用户名: 密码: 验证码:
hPDGF-B基因修饰的组织工程化复合物修复牙周组织缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的用携带人血小板源性生长因子-B (platelet-derived growth factor-B, PDGF-B)基因的真核表达质粒EX-A0380-M03转染Beagle犬牙龈成纤维细胞,复合脱细胞真皮基质(acellular dermal matrix, ADM)体外构建组织工程化复合物,移植修复犬慢性Ⅱ。根分叉病变,探讨hPDGF-B基因修饰的牙龈成纤维细胞在牙周组织再生中的作用,为基因治疗与组织工程联合应用于牙周组织缺损再生治疗奠定基础。
     方法1.借助改良组织块法+半消化法分离培养Beagle犬牙龈成纤维细胞,手术、免疫细胞化学以及碱性磷酸酶法确定细胞来源;2.观察DMEM、RPMI1640两种培养液对Beagle犬牙龈成纤维细胞体外生物学活性的影响;3.转化、扩增、鉴定携带hPDGF-B基因的质粒EX-A0380-M03,并利用脂质体将其转入Beagle犬牙龈成纤维细胞;RT-PCR、免疫细胞化学染色、ELISA以及Western Blot检测目的基因的转录和表达。4.体外基因转染后,观察细胞形态变化,MTT及流式细胞仪检测细胞增殖和凋亡的情况。Realtime PCR法检测转染细胞I型胶原、XII型胶原以及α-SMA表达的变化。5.组织学及扫描电镜观察细胞与ADM复合情况;将基因修饰的Beagle犬牙龈成纤维细胞与ADM复合,并将复合的组织工程化复合物植入裸鼠皮下,于2、4、8周了解基因修饰的工程化复合物体内再生情况。6.人工构建5条Beagle犬慢性II。根分叉病变模型,将转染目的基因的牙龈成纤维细胞与未转染细胞分别以5×10~6个/mL接种于ADM上,覆盖于根分叉缺损外侧,12周后处死动物,观察牙龈再生的情况。制备颊舌向病理切片,HE染色观察牙周组织再生情况。
     结果1.分离培养的细胞为来源于中胚层的成纤维样细胞。2.DMEM和RPMI1640对Beagle犬牙龈成纤维细胞的游出成功率、增殖以及I型胶原的表达无显著性差异。3.酶切和DNA测序鉴定证实EX-A0380-M03上携带的外源基因为hPDGF-B;EX-A0380-M03脂质体法瞬时转染牙龈成纤维细胞获得成功,部分细胞发出绿色荧光,转染效率为18%-38%。RT-PCR、免疫细胞化学染色和ELISA检测表明,hPDGF-B在牙龈成纤维细胞中得到了有效表达。Western Blot证实转染细胞合成的蛋白为PDGF-BB—eGFP融合蛋白。4.目的基因转染后细胞形态部分发生变化,增殖显著增强,凋亡率无明显变化。转染细胞I胶原表达上调,而XII型胶原和α-SMA表达下调。5.ADM与牙龈成纤维细胞复合后,在其表面和内部生长良好。植入裸鼠皮下后,未转染细胞在ADM上形成类结缔组织,而转染细胞则与ADM形成类骨质样结构。6.基因强化的组织工程化复合物治疗后,转染细胞组与未转染细胞组在龈退缩上无显著性差异(P>0.05),但均优与单纯膜组(P<0.05)。转染细胞组颊侧牙周膜、牙骨质及牙槽骨的质量优于未转染组和单纯膜组。
     结论1.体外成功分离培养Beagle犬牙龈成纤维细胞;2.DMEM和RPMI1640两种培养液均适合Beagle犬牙龈成纤维细胞的培养;3.hPDGF–B基因可在牙龈成纤维细胞内有效表达;4.hPDGF-B基因转染可提高牙龈成纤维细胞的增殖速率,并通过胶原堆积促进牙周组织的再生;5.ADM生物相容性良好,既可作为支架、也可作为屏障膜用于引导组织再生术;6.hPDGF-B基因强化的组织工程化技术是修复牙周组织缺损的一种较好方法,具有良好的临床应用前景。
Objective To transfect the plasmid(EX-A0380-M03) carried human platelet-derived growth factor-B(hPDGF-B) gene into gingival fibroblasts(GFs). To repair the experimental class II furcation defects of canine by a tissue-engineered compound which was constructed by transfected cells and acellular dermal matrix(ADM). To estimate the potential effects of hPDGF-B gene-modified GFs on periodontal regeneration and attain a new clew based on restoring the periodontal defects.
     Methods 1.The GFs of Beagle dog were isolated, cultured and purified by half-digestion and improved tissue block culture. The origination of tissue block was verified by operation and histology. Cells were identified by immunocytochemistry and detection of alkaline phosphatase. 2.The effects of two media, DMEM and RPMI1640, acting upon the GFs, were investigated by MTT, flow cytometry and immunocytochemistry. 3.The plasmid(EX-A0380-M03) was transformed, amplified and identified by a series of molecular biological methods.Subsequently, the plasmid identified correctly was transfected into GFs by liposome-mediated gene transfer method. RT-PCR, immunocytochemistry, ELISA as well as Western Blot were employed to observe the expression of hPDGF. 4.Morphological changes of transfected cells were recorded by optical and fluorescent microscope. Then, MTT and flow cytometry were used to estimate the proliferation and apoptosis of gene-modified cells.The expression of collagen I and XII, as well as theα-SMA was detected by Realtime Quantitative PCR. 5.GFs cultured on the surface of ADM were observed by histology and scanning electron microscope.The gene-modified tissue-engineered compound which was contructed by transfected GFs and ADM was implanted into subcutaneous tissue of nude mice. After 2, 4 or 8 weeks, animals were sacrificed and the regeneration of tissue-engineered compound was evaluated by histology. 6.Thirty experimental class II furcation defects in five Beagle dogs were prepared artificially.The ADM on which was seeded by transfected or non-transfected GFs at initial concentration of 5×106/mL was covered on the buccal side of experimental class II furcation defects.The animals were sacrificed at 12 weeks postoperatively and gingival regeneration was estimated by comparing the position of the gingival margin. Histological section prepared buccolingually was used to evaluate the regeneration of periodontal tissue.
     Results 1.The cells isolated was a kind of fibroblast-like cell originating from mesoderm. 2.There was no significant difference between DMEM and RPMI1640 in successful rate of emigration, proliferation and expression of collagen I. 3.Exogenous gene inserted in the plamid was hPDGF-B, which was confirmed by restriction enzyme digestion and DNA sequencing. Under the inverted-phase-contrast fluorescence microscope, cells emiting green fluorescence convinced the successful transfection,and the transfection efficiency was 18-38% by calculating the ratio of luminescent cells. RT-PCR, immunocytochemistry and ELISA convinced effective expression of hPDGF-B. Fusion protein(PDGF-BB—eGFP) expressed by transfected cells was detected by Western Blot. 4.Compared to the normal cells, morphological feature of partial transfected cells changed. Proliferation was enhanced after gene interference, but apoptosis has no obvious change.At transcription level, the expression of collagen I was up-regulated, while collagen XII andα-SMA was down-regulated. 5.After seeded on the ADM, GFs exhibited good growth. Under the subcutaneous tissue of nude mice, non-transfected group formed connective-like tissue, while transfected group formed osteoid at last.6.There was on significant difference between the transfected and non-transfected groups in gingival recession (P>0.05) after using the tissue-engineered compound to cure the class II furcation defects.However, the group using simple membrane(ADM and BME-10X) had worse recession(P<0.05) than two groups mentioned above. Buccal periodontal tissue regeneration of transfected group was the best one of the three experimental objects. Conclusion 1.Gingival fibroblasts were isolated and cultured successfully in vitro. 2.The two media, DMEM and RPMI1640 were both fit for the culture of gingival fibroblasts. 3.hPDGF-B was expressed efficiently in gingival fibroblasts. 4.The proliferation was increased after transfection and regeneration might be attained by collagen accumulation. 5. ADM exhibited excellent biocompatibility and was suitable for guided tissue regeneration as a kind of barrier membrane, also as a scaffold. 6.hPDGF-B gene enhanced tissue engineering might have a favorable application prospect in repairing the periodontal defects.
引文
1.Prato GP, Rotundo R, Magnani C, et al. An autologous cell hyaluronic acid graft technique for gingival augmentation: a case series. J Periodontol, 2003, 74(2):262-267.
    2.Anusaksathien O, Webb SA, Jin QM, et al. Platelet-derived growth factor gene delivery stimulates ex vivo gingival repair. Tissue Eng, 2003, 9(4):745-756.
    3.Simain-Sato F, Lahmouzi J, Heinen E, et al. Graft of autofogous fibroblasts in gingival tissue in vivo after culture in vitro. Preliminary study on rats. J Periodontal Res, 1999, 34(6):323-328.
    4.Paquette DW, Rosenberg A, Lohinai Z, et al. Inhibition of experimental gingivitis in beagle dogs with topical mercaptoalkylguanidines. J Periodontol, 2006, 77(3):385-391.
    5.Christgau M, Caffesse RG, Schmalz G, et al. Extracellular matrix expression and periodontal wound-healing dynamics following guided tissue regeneration therapy in canine furcation defects. J Clin Periodontol, 2007, 34(8):691-708.
    6.中华人民共和国科学技术部.关于善待实验动物的指导性意见[Online].2006-09-30 http://www.most.gov.cn/zfwj/zfwj2006/200512/t20051214_54389.htm [08-09-10].
    7.Flynn JC, Henderson JS, Johnson RB. Synergism between nifedipine and cyclosporine A on the incorporation of [35 S]sulfate into human gingical fibroblast cultures in vitro. J Periodontal Res, 2006, 41(4):316-321.
    8.Suge T, Kawasaki A, Ishikawa K, et al. Effects of plaque control on the patency of dentinal tubules: an in vivo study in beagle dogs. J Peridontol, 2006, 77(3):454-459.
    9.张建楠,张焰,任炳旭等.氯胺酮对未成年大鼠学习能力和细胞外信号调节激酶的影响.临床麻醉学杂志, 2007, 23(12):1014-1016.
    10.杭燕南,庄心良,蒋豪等.当代麻醉学.上海:上海科学技术出版社,2002:215
    11.Novaes AB Jr., Marchesan JT, Macedo GO, et al. Effect of in Vitro Gingical Fibroblast Seeding on the In Vivo Incorporation of Acellular Dermal Matrix Allografts in Dogs. J Periodontol, 2007, 78(2):296-303.
    12.Yashiro R, Nagasawa T, Kiji M, et al. Trasforming growth factor-βstimulates interleukin-11 production by human periodontal ligament and gingival fibroblasts. J Clin Periodontol, 2006, 33(3):165-171.
    13.Fang Y, Svoboda KKH. Nicotine inhibits human gingival fibroblast migration via modulation of rac signaling pathways. J Clin Periodontol, 2005, 32(12):1200-1207.
    14.汤楚华,施生根,牛忠英等.酶消化组织块法原代培养人牙周膜成纤维细胞的初步研究.中华医学杂志, 2004, 84(8): 656-658.
    15.Agis H, Bauer M, Knebl G, et al. Effects of platelet-derived growth factor isoforms on plasminogen activation by periodontal ligament and gingival fibroblasts. J periodontal Res, 2008, 43(3):334-342.
    16.林敏魁,闫福华,赵欣等.狗牙周膜成纤维细胞的体外培养及其生物学活性.中国临床康复, 2004, 8(8): 1456-1457.
    17.Arora PD., McCulloch CA. The deletion of transforming growth factor-β-induced myofibroblasts depends on growth conditions and actin organization. Am J Pathol 1999, 155(6):2087-2099.
    18.曹金芳,李纾.牙龈成纤维细胞及牙周韧带成纤维细胞细胞标记物的研究现况.现代口腔医学杂志,2005,19(2):204-206.
    19.Nakahara T, Nakamura T, Kobayashi E, et al. In situ tissue engineering of periodontal tissue by seeding with periodontal ligament-derived cells. Tissue Eng, 2004, 10(3-4): 537-544.
    20.司徒镇强,吴军正主编.细胞培养,第2版,西安:世界图书出版西安公司, 41-45.
    21.Leopez-Cazuax S, Bluteau G, Magne D, et al. Culture medium modulates the behaviour of human dental pulp-derived cells: technical note. Eur Cell Mater, 2006,11: 35-42.
    22.伍晓红,闫福华.自体骨膜细胞移植修复Beagle犬III度根分叉病变的实验研究.福建医科大学硕士研究生毕业论文, 2008年3月.
    23.李谨,蒋春梅,孙卫斌.人牙周膜成纤维细胞体外培养条件的优化.临床口腔医学杂志, 2003, 19(6): 333-335.
    24.白忠诚,司徒镇强,刘斌等. RMPI1640, DMEM及不同生长因子对大鼠颌下腺细胞生长作用的观察.口腔颌面外科杂志, 2003, 13(3): 196-199.
    25.Hou LT, Li TI, Liu CM, et al. Modulation of osteogenic potential by recombinant human bone morphogenic protein-2 in human periodontal ligament cells: effect of serum, culture medium, and osteoinductive medium. J periodontal Res, 2007, 42(2):244-252.
    26.须珏华,胡静波,周燕,等.培养基对兔骨髓间充质干细胞扩增与分化的影响.中国组织工程研究与临床康复, 2007, 11(3): 467-470.
    27.Sant’Ana AC, Margues MM, Barroso TE, et al. Effects of TGF-β1, PDGF-BB, and IGF-1 on the rate of proliferation and adhesion of a periodontal ligament cell lineage in vitro. J Periodontol, 2007, 78(10): 2007-2017.
    28.Bartold PM, Walsh LJ, Narayanan AS. Molecular and cell biology of the gingiva. Periodontology 2000, 2000, 24(1): 28-55.
    29.Reigstad LJ, Varhaug JE, Lillehaug JR. Structure and functional specificities of PDGF–C and PDGF-D, the novle members of the platelet-derived growth factor family. FEBS Journal, 2005, 272:5723-5741.
    30.Heldin CH, Westermark Bengt. Mechanism of action and in vivo role of platelet–derived growth factor .Physiological Reviews;1999;79(4):1283-1316.
    31.Bartold PM. Platelet-derived derived growth factor hyaluronate but not proteoglycan synthesis by human gingival fibroblast in vitro. J Dent Res, 1993, 72(11):1473-1480.
    32.Nevins Myron, Camelo Marcelo, Nevins ML. Periodontal regeneration in humans using recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and allogenic bone. J Periodontol, 2003,74(9):1282-1292.
    33.储庆,何海丽.基因转移技术及其在牙周组织再生中的应用.国外医学口腔医学分册, 2004, 31(4): 256-258.
    34.Edwards PC, Mason JM. Gene-enhanced tissue engineering for dental hard tissue regeneration: (2)dentin-pulp and periodotal regeneration. Head &Face Medicine, 2006, 2: e16
    35.Partridge KA, Oreffo R. O.C. Gene delivery in bone tissue engineering: progress and prospects using viral and nonviral strategies. Tissue Eng, 2004,10(1-2): 295-307.
    36.Lin Z, Sugai JV, Jin Q, et al. Platelet-derived growth factor–B gene delivery sustains gingival fibroblast signal transduction. J Periodontal Res, 2008, 43(4), 440-449.
    37.Norton JA, Peplinski GR, Tsung Kangla. Expression of secreted platelet-derived growth factor-B by recombinant nonreplicating and noncytopathic vaccinia virus. Ann. Surg, 1996, 224(4):555-562.
    38.Zhang Y, Wang Y, Shi B, et al. A platelet-derived growth factor releasing chitosan/coral composite scaffold for periodontal tissue engineering.Biomaterials, 2007,28(8): 1515-1522.
    39.Hollinger JO, Hart CE, Hirsch SN, et al. Recombinant human platelet-derived growth factor: biology and clinical applications. J Bone Joint Surg Am, 2008,90(suppl 1):48-54.
    40.Hermanson M, Funa K, Koopmann J, et al. Association of loss of heterozygosity on chromosome 17p with high platelet-derived growth factor receptor expression in human malignant gliomas. Cancer Res,1996, 56(1): 164-171.
    41.Breitbart AS, Grande DA, Laser J, et al. Treatment of ischemic wounds using cultured dermal fibroblasts transduced retrovirally with PDGF–B and VEGF 121 genes. Ann Plast Surg, 2001, 46(5):555-562.
    42.Boyan LA, Bhargava G, Nishimura F, et al. Mitogenic and chemotactic response of human periodontal ligament cells to the different isoforms of platelet-derived growth factor。J Dent Res, 1994,73(10): 1593-1600.
    43.张驰宇,徐顺高,黄新祥.一种新颖简便的荧光实时RT-PCR相对定量方法的建立.生物化学与生物物理进展, 2005, 32(9):883-887.
    44.王忠彪,孙逊,李勇等. PDGF -B基因表达及其对成纤维细胞增生和胶原合成的促进作用.中华创伤杂志, 1998, 14(4): 216-218.
    45.谭谦,陈曦,梁志为等.血小板衍化生长因子-B基因转染对成纤维细胞生长增殖的影响.江苏医药杂志, 2004, 30(8): 581-582.
    46.Zhu. Z, Lee. CS, Tejeda, KM, et al. Gene transfer and expression of platelet-derived growth factors modulate periodontal cellular activity. J Dent Res, 2001, 80(3): 892-897.
    47.吴晓玲,曾维政,蒋明德.肝纤维化的信号转导通路.世界华人消化杂志, 2006, 14(22): 2223-2228.
    48.Chen QP, William V.G. Adenoviral gene transfer of PDGF downregulates gas gene product PDGFαR and prolongs ERK and Akt/PKB activation. Am. J. Physiol. Cell Physiol, 2002, 282: C538-C544.
    49.Lin Z, Sugai JV, Jin Q, et al. Platelet-derived growth factor–B gene delivery sustains gingival fibroblast signal transduction. J Periodont Res, 2008, 43(4), 440-449.
    50.王忠彪,李勇,戴瑞鸿等. PDGF–B基因的膜型表达产物促进血管平滑肌细胞增殖和胶原的合成.中国现代医学杂志, 1998, 8(2): 1-3.
    51. Collins T, Ginsburg D, Boss JM, et al. Cultured human endothelial cells express platelet-derived growth factor B chain: cDNA cloning and structure analysis. Nature, 1985, 316(6030): 748-750.
    52.Ojima Y, Mizuno M, Kuboki Y, et al. In vitro effect of platelet-derived growth factor-BB on collagen synthesis and proliferation of human periodontal ligament cells. Oral Dis, 2003, 9(3): 144-151.
    53.尚姝环,张玉峰,施斌等.新型重组人血小板衍化生长因子B腺病毒载体的构建与转染牙周干细胞的研究.中华口腔医学杂志, 2008, 43(10): 584-588.
    54.Hong HH, Trackman PC. Cytokine regulation of gingival fibroblast lysyl oxidase, collagen, and elastin. J periodontol, 2002, 73(2):145-152.
    55.Gordon MK, Gerecke DR,Nishimura I, et al. A new dimension in the extracellular matrix. Connect Tissue Res, 1989, 20(1-4):179-186
    56 Reichenberger E, Baur S, Sukotjo C, et al. Collagen XII mutation disrupts matrix structure of periodontal ligament ank skin, J Dent Res, 2000,79(12): 1962-1968.
    57.Karimbux NY, Rosenblum ND, Nishimura I. Site-specific expression of collagen I and XII mRNAs in the rat periodontal ligament at two developmental stages. J Dent Res, 71(7): 1355-1362.
    58.Matsumura K, Hyon SH, Nakajima N, et al. Effects on gingival cells of hydroxyapatite immobilized on poly(ethylene-co-vinyl alcohol). J Biomed Mater Res A. 2007; 82(2):288-295.
    59.Darby I, Skalli O, Gabbiani G.. Alpha-smooth actin is transiently expressed by myofibroblasts during experimental wound healing. Lad Invest, 1990,63(1),:21-29.
    60.Atieh MA. Accuracy of real-time polymerase chain reaction versus anaerobic culture in detection of aggregatibacter actinomycetemcomitans and porphyromonas gingivalis: A meta-analysis. J Periodontol, 2008, 79(9):1620-1629.
    61.Nonnenmacher C, Dalpke A, Rochon J,et al. Real-time polymerase chain reaction for detection and quantification of bacteria in periodontal patients. J Periodontol, 2005, 76(9):1542-1549.
    62.Lee YH, Nahm DS, Jung YK, et al. Differential gene expression of periodontal ligament cells after loading of static compressive force. J Periodontol, 2007, 78(3):446-452.
    63.Bookout AL,and Mangelsdorf DJ. Quantitative real-time PCR protocol for analysis of nuclear receptor signaling pathways. Nucl Recept Signal, 2003,1:e012.
    64.高扬,王景云.脱细胞真皮基质在口腔医学领域中的应用进展.口腔医学研究, 2006, 22(2): 214-216.
    65.Griffin TJ, Cheung W, Zavras AI, et al. Postoperative complications following gingival augmentation procedures. J Periodontol, 2006, 77(12): 2070-2079.
    66.Poll B, Buttler P, Graber HG, et al. Engrafting periodontal fibroblasts with new 3-dimensional polylactide foams. Int J Artif Organs, 2005,28(8): 827-833.
    67.殷春一,章锦才.组织工程.广东牙病防治, 2002, 10(2): 151-153.
    68.Cummings LC, Kaldahl WB, Allen EP. Histologic Evaluation of autogenous connective tissue and acellular dermal matrix grafts in humans. J periodontol, 2005, 76(2): 178-186.
    69.刘德伍,李国辉,邹萍等.表皮细胞、成纤维细胞复合脱细胞真皮基质构建组织工程皮肤.中国临床康复, 2004, 8(8): 1439-1441.
    70.赖红昌,戴烨扬,张志勇.应用牙龈角质细胞构建组织工程化牙龈的实验研究.中国口腔颌面外科杂志, 2007, 5(1): 46-49.
    71.宁方刚,张国安,金培勇.利用免疫学方法检测脱细胞真皮基质的细胞碎片残留.中华烧伤杂志, 2007, 23(1) : 73.
    72.Riccio V, Raglone FD, Marrone G, et al. Cultures of human embryonic osteoblasts. Clin Orthop, 1994,308(1) :73-75.
    73.Nakajima K, Abe T, Tanaka M, et al. Periodontal tissue engineering by transplantation of multilayered sheets of phenotypically modified gingival fibroblasts. J Periodontal Res, 2008, 43(6): 681-688.
    74.张韶君,彭凤梅,章锦才. rhBMP-2对人牙龈成纤维细胞体外矿化能力的影响.广东牙病防治, 2004, 12(1):15-17.
    75.Jin Q, Anusaksathien O, Webb SA, et al. Gene therapy of bone morphogenetic protein for periodontal tissue engineering. J Periodontol, 2003, 74(2):202-213.
    76.赵川江,章锦才,徐琛蓉等.人釉原蛋白基因转染对人牙龈成纤维细胞生物学活性的影响.中山大学学报(医学版), 2006, 27(4S): 25-27.
    77.Krebsbach PH, Renny KG, Franceshi RT, et al. Gene therapy-directed osteogenesis: BMP-7 transduced human fibroblasts from bone in vivo. Hum Gene, 2000, 11(8):1201-1210.
    78.Rutherford RB, Racenis P, Fatherazi S, et al. Bone formation by BMP -7-transduced human gingival keratinocytes. J Dent Res, 2003, 82(4):293-297.
    79.Hakki SS, Wang D, Franceschi RT, et al. Bone sialoprotein gene transfer to periodontal ligament cells may not be sufficient to promote mineralization in vitro or in vivo. J Periodontol, 2006, 77(2):167-173.
    80. Anusaksathien O, Webb SA, Jin QM, et al. Platelet-derived growth factor gene delivery stimulates ex vivo gingival repair. Tissue Eng, 2003, 9(4):745-755.
    81.Qiu QQ, Connor J. Effects ofγ-irradiation, storage and hydration on osteoinductivit of DBM and DBM/AM composite. J Biomed Mater Res A., 2008, 87(2):373-379.
    82.何建明,王慧明.骨形态蛋白复合物联合引导组织再生术治疗根分叉病变的研究.现代口腔医学杂志, 2007, 21(1):1-3.
    83.Pitaru S, Naraynan SA, Liu HW, et al. The effect of age on the expression ofmineralized tissue progenitors in the periodontium: the effect of theβ-FGF. J Periodnotal Res, 1997,32(1 Pt 2):179-182.
    84.闫福华,郑瑜谦,傅升等.Ⅱ度根分叉病变患牙动物模型构建的研究.临床口腔医学杂志, 2003, 19(8):456-458.
    85.李艳芬,闫福华,江一平. hBMP-7基因修饰的组织工程化复合物修复牙周组织缺损的实验研究.福建医科大学博士研究生毕业论文, 2008年3月.
    86.吴勇,王勤涛,吴织芬等.壳聚糖屏障膜机械性能与降解性能的研究.临床口腔医学杂志, 2004, 20(5):279-281.
    87.余粤海,邓飞龙. GBR技术中屏障膜的应用和研究进展.中国口腔种植学杂志, 2006, 11(3):137-140.
    88.Wainwright DJ. Use of an acellular allograft dermal matrix(AlloDerm) in the management of full-thickness burns. Burns, 1995, 21(4):243-248.
    89.Harris RJ. Root coverage with a connective tissue with partial thickness double pedicle graft and an acellular dermal matrix graft: A clinical and histological evaluation of a case report. J Periodontol, 1998, 69(11):1305-1311.
    90.de Queiroz C?rtes A, Sallum AW, et al.A two-year prospective study of coronally positioned flap with or without acellular dermal matrix graft. J Clin Periodontol, 2006, 33(9):683-689.
    91.Pontes AE, Pintes CC, Souza SL, et al. Evaluation of the efficacy of the acelluar dermal matrix allograft with partial thickness flap in the elimination of gingival melanin pigmentation. A comparative clinical study with 12 months of follow-up. J Esthet Restor Dent, 2006, 18(3):135-143.
    92.Luczyszyn SM, Papalexiou V, Novaes AB Jr, et al. Acellular dermal matrix and hydroxyapatite in prevention of ridge deformities after tooth extraction. Implant Dent, 2005, 14(2):176-184.
    93.Novaes AB Jr, Papalexiou V, Luczyszyn SM, et al. Immediate implant in extraction socket with acellular dermal matrix graft and bioactive glass: a case report. Implant Dent, 2002, 11(4):343-348.
    94.de Andrade PF, de Souza SL, de Oliveira Macedo G, et al. Acellular dermal matrix as a membrane for guided tissue regeneration in the treatment of class II furcationlesions:A histometric and clinical study in dogs. J Periodontol, 2007,78(7):1288-1299.
    95.王利群,吴铮.口腔组织补片治疗II度根分叉病变疗效观察.江苏大学学报(医学版), 2005,16(6):479-480.
    1.江汉,杜民权,黄薇等.湖北省人群牙周健康状况的抽样调查报告.口腔医学研究, 2007, 23(3):338-340.
    2.Partridge KA, Oreffo RO. Gene delivery in bone tissue engineering: progress and prospects using viral and nonviral strategies. Tissue Eng, 2004, 10(1-2):295-307.
    3. Edwards PC, Mason JM. Gene-enhanced tissue engineering for dental hard tissue regeneration: (2)dentin-pulp and periodotal regeneration. Head &Face Medicine, 2006, 2: e16
    4.Zhang XY, La Russa VF, Bao L, et al. Lentiviral vectors for sustained transgene expression in human bone marrow-derived stromal cells. Mol Ther, 2002, 5(5 Pt1):555-565.
    5.Breitbart AS, Grande DA, Mason JM, et al. Gene-enhanced tissue engineering: Application of bone healing using cultured periosteal cells transduced retrovirally with the BMP-7 gene. Ann Plast Surg, 1999,42(5):488-495.
    6.Zhu. Z, Lee. CS, Tejeda, KM, et al. Gene transfer and expression of platelet-derived growth factors modulate periodontal cellular activity. J Dent Res, 2001, 80(3): 892-897.
    7.Chen YL, Chen PT, Jeng LB, et al. Periodontal regeneration using ex vivo autologous stem cells engineered to express the BMP-2 gene: an alternative to alveolaplasty. Gene Ther, 2008,15(22):1469-1477.
    8.司晓辉,刘正.骨形成蛋白-2基因转染的人牙周膜成纤维细胞的生物学特性.上海第二医科大学学报, 2001, 21(1): 24-27.
    9.Li Z, Dullman J, Schiedlmeier B, et al. Murine leukemia induced by retroviral gene marking. Science, 2002,296(5576):497.
    10.Tachibana R, Harashima H, Shinohara Y, et al. Quantitative studies on the nuclear transport of plasmid DNA and gene expression employing nonviral vectors. Adv Drug Deliv Rev, 2001, 52(3):219-226.
    11.李艳芬,闫福华,赵欣.转染人骨形成蛋白-7基因对骨髓基质细胞体外生物学活性的影响,.牙体牙髓牙周病学杂志, 2007,17(10):558-562.
    12.Richardson SCW, Kolbe HVJ, Duncan R. Potential of low molecular mass chitosan as a DNA delivery system: Biocompatibility, body distribution and ability to complex and protect DNA. Int J Pharm, 1999, 178(2):231-243.
    13.Mahato RI, Takakura Y, Hashida M. Development of targeted delivery for nucleic acid drugs. J Drug Target, 1997, 4(6):337-357.
    14.Zhang YF, Wang YN, Shi B, et al. A platelet-derived growth factor releasing chitosan/coral composite scaffold for periodontal tissue engineering. Biomaterials, 2007, 28(8):1515-1522.
    15.Jaroszeski MJ, Gilbert R, Nicolau C, et al. In vivo gene delivery by electroporation. Adv Drug Deliv Rev, 1999, 35(1):131137.
    16.Bartold PM, McCulloch CA, Marayanan AS, et al. Tissue engineering: a new paradigm for periodontal regeneration based on molecular and cell biology. Periodontol 2000, 2000, 24: 253-269.
    17.Heldin CH, Westermark Bengt. Mechanism of action and in vivo role of platelet–derived growth factor .Physiological Reviews;1999;79(4):1283-1316.
    18.Reigstad LJ, Varhaug JE, Lillehaug JR. Structure and functional specificities of PDGF–C and PDGF-D, the novle members of the platelet-derived growth factor family. FEBS Journal, 2005, 272:5723-5741.
    19.Collins T, Ginsburg D, Boss JM, et al. Cultured human endothelial cells express platelet-derived growth factor B chain: cDNA cloning and structure analysis. Nature, 1985, 316(6030): 748-750.
    20.谭谦,陈曦,梁志为等.血小板衍化生长因子-B基因转染对成纤维细胞生长增殖的影响.江苏医药杂志, 2004, 30(8): 581-582.
    21.王忠彪,李勇,戴瑞鸿等. PDGF–B基因的膜型表达产物促进血管平滑肌细胞增殖和胶原的合成.中国现代医学杂志, 1998, 8(2): 1-3.
    22.Anusaksathien O, Webb SA, Jin QM, et al. Platelet-derived growth factor gene delivery stimulates ex vivo gingival repair. Tissue Eng, 2003, 9(4):745-755.
    23.Anusaksathien O, Jin Q, Zhao M, et al. Effect of sustained gene delivery of platelet-derived growth factor or its antagonist(PDGF-1308) on tissue-engineered cementum. J Periodontol, 2004, 75(3):429-440.
    24.Jin Q, Anusaksathien O, Webb SA, et al. Engineering of tooth-support structures by delivery of PDGF gen therapy vectors. Mor Ther, 2004, 9(4):519-526.
    25.Chen QP, William V.G. Adenoviral gene transfer of PDGF downregulates gas gene product PDGFαR and prolongs ERK and Akt/PKB activation. Am. J. Physiol. Cell Physiol, 2002, 282: C538-C544.
    26.Lin Z, Sugai JV, Jin Q, et al. Platelet-derived growth factor–B gene delivery sustains gingival fibroblast signal transduction. J Periodontal Res, 2008, 43(4), 440-449.
    27.翟波,刘丹平.骨形态发生蛋白基因治疗骨缺损.中国组织工程研究与临床康复, 2007, 11(41): 8333-8336.
    28.Cheng H, Jiang W, Phillips FM, et al. Osteogenic activity of the fourteen types of human bone morphogenetic proteins(BMPs). J Bone Joint Surg Am, 2003, 85-A(8):1544-1554.
    29.岳鹏举,赵建宁.骨形态发生蛋白-2促进骨缺损修复的研究进展.医学研究生学报, 2007, 20(12):1302-1304.
    30.张韶君,彭凤梅,章锦才. rhBMP-2对人牙龈成纤维细胞体外矿化能力的影响.广东牙病防治, 2004, 12(1):15-17.
    31.Springer IN, Acil Y, Spies C, et al. RhBMP-7 improves survival and eruption in a growing tooth avulsion trauma model. Bone, 2005,37(4):570-577.
    32. Jin Q, Anusaksathien O, Webb SA, et al. Gene therapy of bone morphogenetic protein for periodontal tissue engineering. J Periodontol, 2003, 74(2):202-213.
    33.董广英,吴织芬,王勤涛等. hBMP2基因转染对人牙龈成纤维细胞生物学特性的影响.牙体牙髓牙周病学杂志, 2004, 14(6):315-318.
    34.蒋欣泉,陈传俊,张秀丽等.人骨形成蛋白4基因修饰的兔骨髓基质细胞异位成骨试验.口腔颌面外科杂志, 2005, 15(1):21-23.
    35.Krebsbach PH, Renny KG, Franceshi RT, et al. Gene therapy-directed osteogenesis: BMP-7 transduced human fibroblasts from bone in vivo. Hum Gene, 2000, 11(8):1201-1210.
    36.司晓辉,刘正.骨形成蛋白2基因转染的人牙周膜成纤维细胞超微结构观察.中华口腔医学杂志, 2001, 36(4):266-268.
    37.赵川江,章锦才,徐琛蓉等.人釉原蛋白基因转染对人牙龈成纤维细胞生物学活性的影响.中山大学学报(医学版), 2006, 27(4S): 25-27.
    38.Rutherford RB, Racenis P, Fatherazi S, et al. Bone formation by BMP -7-transduced human gingival keratinocytes. J Dent Res, 2003, 82(4):293-297.
    39.Hakki SS, Wang D, Franceschi RT, et al. Bone sialoprotein gene transfer to periodontal ligament cells may not be sufficient to promote mineralization in vitro or in vivo. J Periodontol, 2006, 77(2):167-173.
    40.杨辉俊,杨宏宇,张继斌等. bFGF基因转染对骨髓基质细胞生物学特性的影响.中国口腔颌面外科杂志, 2006, 4(1):53-57.
    41.Dennison DK, Vallone DR, Pinero GJ, et al. Differential effect of TGF-beta and PDGF on peirodontal ligament cells and gingival fibroblasts. J Peiodontol, 1994, 65(7):641-648.
    42.许杰,吴织芬,储庆等.牙周组织工程化中人转化生长因子基因转染人牙龈成纤维细胞的生物学特性.中国临床康复, 2005, 9(10):48-50.
    43.朱国强,吴织芬,王勤涛等. IGF-1基因转染对骨髓基质细胞分泌IGF-1、ON和I型胶原的影响.临床口腔医学杂志, 2007, 23(10):595-597.
    44.朱国强,吴织芬,王勤涛等. IGF-1基因转染对骨髓基质细胞分泌IGF-1、VEGF、BMP-2的影响.牙体牙髓牙周病学杂志, 2006, 16(7):371-374.
    45.Tucker AS, Matthews KL, Sharpe PT. Transformation of toothe type induced morphogenesis of BMP signaling. Science, 1998, 282(5391):1136-1138.
    46.Jin Q, Zhao M, Economides AN, et al. Noggin gene delivery inhibitscementoblast-induced mineralization. Connect Tissue Res, 2004, 45(1):50-59.
    47.Jin Q, Cirelli JA, Park CH, et al. RANKL inhibition through osteoprotegerin blocks bone loss in experimental periodontitis. J Periodontol, 2007, 78(7):1300-1308.
    48.Kanzaki H, Chiba M, Takahashi I, et al. Local OPG gene transfer to periodontal tissue inhibits orthodontic tooth movement. J Dent Res, 2004, 83(12):920-925.
    49.Kanzaki H, Chiba M, Arai K, et al. Local RANKL gene transfer to periodontal tissue accelerates orthodontic tooth movement. Gene Ther, 2006, 13(8):678-685.
    50.Chen R, Kanzaki H, Chiba M, et al. Local osteoprotegerin gene transfer to periodontal tissue inhibits lipopolysaccharide-induced alveolar bone resorption. J Periodontal Res, 2008, 43(2):237-245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700