20307.
    40. Li, Y.L., et al., Individual function difference of Runx2 isoforms in bone formation by RNA inference. Cell Biology International, 2008. 32(3): p. S22.
    41.孙强. and邱勇,转录因子Runx2、Osterix与骨髓间质干细胞的成骨分化.江苏医药, 2006. 32(7): p. 657-659.
    42. Nakashima, K., et al., The novel zinc finger-containing transcriptionfactor osterix is required for osteoblast differentiation and bone formation. Cell, 2002. 108(1): p. 17-29.
    43. Nishio, Y., et al., Runx2-mediated regulation of the zinc finger Osterix/Sp7 gene. Gene, 2006. 372: p. 62-70.
    44.赵岩,关于Runx2和Osterix在调控靶基因表达过程中相互作用关系的初步研究. 2006,东北师范大学博士论文.
    45. Enomoto, H., et al., Induction of osteoclast differentiation by Runx2 through receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin regulation and partial rescue of osteoclastogenesis in Runx2-/- mice by RANKL transgene. J Biol Chem, 2003. 278(26): p. 23971-7.
    46. Glotzer, D.J., E. Zelzer, and B.R. Olsen, Impaired skin and hair follicle development in Runx2 deficient mice. Developmental biology, 2008. 315(2): p. 459-473.
    47. Ornitz, D.M., FGF signaling in the developing endochondral skeleton. Cytokine & growth factor reviews, 2005. 16(2): p. 205-213.
    48. Provot, S. and E. Schipani, Molecular mechanisms of endochondral bone development. Biochemical and Biophysical Research Communications, 2005. 328(3): p. 658-665.
    49. Schroeder, T.M., E.D. Jensen, and J.J. Westendorf, Runx2: a master organizer of gene transcription in developing and maturing osteoblasts. Birth Defects Research Part C: Embryo Today: Reviews, 2005. 75(3): p. 213-225.
    50. Lengner, C.J., et al., Nkx3. 2-mediated repression of Runx2 promotes chondrogenic differentiation. Journal of Biological Chemistry, 2005.280(16): p. 15872.
    51. Provot, S., et al., Nkx3. 2/Bapx1 acts as a negative regulator of chondrocyte maturation. Development, 2006. 133(4): p. 651.
    52. Guo, J., et al., PTH/PTHrP receptor delays chondrocyte hypertrophy via both Runx2-dependent and -independent pathways. Dev Biol, 2006. 292(1): p. 116-28.
    53. Li, T.F., et al., Parathyroid hormone-related peptide (PTHrP) inhibits Runx2 expression through the PKA signaling pathway. Experimental cell research, 2004. 299(1): p. 128-136.
    54. Iwamoto, M., et al., Runx2 expression and action in chondrocytes are regulated by retinoid signaling and parathyroid hormone-related peptide (PTHrP). Osteoarthritis and Cartilage, 2003. 11(1): p. 6-15.
    55. Pratap, J., et al., The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Molecular and cellular biology, 2005. 25(19): p. 8581.
    56. Zelzer, E., et al., Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2. Mechanisms of development, 2001. 106(1-2): p. 97-106.
    57. Chen, D., M. Zhao, and G.R. Mundy, Bone morphogenetic proteins. Growth factors, 2004. 22(4): p. 233-241.
    58. Dijke, P., et al., Signal transduction of bone morphogenetic proteins in osteoblast differentiation. The Journal of Bone and Joint Surgery, 2003. 85(Supplement 3): p. 34.
    59. Mishina, Y., et al., Bone morphogenetic protein type IA receptor signaling regulates postnatal osteoblast function and bone remodeling. Journal of Biological Chemistry, 2004. 279(26): p. 27560.
    60. Guicheux, J., et al., Activation of p38 Mitogen?\Activated Protein Kinase and c?\Jun?\NH2?\Terminal Kinase by BMP?\2 and Their Implication in the Stimulation of Osteoblastic Cell Differentiation. Journal of Bone and Mineral Research, 2003. 18(11): p. 2060-2068.
    61. Celil, A.B. and P.G. Campbell, BMP-2 and insulin-like growth factor-I mediate Osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways. Journal of Biological Chemistry, 2005. 280(36): p. 31353.
    62. Lee, K.S., S.H. Hong, and S.C. Bae, Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene, 2002. 21(47): p. 7156.
    63. Gori, F., et al., Differentiation of Human Marrow Stromal Precursor Cells: Bone Morphogenetic Protein?\2 Increases OSF2/CBFA1, Enhances Osteoblast Commitment, and Inhibits Late Adipocyte Maturation. Journal of Bone and Mineral Research, 1999. 14(9): p. 1522-1535.
    64. Ito, Y. and K. Miyazono, RUNX transcription factors as key targets of TGF-[beta] superfamily signaling. Current opinion in genetics & development, 2003. 13(1): p. 43-47.
    65. Zhang, Y.W., et al., A RUNX2/PEBP2|áA/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(19): p. 10549. 66. Afzal, F., et al., Smad function and intranuclear targeting share a Runx2 motif required for osteogenic lineage induction and BMP2responsive transcription. Journal of cellular physiology, 2005. 204(1): p. 63-72.
    67. Phimphilai, M., et al., BMP Signaling Is Required for RUNX2?\Dependent Induction of the Osteoblast Phenotype. Journal of Bone and Mineral Research, 2006. 21(4): p. 637-646.
    68. Young, D.W., et al., SWI/SNF chromatin remodeling complex is obligatory for BMP2?\induced, Runx2?\dependent skeletal gene expression that controls osteoblast differentiation. Journal of cellular biochemistry, 2005. 94(4): p. 720-730.
    69. Cruzat, F. and A. Villagra, Olate transcription of the RUNX2/CBFA1 gene involves a SWI/SNF-Independent and BMP2-Enhanced chromatin remodeling at the P1 promoter. J Bone Miner Res, 2005. 20(suppl 1): p. 358.
    70. Hill, T.P., et al., Canonical Wnt/[beta]-Catenin Signaling Prevents Osteoblasts from Differentiating into Chondrocytes. Developmental cell, 2005. 8(5): p. 727-738.
    71. Day, T.F., et al., Wnt/[beta]-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Developmental cell, 2005. 8(5): p. 739-750.
    72. Mbalaviele, G., et al., |??\Catenin and BMP?\2 synergize to promote osteoblast differentiation and new bone formation. Journal of cellular biochemistry, 2005. 94(2): p. 403-418.
    73. Westendorf, J.J., R.A. Kahler, and T.M. Schroeder, Wnt signaling in osteoblasts and bone diseases. Gene, 2004. 341: p. 19-39.
    74. Kato, M., et al., Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in micedeficient in Lrp5, a Wnt coreceptor. The Journal of cell biology, 2002. 157(2): p. 303.
    75. Kahler, R.A. and J.J. Westendorf, Lymphoid enhancer factor-1 and beta-catenin inhibit Runx2-dependent transcriptional activation of the osteocalcin promoter. J Biol Chem, 2003. 278(14): p. 11937-44.
    76. Gaur, T., et al., Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. Journal of Biological Chemistry, 2005. 280(39): p. 33132.
    77. Wang, F.S., et al., Secreted frizzled-related protein 1 modulates glucocorticoid attenuation of osteogenic activities and bone mass. Endocrinology, 2005. 146(5): p. 2415.
    78. Hassan, M.Q., et al., Dlx3 transcriptional regulation of osteoblast differentiation: temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins to chromatin of the osteocalcin gene. Molecular and cellular biology, 2004. 24(20): p. 9248.
    79. Yoshizawa, T., et al., Homeobox protein MSX2 acts as a molecular defense mechanism for preventing ossification in ligament fibroblasts. Molecular and cellular biology, 2004. 24(8): p. 3460.
    80. Lian, J.B., et al., Networks and hubs for the transcriptional control of osteoblastogenesis. Reviews in endocrine & metabolic disorders, 2006. 7(1): p. 1-16.
    81. Ichida, F., et al., Reciprocal roles of MSX2 in regulation of osteoblast and adipocyte differentiation. Journal of Biological Chemistry, 2004. 279(32): p. 34015.
    82. Satokata, I., et al., Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nature genetics, 2000.24(4): p. 391-395.
    83. Dodig, M., et al., EctopicMsx2Overexpression Inhibits andMsx2Antisense Stimulates Calvarial Osteoblast Differentiation* 1. Developmental biology, 1999. 209(2): p. 298-307.
    84. Miyama, K., et al., A BMP-inducible gene, dlx5, regulates osteoblast differentiation and mesoderm induction. Developmental biology, 1999. 208(1): p. 123-133.
    85. Lee, M.H., et al., BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J Biol Chem, 2003. 278(36): p. 34387-94.
    86. Lee, M.H., et al., Dlx5 specifically regulates Runx2 type II expression by binding to homeodomain-response elements in the Runx2 distal promoter. Journal of Biological Chemistry, 2005. 280(42): p. 35579.
    87. Yousfi, M., et al., Twist haploinsufficiency in Saethre-Chotzen syndrome induces calvarial osteoblast apoptosis due to increased TNF {alpha} expression and caspase-2 activation. Human molecular genetics, 2002. 11(4): p. 359.
    88. Yousfi, M., et al., TWIST inactivation reduces CBFA1/RUNX2 expression and DNA binding to the osteocalcin promoter in osteoblasts. Biochemical and Biophysical Research Communications, 2002. 297(3): p. 641-644.
    89.李雅琳and肖洲生, Runx2基因调控及其异构体的最新研究进展.中国药理学通报. , 2006. 22(10): p. 1153-7.
    90. J¨1ttner, K.V. and M.J. Perry, High-dose estrogen-induced osteogenesisis decreased in aged RUNX2+/-mice. Bone, 2007. 41(1): p. 25-32.
    91. Ziros, P.G., et al., Growth hormone attenuates the transcriptional activity of Runx2 by facilitating its physical association with Stat3|?. Journal of Bone and Mineral Research, 2004. 19(11): p. 1892-1904.
    92.蔺辉星and周振雷, Runx2研究进展.中国畜牧兽医, 2009. 36(002): p. 53-57.
    93. Xiao, G., et al., MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. Journal of Biological Chemistry, 2000. 275(6): p. 4453.
    94. Xiao, G., et al., Role of the alpha2-integrin in osteoblast-specific gene expression and activation of the Osf2 transcription factor. J Biol Chem, 1998. 273(49): p. 32988-94.
    95. TURNER, C.H., Bone strength: current concepts. ANNALS-NEW YORK ACADEMY OF SCIENCES, 2006. 1068: p. 429.
    96. Kanno, T., et al., Mechanical stress?\mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts. Journal of cellular biochemistry, 2007. 101(5): p. 1266-1277.
    97. Ziros, P.G., E.K. Basdra, and A.G. Papavassiliou, Runx2: of bone and stretch. The international journal of biochemistry & cell biology, 2008. 40(9): p. 1659-1663.
    98. Zhao, J., et al., Icariin induces osteogenic differentiation in vitro in a BMP-and Runx2-dependent manner. Biochemical and Biophysical Research Communications, 2008. 369(2): p. 444-448.
    99. Mikami, Y., et al., Dexamethasone promotes DMP1 mRNA expression by inhibiting negative regulation of Runx2 in multipotential mesenchymal progenitor, ROB-C26. Cell Biology International, 2008.32(2): p. 239-246.
    100. Tanne, Y., et al., Expression and activity of Runx2 mediated by hyaluronan during chondrocyte differentiation. Archives of Oral Biology, 2008. 53(5): p. 478-487.
    101. Stanton, L.A. and F. Beier, Inhibition of p38 MAPK signaling in chondrocyte cultures results in enhanced osteogenic differentiation of perichondral cells. Experimental cell research, 2007. 313(1): p. 146-155.
    102. Bokui, N., et al., Involvement of MAPK signaling molecules and Runx2 in the NELL1-induced osteoblastic differentiation. FEBS letters, 2008. 582(2): p. 365-371.
    103. Ding, J., et al., TNF-[alpha] and IL-1 [beta] inhibit RUNX2 and collagen expression but increase alkaline phosphatase activity and mineralization in human mesenchymal stem cells. Life sciences, 2009. 84(15-16): p. 499-504.
    104. Wu, M., et al., Zfp521 antagonizes Runx2, delays osteoblast differentiation in vitro, and promotes bone formation in vivo. Bone, 2009. 44(4): p. 528-536.
    105. D'Souza, R.N., et al., Cbfa1 is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development, 1999. 126(13): p. 2911.
    106. Jiang, H., et al., Expression of core binding factor Osf2/Cbfa-1 and bone sialoprotein in tooth development. Mechanisms of development, 1999. 81(1-2): p. 169-173.
    107. Ohazama, A., J.M. Courtney, and P. Sharpe, Opg, Rank, and Rankl in tooth development: co-ordination of odontogenesis and osteogenesis.Journal of dental research, 2004. 83(3): p. 241.
    108. berg, T., et al., Runx2 mediates FGF signaling from epithelium to mesenchyme during tooth morphogenesis. Developmental biology, 2004. 270(1): p. 76-93.
    109. berg, T., et al., Phenotypic changes in dentition of Runx2 homozygote-null mutant mice. Journal of Histochemistry & Cytochemistry, 2004. 52(1): p. 131.
    110.余擎,核心结合因子α1在牙齿发育矿化中的作用机制的研究. .第四军医大学博士论文, 2002.
    111. Miyazaki, T., et al., Inhibition of the terminal differentiation of odontoblasts and their transdifferentiation into osteoblasts in Runx2 transgenic mice. Archives of histology and cytology, 2008. 71(2): p. 131-146.
    112. Camilleri, S. and F. McDonald, Runx2 and dental development. European journal of oral sciences, 2006. 114(5): p. 361-373.
    113. Dhamija, S. and P.H. Krebsbach, Role of Cbfa1 in ameloblastin gene transcription. Journal of Biological Chemistry, 2001. 276(37): p. 35159.
    114.朱庆林,核心结合因子α亚基对釉原蛋白转录调控的研究.第四军医大学博士论文, 2005.
    115. Kobayashi, I., et al., Type II/III Runx2/Cbfa1 is required for tooth germ development. Bone, 2006. 38(6): p. 836-844.
    116. Chen, S., et al., Differential regulation of dentin sialophosphoprotein expression by Runx2 during odontoblast cytodifferentiation. Journal of Biological Chemistry, 2005. 280(33): p. 29717.
    117. Feng, J.Q., et al., Dentin matrix protein 1, a target molecule for Cbfa1 in bone, is a unique bone marker gene. Journal of Bone and Mineral Research, 2002. 17(10): p. 1822-1831.
    118. Narayanan, K., et al., Differentiation of embryonic mesenchymal cells to odontoblast-like cells by overexpression of dentin matrix protein 1. Proceedings of the National Academy of Sciences of the United States of America, 2001. 98(8): p. 4516.
    119. Qin, C., et al., The expression of dentin sialophosphoprotein gene in bone. Journal of dental research, 2002. 81(6): p. 392.
    120. Baba, O., et al., Detection of dentin sialoprotein in rat periodontium. European journal of oral sciences, 2004. 112(2): p. 163-170.
    121. Chen, S., et al., Altered gene expression in human cleidocranial dysplasia dental pulp cells. Archives of Oral Biology, 2005. 50(2): p. 227-236.
    122. Liu, H., et al., MEPE is downregulated as dental pulp stem cells differentiate. Archives of Oral Biology, 2005. 50(11): p. 923-928.
    123. Bronckers, A., et al., Cell-specific patterns of Cbfa1 mRNA and protein expression in postnatal murine dental tissues. Mechanisms of development, 2001. 101(1-2): p. 255-258.
    124. Yamashiro, T., et al., Expression of Runx1, -2 and -3 during tooth, palate and craniofacial bone development. Mech Dev, 2002. 119 Suppl 1: p. S107-10.
    125. Gaikwad, J., et al., Molecular insights into the lineage-specific determination of odontoblasts: the role of Cbfa1. Advances in Dental Research, 2001. 15(1): p. 19.
    126. Galler, K., et al., A novel role for Twist-1 in pulp homeostasis. Journalof dental research, 2007. 86(10): p. 951.
    127. Wu, J., et al., Dentin non-collagenous proteins (dNCPs) can stimulate dental follicle cells to differentiate into cementoblast lineages. Biology of the Cell, 2008. 100: p. 291-302.
    128. Pan, K., et al., Effects of core binding factor alpha1 or bone morphogenic protein-2 overexpression on osteoblast/cementoblast- related gene expressions in NIH3T3 mouse cells and dental follicle cells. Cell Prolif, 2009. 42(3): p. 364-72.
    129. Dard, M., Histology of alveolar bone and primary tooth roots in a case of cleidocranial dysplasia. Bulletin du Groupement international pour la recherche scientifique en stomatologie & odontologie, 1993. 36(3-4): p. 101.
    130. McNamara, C., et al., Cleidocranial dysplasia: radiological appearances on dental panoramic radiography. Dentomaxillofacial Radiology, 1999. 28(2): p. 89.
    131. Seow, W. and J. Hertzberg, Dental development and molar root length in children with cleidocranial dysplasia. Pediatric dentistry, 1995. 17(2): p. 101.
    132. Hitchin, A. and J. Fairley, Dental management in cleido-cranial dysostosis. British Journal of Oral Surgery, 1974. 12(1): p. 46-55.
    133. Nemoto, E., et al., Wnt signaling inhibits cementoblast differentiation and promotes proliferation. Bone, 2009. 44(5): p. 805-812.
    134. Shaikh, R. and S. Shusterman, Delayed dental maturation in cleidocranial dysplasia. ASDC journal of dentistry for children, 1998. 65(5): p. 325.
    135. Zou, S., et al., Tooth eruption and cementum formation in theRunx2/Cbfa1 heterozygous mouse. Archives of Oral Biology, 2003. 48(9): p. 673-677.
    136. Yoda, S., et al., Delayed tooth eruption and suppressed osteoclast number in the eruption pathway of heterozygous Runx2/Cbfa1 knockout mice. Archives of Oral Biology, 2004. 49(6): p. 435-442.
    137. Suzuki, T., N. Suda, and K. Ohyama, Osteoclastogenesis during mouse tooth germ development is mediated by receptor activator of NF?-B ligand (RANKL). Journal of bone and mineral metabolism, 2004. 22(3): p. 185-191.
    138. Heinrich, J., et al., CSF-1, RANKL and OPG regulate osteoclastogenesis during murine tooth eruption. Archives of Oral Biology, 2005. 50(10): p. 897-908.
    139. Gao, Y., H. Kobayashi, and B. Ganss, The human KROX-26/ZNF22 gene is expressed at sites of tooth formation and maps to the locus for permanent tooth agenesis (He-Zhao deficiency). Journal of dental research, 2003. 82(12): p. 1002.
    140. Paine, M.L., et al., Dentin sialoprotein and dentin phosphoprotein overexpression during amelogenesis. Journal of Biological Chemistry, 2005. 280(36): p. 31991.
    141. Sreenath, T.L., et al., Spatial and temporal activity of the dentin sialophosphoprotein gene promoter: differential regulation in odontoblasts and ameloblasts. International Journal of Developmental Biology, 1999. 43: p. 509-516.
    142. Ducy, P., et al., Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell, 1997. 89(5): p. 747-54.
    143. Sato, M., et al., Transcriptional regulation of osteopontin gene in vivoby PEBP2alphaA/CBFA1 and ETS1 in the skeletal tissues. Oncogene, 1998. 17(12): p. 1517-25.
    144. Banerjee, C., et al., An AML-1 consensus sequence binds an osteoblast-specific complex and transcriptionally activates the osteocalcin gene. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(10): p. 4968.
    145. D'Souza, R.N., et al., Gene expression patterns of murine dentin matrix protein 1 (Dmp1) and dentin sialophosphoprotein (DSPP) suggest distinct developmental functions in vivo. J Bone Miner Res, 1997. 12(12): p. 2040-9.
    146. Begue-Kirn, C., et al., Dentin sialoprotein, dentin phosphoprotein, enamelysin and ameloblastin: tooth-specific molecules that are distinctively expressed during murine dental differentiation. Eur J Oral Sci, 1998. 106(5): p. 963-70.
    147. Haruyama, N., et al., Genetic evidence for key roles of decorin and biglycan in dentin mineralization. Matrix Biol, 2009. 28(3): p. 129-36.
    148. Sreenath, T., et al., Dentin sialophosphoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dentinogenesis imperfecta type III. J Biol Chem, 2003. 278(27): p. 24874-80.
    149. Cajazeira Aguiar, M. and V. Arana?\Chavez, Ultrastructural and immunocytochemical analyses of osteopontin in reactionary and reparative dentine formed after extrusion of upper rat incisors. Journal of Anatomy, 2007. 210(4): p. 418-427.
    150. Komori, T., Regulation of Osteoblast and Odontoblast Differentiation by RUNX2. Journal of Oral Biosciences, 2010. 52(1): p. 22-25.
    151. Maruyama, Z., et al., Runx2 determines bone maturity and turnover rate in postnatal bone development and is involved in bone loss in estrogen deficiency. Developmental Dynamics, 2007. 236(7): p. 1876-1890.
    152. Toyosawa, S., et al., Dentin matrix protein 1 is predominantly expressed in chicken and rat osteocytes but not in osteoblasts. Journal of Bone and Mineral Research, 2001. 16(11): p. 2017-2026.
    153. Ohri, R., et al., Mitigation of ectopic calcification in osteopontin-deficient mice by exogenous osteopontin. Calcified tissue international, 2005. 76(4): p. 307-315.
    154. Steitz, S., et al., Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification. American Journal of Pathology, 2002. 161(6): p. 2035.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700