用户名: 密码: 验证码:
饱和多孔介质中颗粒迁移和沉积特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饱和多孔介质中颗粒迁移特性的研究在地下污染物扩散、核废料处置、石油开采、地下水回灌和水工结构的内部侵蚀破坏等方面有很重要的研究意义。本文通过对经典的一维颗粒过滤模型进行修正,求得了不同的注入方式以及含有源汇项的解析解。其次,建立了考虑弥散作用和沉积颗粒再释放作用影响的颗粒迁移的三维模型,将颗粒迁移问题的研究从一维向三维空间进行拓展。求得的解析解可以预测多孔介质中颗粒浓度、验证更加复杂的数值模型以及确定试验参数等。另一方面,通过室内土柱试验研究了渗流速度、渗流方向、颗粒浓度以及颗粒粒径分布等对颗粒迁移和沉积特性的影响。其次,探究了渗流速度增量和颗粒粒径对沉积颗粒再释放特性的影响。主要的研究内容包括:
     (1)将多孔介质视为饱和、均质和各向同性介质,通过在颗粒沉积动力方程中考虑弥散作用,建立了饱和多孔介质中颗粒迁移的一维模型,求得了三种不同的颗粒注入方式(短时注入、瞬时注入以及注入浓度衰减)和含有源汇项时的相应的解析解,并且对解析解中各种迁移参数进行了讨论。对不同情况的解析解的分析可知,随着时间、沉积系数、迁移距离或者线源宽度等参数中任意参数的增大,颗粒的浓度峰值逐渐减小。沉积动力方程中忽略弥散作用会对颗粒浓度有很大的影响,不同的情况下的影响规律大不相同。
     (2)以求得的一维解析解为基础,建立三维空间的颗粒迁移模型,模型分别在沉积动力方程中考虑弥散作用和沉积颗粒再释放作用的影响,并通过Laplace变换和Fourier变换求得了相应解析解的通解形式。其次,利用推导出的解析解的通解形式求出了点源和面源形式下的瞬时注入和周期性注入的具体形式的解析解。最后,以点源瞬时注入情况下的解析解为例,对各种迁移参数进行了详细的讨论。对于考虑弥散作用的三维迁移模型的解析解来说,随着时间的增大,低浓度等高线的范围逐渐向四周扩大,高浓度等高线的范围逐渐缩小。随着沉积系数的增大,浓度等高线的范围逐渐缩小。对于考虑颗粒释放作用的三维迁移模型来说,释放系数越大,相应的浓度等高线的范围越大。
     (3)通过土柱试验研究颗粒粒径、颗粒浓度和水动力对颗粒迁移和沉积特性的影响,开展了4种不同粒径和4种不同浓度的试验系列,每个系列中进行了3种不同的渗流速度的试验。结果表明:对于大小和形状一定的颗粒来说,通过测试颗粒浊度来反映其浓度的变化能取得较好的结果。其次,对于同一粒径的颗粒,渗流速度越大,流出液中颗粒的浓度峰值越大。在同一渗流速度条件下,颗粒粒径越大,流出液中其浓度峰值越小。另外,渗流速度一定时,颗粒的浓度存在一个和渗流速度相关的临界值,颗粒的临界浓度随着渗流速度增加也逐渐增大。
     (4)通过试验的手段研究粒径和渗流速度对多孔介质中颗粒释放特性的影响。根据渗流速度增量的不同,试验分为两种不同的试验系列,在每一个试验系列中分别对两种不同粒径的颗粒进行试验。其次,研究了渗流速度增量和颗粒粒径对沉积颗粒释放规律的影响。最后,对试验完成后石英砂中沉积颗粒量随深度变化的特性进行了定量分析。一般来说,中位粒径小的颗粒的释放量要大于相应的中位粒径较大的颗粒。渗流速度的增量不同,沉积的颗粒的特征也大不相同。
     (5)利用室内土柱试验探究了渗流速度、渗流方向以及颗粒分布对饱和多孔介质中颗粒迁移和沉积特性的影响机制。试验包括三种不同的渗流方向的试验系列(向下流,水平流和向上流)。同时,以修正后的对流弥散方程求得的解析解对试验曲线进行拟合,对3种不同粒径分布的颗粒的迁移参数进行对比分析,揭示了不同水力条件下颗粒的粒径分布对其迁移和沉积特性的影响机制。颗粒的弥散度和渗流方向有很大的关系,在渗流自上至下时弥散度的变化最明显。另外,随着渗流速度的增加,颗粒的沉积系数随之减小,相应的回收率随之增加,并且中位粒径或均一性指数对颗粒的沉积特性有一定的影响。
Particle transport and deposition in saturated porous media play an important role in pollutant purification, nuclear waste disposal, oil exploration and internal erosion of hydraulic structures. According to the correction of the classic one-dimensional particle filter model, this paper obtained analytical solutions for different injection methods and containing sources and sinks. Secondly, the three-dimensional models which have considered the dispersion effect and particle release effect were established, so the study of particle transport extends to three-dimensional space. The solutions may be used for predicting particle concentration, verification of more complicated numerical model and determination test parameters. On the other hand, according to the soil column test, the effect of seepage velocity, seepage direction, particle concentration and particle size distribution on particle transport and deposition have been studied. Besides, the effects of increment of seepage velocity and particle size on the release of deposition particle have been studied. The main contents include:
     (1) In the present study, the porous media regarded as saturated, homogeneous and isotropic medium. Analytical solutions of corrected convection-dispersion models that takes into account dispersive flux on the deposition kinetic was obtained, including four types (short time injection, instantaneous injection, concentration decay injection and containing sources and sinks). The studies show that, the peak value of concentration decreases with increasing time, deposition rate, distance or the width of the source. Furthermore, these observations suggest that particle concentration affected by dispersive flux on the deposition kinetic equation, and the effect is strongly coupled to conditions.
     (2) Based on the one dimensional model, three-dimensional models which have consider the dispersion effect and particle release effect was established. General solutions were derived with the help of Laplace and Fourier transforms. According to the general solutions, specific solutions (instantaneous injected and periodically injected) are presented for point and areal inflow regions. Finally, the analytical solution for point source under instantaneous injection was taken as example of specific solutions, and a detailed discussion of the various transport parameters was conducted. The range of low concentration contour increases with increasing time and high concentration contour decreases with increasing time. The concentration contours decrease with increasing deposition rate. The concentration contours increase with increasing release coefficient for the three-dimensional model which have consider particle release effect.
     (3) Experiments were conducted to investigate the effects of particle size, particle concentration, hydrodynamic force on the transport and deposition of particle in saturated porous media. Four different size and four different concentration experimental series were performed, which series including three different seepage velocities experiment. The studies show that, particle turbidity can represent particle concentration of certain size and shape particle. The peak concentration of effluent increases with the increasing seepage velocity for the same particle size. Besides, there exists a critical concentration for particles under a constant flow velocity, the critical concentration of particles increases with the increasing seepage velocity.
     (4) In order to study the effect of particle size and seepage velocity on the release of deposited particle,4different suspended particle concentrations have been studied under3flow velocities in columns of saturated porous media. Two different velocity increment series which including two different particle size were performed. Besides, the effects of flow velocity increment and particle size on the release of deposited particle have been studied. Finally, the relationship between the amount of deposited particle and the depth was quantitatively analyzed. Generally, the release amount of small median particle size particle is greater than larger median particle size particle. The characteristics of the deposited particle are larger dependent on flow velocity increment.
     (5) Experiments were conducted to investigate the coupled effects of flow rate, flow direction, and particle size distribution on the transport and deposition of particle in saturated porous media. Three experimental series were performed, including downward flow, horizontal flow and upward flow. The breakthrough curves are well described by analytical solutions of a corrected convection-dispersion model. The flow direction is shown to be significant factors affecting the dispersivity of particle, especially in downward flow. Besides, the deposition rate decreases and the recovery rate increases with increasing flow rate. Furthermore, the particle deposition is affected by the median diameters or monodisperse index of particle.
引文
[1]Bartelds G A, Bruining J, Molenaar J. The modeling of velocity enhancement in polymer flooding[J]. Transport in Porous Media,1997,26(1):75-88.
    [2]Frey J M, Schmitz P, Dufreche J, et al. Particle deposition in porous media:analysis of hydrodynamic and weak inertial effects[J]. Transport in Porous Media,1999,37(1):25-54.
    [3]Shapiro A A, Bedrikovetsky P G.A stochastic theory for deep bed filtration accounting for dispersion and size distributions[J]. Physica A:Statistical Mechanics and its Applications, 2010,389(13):2473-2494.
    [4]Bedrikovetsky P G, Zeinijahromi A, Siqueira FD, et al. Particle detachment under velocity alternation during suspension transport in porous media[J]. Transport in Porous Media,2011, 91(1):173-197.
    [5]Zamani A, Maini B. Flow of dispersed particles through porous media-deep bed filtration[J]. Journal of Petroleum Science and Engineering,2009,69(1-2):71-88.
    [6]Saiers J E, Hornberger G M. First-and second-order kinetics approaches for modeling the transport of colloidal particles in porous media[J]. Water Resources Research,1994,30(9): 2499-2506.
    [7]Grolimund D, Elimelech M, Borkovec M, et al. Transport of in situ mobilized colloidal particles in packed soil columns[J]. Environmental Science and Technology,1998,32(22): 3562-3569.
    [8]Utsunomiya S, Kersting A B, Ewing R C. Groundwater nanoparticles in the far-field at the Nevada Test Site:mechanism for radionuclide transport[J]. Environmental Science and Technology,2009,45(5):1293-1298.
    [9]Mori A, Alexander W R, Geckeis H, et al. The colloid and radionuclide retardation experiment at the Grimsel test site:influence of bentonite colloids on radionuclide migration in a fractured rock[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2003,217(1-3): 33-47.
    [10]Sen T K, Khilar K C. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media[J]. Advances in Colloid and Interface Science,2006, 119(2-3):71-96.
    [11]Kim J I. Actinide colloid generation in groundwater[J]. Radiochim Acta,1991,52/53:71-81.
    [12]Puls R W, Powell R M. Transport of inorganic colloids through natural aquifer material: implications for contaminant transport[J]. Environmental Science and Technology,1992, 26(3):614-621.
    [13]Tang X Y, Weisbrod N. Colloid-facilitated transport of lead in natural discrete fractures[J]. Environmental Pollution,2009,157(8-9):2266-2274.
    [14]Walshe G E, Pang L P, Flury M, et al. Effects of pH, ionic strength, dissolved organic matter, and flow rate on the co-transport of MS2 bacteriophages with kaolinite in gravel aquifer media[J]. Water Research,2010,44(4):1255-1269.
    [15]Li Z L, Zhou L X. Cadmium transport mediated by soil colloid and dissolved organic matter:a field study[J]. Journal of Environmental Sciences,2010,22(1):106-115.
    [16]Natarajan N, Kumar G S. Spatial moment analysis of colloid facilitated radionuclide transport in a coupled fracture-matrix system[J]. International Journal of Energy and Environment,2011, 2(3):491-504.
    [17]Sun H, Gao B, Tian Y, et al. Kaolinite and lead in saturated porous media: facilitated and impeded transport [J]. Journal of environmental engineering,2010,136(11):1305-1308.
    [18]Kersting A B, Efurd D W, Finnegan D L, et al. Migration of plutonium in ground water at the Nevada Test Site[J], Nature,1999,397:56-59.
    [19]Missana T, Alonso U, Garcia-Gutierrez M, et al. Role of bentonite colloids on europium and plutonium migration in a granite fracture[J]. Applied Geochemistry,2008,23(6):1484-1497.
    [20]Karathanasis A D. Subsurface migration of copper and zinc mediated by soil colloids[J]. Soil Science Society of America Journal,1999,63(4):830-838.
    [21]Grolimund D, Borkovec M, Barmettler K, et al. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: a laboratory column study [J]. Environmental Science and Technology,1996,30(10),3118-3123.
    [22]Massei N, Lacroix M, Wang H Q, et al. Transport of particulate material and dissolved tracer in a highly permeable porous medium: comparison of the transfer parameters [J].Journal of Contaminant Hydrology,2002,57(1-2):21-39.
    [23]Ahfir N D, Wang H Q, Benamar A, et al. Transport and deposition of suspended particles in saturated porous media: hydrodynamic effect[J]. Hydrogeology Journal,2007,15(4):659-668.
    [24]Wang H, Lacroix M, Massei N, et al. Particle transport in porous medium:determination of hydrodispersive characteristics and deposition rates[J]. Comptes Rendus de l'Academie des Sciences Series IIA Earth and Planetary Science,2000,331(2):97-104.
    [25]Wang J, Hu J, Zhang S. Studies on the sorption of tetracycline onto clays and marine sediment from seawater[J]. Journal of colloid and interface science,2010,349(2):578-582.
    [26]Sen T K, Das D, Khilar K C, et al. Bacterial transport in porous media: New aspects of the mathematical model[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2005,260(1-3):52-62.
    [27]Syngouna V I, Chrysikopoulos C V. Transport of biocolloids in water saturated columns packed with sand:Effect of grain size and pore water velocity[J]. Journal of Contaminant Hydrology,2009,126(3-4):301-314.
    [28]Wehrer M, Jaesche P, Totsche K U. Modeling the kinetics of microbial degradation of deicing chemicals in porous media under flow conditions[J]. Environmental Pollution,2012,168: 96-106.
    [29]Harvey R W, Garabedian S P. Use of colloid filtration theory in modeling movement of bacteria through a contaminated sandy aquifer[J]. Environmental Science and Technology, 1991,25:178-185.
    [30]Thomas J M, Ward C H. In situ biorestoration of organic contaminants in the subsurface [J]. Environmental Science and Technology,1989,23:760-766.
    [31]Dong H. Significance of electrophoretic mobility distribution to bacterial transport in granular porous media[J]. Journal of Microbiological Methods,2002,51:83-93.
    [32]Bhattacharjee S, Ryan J N, Elimelech M. Virus transport in physically and geochemically heterogeneous subsurface porous media[J]. Journal of Contaminant Hydrology,2002,57(3-4): 161-187.
    [33]Sen T K. Processes in pathogenic biocolloidal contaminants transport in saturated and unsaturated porous media: a review[J]. Water, Air, and Soil Pollution,2011,216(1-4): 239-256.
    [34]Tufenkji N. Modeling microbial transport in porous media: traditional approaches and recent developments[J]. Advances in Water Resources,2007,30(6-7):1455-1469.
    [35]Kim H N, Walker S L. Escherichia coli transport in porous media: influence of cell strain, solution chemistry, and temperature[J]. Colloids and Surfaces B:Biointerfaces,2009,71(1): 160-167.
    [36]Schinner T, Letzner A, Liedtke S, et al. Transport of selected bacterial pathogens in agricultural soil and quartz sand[J]. Water Research,2010,44(4):1182-1192.
    [37]McCarthy J F, McKay L D. Colloid transport in the Subsurface:past, present, and future challenges[J]. Vadose Zone Journal,2004,3:326-337.
    [38]Filella M, Buffle J. Factors affecting the stability of submicron colloids in natural waters[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1993,73(29):255-273.
    [39]McCarthy J F, Zachara J M. Subsurface transport of contaminants[J]. Environmental Science and Technology,1989,23 (5):496-502.
    [40]Shaw R C, Schramm L L, Czarnecki J, in:Schramm L L(Ed). Suspensions:fundamental and applications in the petroleum industry[M]. Advances in Chemistry Series, Washington DC: American Chemical Society,1996.
    [41]Elimelech M, Gregory J, Jia X., et al. Particle deposition and aggregation:measurement, modeling, and simulation[M]. Colloid and Surface Engineering Series, Oxford: Butterworth-Heinemann,1998.
    [42]Pinheiro I G, Schmitz P, Houi D. Particle capture in porousmedia when physico-chemical effects dominate[J]. Chemical Engineering Science,1999,54(17):3801-3813.
    [43]Bradford S A, Torkzaban S, Walker S L. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media [J]. Water Research,2007,41(13):3012-3024.
    [44]Torkzaban, S, Bradford S A, Walker S L. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining[J]. Journal of Contaminant Hydrology,2008,96(1-4):113-127.
    [45]McDowell-Boyer L M, Hunt J R, Sitar, N. Particle transport through porous media[J]. Water Resources Research,1986,22(13):1901-1921.
    [46]Tien C. Granular Filtration of Aerosols and Hydrosols[M]. Boston:Butterworth Publishing Company,1989.
    [47]Ives K J. Rapid Filtration[J]. Water Research,1970,4 (3):201-223.
    [48]Yao K M, Habibian M T, O'Melia C R. Water and wastewater filtration.concepts and applications[J]. Environmental Science Technology,1971,5(11):1105-1112.
    [49]Amirtharajah A. Some Theoretical and conceptual views of filtration[J].Journal American Water Works Association,1988,80(12):36-46.
    [50]Stephenson J L, Stewart W E. Optical measurements of porosity and fluid motion in packed-beds[J]. Chemical Engineering Science,1986,41(8):2161-2170.
    [51]Suekane T, Yokouchi Y, Hirai S. Inertial flow structures in a simple-packed bed of spheres[J]. American Institute of Chemical Engineers Journal,2003,49(1):10-17.
    [52]Civan, F. Reservoir Formation Damage:Fundamentals, Modeling, Assessment, and Migration[M]. Houston: Gulf Publication Company,2000.
    [53]Keller A A, Auset M. A review of visualization techniques of biocolloid transport processes at the pore scale under saturated and unsaturated conditions[J]. Advances in Water Resources, 2007,30(6-7):1392-1407.
    [54]Derjaguin B V, Landau L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes[J].Acta Physicochim,1941, 14,633-662.
    [55]Verwey E J W, Overbeek J T G.. Theory of stability of lyophobic colloids[M]. New York: Elsevier,1945.
    [56]Bhattacharjee S, Elimelech M. Surface Element Integration: a novel technique for evaluation of DLVO interaction between a particle and a flat plate [J]. Journal of Colloid and Interface Science,1997,193(2):273-285.
    [57]Adamczyk Z, Weronski P. Application of the DLVO theory for particle deposition problems [J]. Advances in Colloid and Interface Science,1999,83(1-3):137-226.
    [58]Kaplan D I, Sumner M E, Bertsch P M, et al. Chemical conditions conducive to the release of mobile colloids from ultisol profiles[J]. Soil Science Society of America Journal,1995,60(1): 269-274.
    [59]Franchi A, O'Melia C R. Effects of Natural Organic Matter and Solution Chemistry on the Deposition and Reentrainment of Colloids in Porous Media[J]. Environmental Science and Technology,2003,37(6):1122-1129.
    [60]Elimelech M, Ryan J N. Interactions between soil particles and microorganisms:impact on the terrestrial ecosystem[M]. New York: John Wiley and Sons,2002.
    [61]Bergendahl J A, Grasso D. Mechanistic basis for particle detachment from granular media[J]. Environmental Science and Technology,2003,37(10):2317-2322.
    [62]Saiers J E, Hornberger G M. The influence of ionic strength on the facilitated transport of cesium by kaolinite colloids[J]. Water Resources Research,1999,35(6):1713-1727.
    [63]Liang L, McCarthy J F, Jolley L W, et al. Iron dynamics:transformation of Fe(II)/Fe(III) during injection of natural organic matter in a sandy aquifer[J]. Geochimica et Cosmochimica Acta,1993,57(9):1987-1999.
    [64]Yin X, Gao B, Ma L Q, et al. Colloid-facilitated Pb transport in two shooting-range soils in Florida[J]. Journal of Hazardous Materials,2010,177(1-3):620-625.
    [65]Klitzke S, Lang F, Kaupenjohann M. Increasing PH releases colloidal lead in a highly contaminated forest soil[J]. European Journal of Soil Science,2008,59(2):265-273.
    [66]Kretzschmar R, Robarge W P, Weed, S B. Flocculation of kaolinitic soil clays:effects of humic substances and iron oxides[J]. Soil Science Society of America Journal,1993,57: 1277-1283.
    [67]McBride M B. Environmental Chemistry of Soils[M]. New York: Oxford University Press, 1994.
    [68]Kia S F, Fogle H S, Reed M G. Effect of salt composition on clay release in Berea sandstones [J]. SPE Production Engineering,1987,2(4):277-283.
    [69]Khilar K C, Vaidya R N, Fogler H S. Colloidally-induced fines release in porous media[J]. Journal of Petroleum Science and Engineering,1990,4(3):213-221.
    [70]Khilar KC, Fogler HS. Migration of Fines in Porous Media. London, Kluwer Academic Publishers,1998.
    [71]Blume T, Weisbrod N, Selker J S. On the critical salt concentrations for particle detachment in homogeneous sand and heterogeneous Hanford sediments [J].Geoderma,2005,124(1-2): 121-132.
    [72]Amirtharajah A, Raveendran P. Detachment of colloids from sediments and sand grains[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1993,73(29):211-227.
    [73]Roy S B, Dzombak D A. Colloid release and transport processes in natural and model porous media[J]. Colloids and Surfaces A, Physicochemical and Engineering Aspects,1996,107(20), 245-262.
    [74]Yan Y D, Borkovec M, Sticher H. Deposition and release of colloidal particles in porous media[J]. Progress in Colloid and Polymer Science,1995,98:132-135.
    [75]Goldman A J, Cox R G, Brenner H. Slow viscous motion of sphere parallel to a plane wall-Ⅱ couette flow[J]. Chemical Engineering Science,1967,22(4):653-660.
    [76]O'Neill M E. A sphere in contact with a plane wall in a slow linear shear flow[J]. Chemical Engineering Science,1968,23:1293-1298.
    [77]Tripathy A. Hydrodynamically and chemically induced in situ kaolin particle release from porous media an experimental study[J]. Advanced Powder Technology,2010,21(5):564-572.
    [78]Ryan J N, Elimelech M. Colloid mobilization and transport in groundwater[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1996,107(20):1-56.
    [79]Franch A, O'Melia C R. Effects of Natural Organic Matter and Solution Chemistry on the Deposition and Reentrainment of Colloids in Porous Media[J]. Environmental Science and Technology,2003,37(6):1122-1129.
    [80]Kolawoski J E, Matijevic E. Particle adhesion and removal in model systems:I. Monodispersed chromium hydroxide on glass[J]. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases,1979,75:65-78.
    [81]Khilar K C, Fogler H S. The existence of a critical salt concentration for particle release[J]. Journal of Colloid and Interface Science,1984,101(1):214-224
    [82]Grolimund D, Borkovec M. Release of colloidal particles in natural porous media by monovalent and divalent cations[J]. Journal of Contaminant Hydrology,2006,87(3-4): 155-175.
    [83]Bedrikovetsky P, Siqueira F D, Furtado C A, et al. Modified particle detachment model for colloidal transport in porous media[J]. Transport in porous media,2011,86(2):353-383.
    [84]Liu D, Johnson P R, Elimelech M. Colloid deposition dynamics in flow-through porous media: role of electrolyte concentration[J]. Environmental Science and Technology,1995,29(12): 2963-2973.
    [85]Tan Y, Gannon J T, Baveye P, et al. Transport of bacteria in an aquifer sand:experiments and model simulations[J]. Water Resources Research,1994,30 (12):3243-3252.
    [86]Bradford S A, Kim H N, Berat Z.. Coupled Factors Influencing Concentration-Dependent Colloid Transport and Retention in Saturated Porous Media[J]. Environmental Science and Technology,2009,43(18):6996-7002.
    [87]Khilar K C, Fogler H S. Water sensitivity of sandstones[J]. Society of Petroleum Engineers Journal,1983,23(1):55-64.
    [88]Pandya V B, Bhuniya S, Khilar K C. Existence of a critical particle concentration in plugging of a packed bed[J]. American Institute of Chemical Engineers Journal,1998,44(4):978-981.
    [89]Sen T K, Mahajan S P, Khilar K C. Colloid-associated contaminant transport in porous media: 1. experimental studies[J]. American Institute of Chemical Engineers Journal,2002,48(10): 2366-2374.
    [90]Diaz J, Rendueles M, Diaz M. Straining phenomena in bacteria transport through natural porous media[J]. Environmental Science and Pollution Research,2010,17(2):400-409.
    [91]Li X, Lin C L, Miller J D. Pore-scale observation of microsphere deposition at grain-to-grain contacts over assemblage-scale porous media domains using X-ray microtomography[J]. Environmental Science and Technology,2006,40 (12):3762-3768.
    [92]Xu S, Saiers J E. Colloid straining within water-saturated porous media: Effects of colloid size nonuniformity[J]. Water Resources Research,2009,45(5): W05501. doi:10.1029/2008WR007258.
    [93]Johnson W P, Pazmino E, Ma H. Direct observations of colloid retention in granular media in the presence of energy barriers, and implications for inferred mechanisms from indirect observations[J]. Water Research,2010,44 (4):1158-1169.
    [94]Kim H N, Walker S L, Bradford S A. Coupled factors influencing the transport and retention of cryptosporidium parvum oocysts in saturated porous media[J]. Water Research,2010,44 (4):1213-1223.
    [95]Herzig J P, Leclerc D M, Goff P Le. Flow of suspensions through porous media-application to deep flitration[J]. Industrial Engineering Chemistry,1970,62(5):8-35.
    [96]Xu S, Liao Q, Saiers J E. Straining of Nonspherical Colloids in Saturated Porous Media[J]. Environmental Science and Technology,2008,42 (3):771-778
    [97]Foppen, J W A, Mporokoso A, Schijven J F. Determining straining of Escherichia coli from breakthrough curves[J]. Journal of Contaminant Hydrology,2005,76(3-4):191-210.
    [98]Li X, Scheibe T D, Johnson W P. Apparent decreases in colloid deposition rate coefficients with distance of transport under unfavorable deposition conditions:a general phenomenon[J]. Environmental Science and Technology,2004,38(21):5616-5625.
    [99]Tufenkji N, Elimelech M. Deviation from classical colloid filtration theory in the presence of repulsive DLVO interactions[J]. Langmuir,2004,20(25):10818-10828.
    [100]Tufenkji, N, Elimelech, M. Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media[J]. Environmental Science and Technology,2004,38(2):529-536.
    [101]Bradford S A, Yates S R, Bettahar M, et al. Physical factors affecting the transport and fate of colloids in saturated porous media[J]. Water Resources Research,2002,38(12):1327-1338.
    [102]Porubcan A A, Xu S P. Colloid straining within saturated heterogeneous porous media[J]. Water Resources Research,2011,45(4):1796-1806.
    [103]Xu S P, Gao B, Saiers J E. Straining of colloidal particles in saturated porous media[J]. Water Resources Research,2006,42(2):W12S16. doi:1029/2006WR004948.
    [104]Hall W A. An analysis of sand filtration, proceedings[J]. American Society of civil engineers (sanitary engineering division),1957,83(SA3):1276/1-1276/9.
    [105]Bradford S A, Simunek J, Bettahar M, et al. Modeling colloid attachment, straining, and exclusion in saturated porous media[J]. Environmental Science and Technology,2003,37(1): 2242-2250.
    [106]Bradford S A, Bettahar M. Concentration dependent transport of colloids in saturated porous media[J]. Journal of Contaminant Hydrology,2006,82(1-2):99-117.
    [107]Bradford S A, Simunek J, Bettahar M, et al. Straining of colloids at textural surfaces[J].Water Resources Research,2005,41(10):W10404. doi:10.1029/2004WR003675.
    [108]Bradford S A, Bettahar M. Straining, attachment, and detachment of Cryptosporidium oocysts in saturated porous media[J]. Journal of Environmental Quality,2005,34(2):469-478.
    [109]Shen C, Huang Y, Li B, et al. Effects of solution chemistry on straining of colloids in porous media under unfavorable conditions[J]. Water Resources Research,2008,44:W05419. doi:10.1029/2007 WR006580.
    [110]Bales R C, Gerba C P, Grondin G H, et al. Bacteriophage transport in sandy soil and fractured tuff [J]. Applied and Environmental Microbiology,1989,55(8):2061-2067.
    [111]McKay L D, Sanford W E, Strong J M. Field-scale migration of colloidal tracers in a fracture shale saprolite[J].Ground Water,1999,38(1):139-147.
    [112]Creber S A, Pintelon T R R, Johns M L. Quantification of the velocity acceleration factor for colloidal transport in porous media using NMR[J]. Journal of Colloid and Interface Science, 2009,339(1):168-174.
    [113]Keller A A, Sirivithayapakorn S, Chrysikopoulos C V. Early breakthrough of colloids and bacteriophage MS2 in a water-saturated sand column[J]. Water Resources Research,2004, 40(8):W08304. doi:10.1029/2003WR002676
    [114]Panflov M, Panfilova I, Stepanyants Y. Mechanisms of particle transport acceleration in porous media[J]. Environmental Science and Technology,2008,74(1):49-71.
    [115]Niehren S, Kinzelbach W. Artificial colloid tracer tests:development of a compact on-line microsphere counter and application to soil column experiments[J]. Journal of Contaminant Hydrology,1998,35(1-3):249-259.
    [116]Auckenthaler A, Raso G, Huggenberger P. Particle transport in a karst aquifer: natural and artificial tracer experiments with bacteria, bacteriophages and microspheres[J]. Water Science and Technology,2002,46(1):131-138.
    [117]Benamara A, Wang H Q, Ahfir N D, et al. Flow velocity effects on the transport and the deposition rate of suspended particles in a saturated porous medium[J]. Comptes Rendus Geoscience,2005,337(5):497-504.
    [118]Pronk M, Goldscheider N, Zopfi J. Dynamics and interaction of organic carbon, turbidity and bacteria in a karst aquifer system[J]. Hydrogeology Journal,2006,14(4):473-484.
    [119]Roy S B, Dzomback D A. Chemical factors influencing colloid-facilitated transport of contaminants in porous media[J]. Environmental Science and Technology,1997,31(3): 656-664.
    [120]Mahler B J, Bennett P C, Zimmerman M. Lanthanidelabeled clay:a new method for tracing sediment transport in karst[J]. Ground Water,1998,36(5):835-843.
    [121]Toran L, Palumbo A V. Colloid transport through fractured and unfractured laboratory sand columns[J]. Journal of Contaminant Hydrology,1992,9(3):289-303.
    [122]Sirivithayapakorn S, Keller A. Transport of colloids in saturated porous media: A pore-scale observation of the size exclusion effect and colloid acceleration[J]. Water Resources Research, 2003,39(4):1109. doi:10.1029/2002WR001583.
    [123]Goppert N, Goldscheider N. Solute and colloid transport in karst conduits under low-and high-flow conditions[J]. Ground Water,2008,46(1):61-68.
    [124]Payatakes A C, Tien C, Turian R M. A new model for granular porous media:Part Ⅱ. Numerical solution of steady state incompressible Newtonian flow through periodically constricted tubes[J]. American Institute of Chemical Engineers Journal,1973,19(1):67-76.
    [125]Alkiviades C. Payatakes, Chi Tien, Raffi M. Turian. A new model for granular porous media: Part I. Model formulation[J]. American Institute of Chemical Engineers Journal,1973,19(1): 58-67.
    [126]Venkatesan M, Rajagopalan R. A hyperboloidal constricted tube model of porous media[J]. American Institute of Chemical Engineers Journal,1980,26(4):694-698.
    [127]Charles S P. A study of the theory of rapid filtration of water through sand[D]. PhD Thesis, Massachusetts Institute of Technology, Massachusetts, USA,1950.
    [128]Iwasaki T. Some notes on sand filtration[J]. Journal (American Water Works Association) 1937,29(10):1591-1602.
    [129]Kretzschmar R, Barmettler K, Grolimund D, Y et al. Experimental determination of colloid deposition rates and collision efficiencies in natural porous media[J].Water Resources Research,1997,33(5),1129-1137.
    [130]Albinger O, Biesemeyer B K, Arnold R G, et al. Effect of bacterial heterogeneity on adhesion to uniform collectors by monoclonal populations[J]. FEMS Microbiology Letters,1994, 124(3):321-326.
    [131]Martin R E, Bouwer E J, Hanna L M. Application of clean-bed filtration theory to bacterial deposition in porous media[J]. Environmental Science and Technology,1992,26 (5): 1053-1058.
    [132]Redman J A, Grant S B, Olson TM, et al. Pathogen filtration,heterogeneity, and the potable reuse of wastewater[J]. Environmental Science and Technology,2001,35(9):1798-1805.
    [133]Yates M V, Yates S R. Modeling microbial fate in the subsurface environment[J]. Critical Reviews in Environmental Control,1988,17(4):307-344.
    [134]Bos R, van der Mei H C, Busscher H J. Physico-chemistry of initial microbial adhesive interactions—its mechanisms and methods for study[J]. FEMS microbiology reviews 1999, 23(2):179-230.
    [135]Schijven J F, Hassanizadeh S M. Removal of viruses by soil passage:overview of modeling, processes, and parameters[J]. Critical Reviews in Environmental Science and Technology, 2000,30(1):49-127.
    [136]Lake L W. Enhanced Oil Recovery[M]. Englewood Cliffs:Prentice Hall,1989.
    [137]Jensen J L, Jensen, Larry W, et al.. Statistics for Petroleum Engineers and Geoscientists[M]. New Jersey:Prentice Hall PTR,1997.
    [138]Altoe F J E, Bedrikovetsky P, Siqueira A G, et al. Correction of basic equations for deep bed filtration with dispersion[J]. Journal of Petroleum Science and Engineering,2006,51(1-2): 68-84.
    [139]Tufenkji N, Redman J A, Elimelech M. Interpreting deposition patterns of microbial particles in laboratory-scale column experiments[J]. Environmental Science and Technology,2003, 37(3):616-623.
    [140]Unice K M, Logan B E. Insignificant role of hydrodynamic dispersion on bacterial transport[J]. Journal of Environmental Engineering,2000,126(6):491-500.
    [141]Tobiason J E, O'Melia C R. Physicochemical aspects of particle removal in depth filtration [J]. Journal of the American Water Works Association,1988,80(12):54-64.
    [142]Logan B E, Jewett D G, Arnold R G, et al. Clarification of clean-bed filtration models[J]. Journal of Environmental Engineering,1995,121(12):869-873.
    [143]Bradford S A, Toride N. A stochastic model for colloid transport and deposition[J]. Journal of environmental quality,2007,36(5):1346-1356.
    [144]Camesano T A, Logan B E. Influence of fluid velocity and cell concentration on the transport of motile and nonmotile bacteria in porous media[J]. Environmental Science and Technology, 1998,32(11):1699-1708.
    [145]Bolster C H, Mills A L, Hornberger G M, et al. Spatial distribution of deposited bacteria following miscible displacement experiments in intact cores[J]. Water Resources Research, 1999,35(6):1797-1807.
    [146]Berkowitz B, Cortis A, Dentz M, et al. Modeling non-Fickian transport in geological formations as a continuous time random walk[J]. Reviews of Geophysics,2006,44(2), RG2003.doi:10.1029/2005RG000178.
    [147]Kosakowski G, Berkowitz B, Scher H. Analysis of field observations of tracer transport in a fractured till[J]. Journal of Contaminant Hydrology,2001,47(1):29-51.
    [148]Baygents J C, Glynn J R, Albinger O, et al. Variation of surface charge density in monoclonal bacterial populations:implications for transport through porous media[J]. Environmental Science and Technology,1998,32(11):1596-603.
    [149]Martin M J, Logan B E, Johnson W P, et al. Scaling bacterial filtration rates in different sized porous media[J]. Journal of Environmental Engineering,1996,122(5):407-415.
    [150]Redman J A, Estes M K, Grant S B. Resolving macroscale and microscale heterogeneity in virus filtration[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001, 191(1):57-70.
    [151]Tufenkji N, Elimelech M. Spatial distributions of Cryptosporidium oocysts in porous media: evidence for dual mode deposition[J]. Environmental Science and Technology,2005,39(10): 3620-3629.
    [152]Johnson P R, Elimelech M. Dynamics of colloid deposition in porous media: Blocking based on random sequential adsorption[J]. Langmuir,1995,11(3):801-812.
    [153]Li X, Zhang P, Lin C L, et al. Role of hydrodynamic drag on microsphere deposition and re-entrainment in porous media under unfavorable conditions[J]. Environmental Science and Technology,2005,39(11):4012-4020.
    [154]Cushing R S, Lawler D F. Depth filtration:fundamental investigation through three-dimensional trajectory analysis[J]. Environmental Science and Technology,1998,32(23): 3793-3801.
    [155]Sharma M M, Yortsos Y C. Transport of particulate suspensions in porous media: model formulation[J]. American Institute of Chemical Engineers Journal,1987,33(10):1636-1643.
    [156]Sharma M M, Yortsos Y C. A network model for deep bed filtration processes[J]. American Institute of Chemical Engineers Journal,1987,33(13):1644-1653.
    [157]Sharma M M, Yortsos Y C. Fines migration in porous media[J]. American Institute of Chemical Engineers Journal,1987,33(13):1654-1662.
    [158]Scheibe T D, Wood B D..A particle-based model of size or anion exclusion with application to microbial transport in porous media[J]. Water Resources Research,2003,39(4):1080-1089.
    [159]Santos A, Bedrikovetsky P G. Population balance model for deep bed filtration with pore size exclusion[J]. Journal of Computational and Applied Mathematics,2005,23(2-3):1-26.
    [160]James S C, Chrysikopoulos C V. Effective velocity and effective dispersion coefficient for finite-sized particles flowing in a uniform fracture[J]. Journal of Colloid and Interface Science, 2003,263(1):288-295.
    [161]Sharma P, Flury M, Mattson E D. Studying colloid transport in porous media using a geocentrifuge[J]. Water Resources Research,2008,44(7):1796-1806.
    [162]Rajagopalan R, Tien C. Trajectory analysis of deep-bed filtration with the sphere-in-cell porous media model[J]. American Institute of Chemical Engineers Journal,1976,22(3): 523-533.
    [163]Fan L T, Nassar R, Hwang S H, et al. Analysis of deep bed filtration data: Modeling as a birth-death process [J]. American Institute of Chemical Engineers Journal,1985,31(11): 1781-1790.
    [164]Fan L T, Hwang S H. An experimental study of deep-bed filtration, stochastic analysis[J]. Powder Technology,1985,44(1):1-11.
    [165]Santos A, Bedrikovetsky P. Size exclusion during particle suspension transport in porous media:stochastic and averaged equations[J]. Computational and Applied Mathematics,2004, 23(2-3):260-283.
    [166]Santos A, Bedrikovetsky P. A stochastic model for particulate suspension flow in porous media[J]. Transport in Porous Media,2006,62(1):23-53.
    [167]Chang J S, Vigneswaran S, Kandasamy J K, et al. Effect of pore size and particle size distribution on granular bed filtration and microfiltration[J]. Separation Science and Technology,2008,43(7):1771-1784.
    [168]Cornis A, Chen Y, Scher H, et al. Quantitative characterization of pore-scale disorder effects on transport in "homogeneous" granular media[J]. Physical Review E,2004,70(4):1-8.
    [169]Tufenkji, N., G.F. Miller, J.N. Ryan, R.W. Harvey, and M. Elimelech.2004. Transport of Cryptosporidium oocysts in porous media: Role of straining and physicochemical filtration. [J]. Environmental Science and Technology,38:5932-5938.
    [170]Tufenkji N, Elimelech M. Breakdown of colloid filtration theory:role of the secondary energy minimum and surface charge heterogeneities[J]. Langmuir,2005,21(3):841-852.
    [171]Rege S D, Fogler H S. A network model for deep bed filtration of solid particles and emulsion drops[J]. American Institute of Chemical Engineers Journal,1988,34(11):1761-1772.
    [172]Meyers J J, Nahar S, Ludlow D K, et al. Determination of the pore connectivity and pore size distribution and pore spatial distribution of porous chromatographic particles from nitrogen sorption measurements and pore network modelling theory[J]. Journal of Chromatography A, 2001,907(1-2):57-71.
    [173]Chan H C, Chen S C, Chang Y I. Simulation:the deposition behavior of brownian particles in porousmedia by using the triangular network model[J]. Separation and Purification Technology,2005,44(2):103-114.
    [174]Carslaw H S, Jaeger J D. Conduction of heat in solids[M].2nd ed. London:Oxford University Press,1959.
    [175]Abramowitz, Milton, Ed; Stegun, Irene A, Ed. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series 55[M].10th edition. New York: John Wiley and Sons,1972.
    [176]Spiegel M R. Theory and problems of Laplace transforms[M]. New York: McGraw-Hill, 1965.
    [177]Leij F J, Toride N, van Genuchten M T. Analytical solutions for solute transport in three-dimensional semi-infinite porous media[J]. Water resources research,1991,27(10): 2719-2733.
    [178]van Genuchten M T, Alves W..Analytical solutions of the one-dimensional convective-dispersive solute transport equation[M]. U.S. Department of Agriculture Technical Bulletin No.1661,1982.
    [179]Gradshteyn I.S., Ryzhik I.M.. Table of integral, series, and products[M]. New York: Elsevier, 1980.
    [180]Sim Y, Chrysikopoulos C V. Three dimensional analytical models for virus transport in saturated porous media[J]. Transport in Porous Media,1998,30(1):87-112.
    [181]Roberts, G. E. and Kaufman, H. Table of Laplace Transforms[M]. Philadelphia: Saunders, 1966.
    [182]Gippel C J. Potential of turbidity monitoring for measuring the transport of suspended solids in streams[J]. Hydrological Processes,1995,9(1):83-97.
    [183]Loring D H, Rantala R T T. Manual for the geochemical analyses of marine sediments and suspended particulate matter[J]. Earth-Science Reviews,1992,32(4):235-283.
    [184]Bloesch J. A review of methods used to measure sediment resuspension[J]. Hydrobiologia, 1994,284(1):13-18.
    [185]Pavanelli D, Bigi A. Indirect methods to estimate suspended sediment concentration: reliability and relationship of turbidity and settleable solids[J]. Biosystems Engineering,2005, 90(1):75-83.
    [186]Mertes L A K, Smith M O, Adams J B. Estimating suspended sediment concentrations in surface waters of the Amazon River wetlands from landsat images[J]. Remote Sensing of Environment,1993,43(3):281-301.
    [187]Volpe V, Silvestri S, Marani M. Remote sensing retrieval of suspended sediment concentration in shallow waters[J]. Remote Sensing of Environment,2011,115(1):44-54.
    [188]Ambarwulan W, Verhoef W, Mannaerts C M. Estimating total suspended matter concentration in tropical coastal waters of the Berau estuary, Indonesia[J]. International Journal of Remote Sensing,2012,33(16):4919-4936.
    [189]Pfannkuche J, Schmidt A. Determination of suspended particulate matter concentration from turbidity measurement:particle size effects and calibration procedures[J]. Hydrological Processes,2003,17(10):1951-1963.
    [190]Randerson T J, Fink J C. Fermanich K J, et al. Total Suspended Solids-Turbidity Correlation in Northeastern Wisconsin Streams [C]//AWRA- Wisconsin Section Meeting. Delavan, WI, 2005.
    [191]Murillo J M. Turbidity and suspended solids in the runoff susceptible of use for the artificial recharge of the deep granular aquifer subjacent to the town of San Luis de Potosi (Mexico) [J]. Boletin Geologico y Minero,2009,120 (2):169-184.
    [192]Minella J P G, Merten G H, Reichert J M, et al. Estimating suspended sediment concentrations from turbidity measurements and the calibration problem[J]. Hydrological Processes,2008, 22(12):1819-1830.
    [193]Hofmann A, Dominik J. Turbidity and mass concentration of suspended matter in lake water: A comparison of two calibration methods[J]. Aquatic Sciences-Research Across Boudaries, 1995,57(1):54-69.
    [194]Finlayson B L. Field calibration of a recording turbidity meter[J]. Catena,1985,12(3): 141-147.
    [195]Riley S J. The sediment concentration-turbidity relation:its value in monitoring at Ranger Uranium Mine, Northern Territory, Australia[J]. Catena,1998,32(1):1-14.
    [196]Guerrero M, Ruther N, Szupiany R N. Laboratory validation of acoustic Doppler current profiler (ADCP) techniques for suspended sediment investigations[J].Flow Measurement and Instrumentation,2012,23(1):40-48.
    [197]Kretzschmar R, Borkovec M, Grolimund D, et al.Mobile subsurface colloids and their role in contaminant transport[J]. Advances in Agronomy,1999,66:121-193.
    [198]Lead J R, Davison W, Hamilton-Taylor J, et al. Characterizing colloidal material in natural waters[J]. Aquatic Geochemistry,1997,3(3):213-232.
    [199]Atteia O, Kozel R. Particle size distributions in waters from a karstic aquifer: from particles to colloids[J]. Journal of Hydrology,1997,201(1-4):102-119.
    [200]Filella M, Chanudet V, Philippo S, et al. Particle size and mineralogical composition of inorganic colloids in waters draining the adit of an abandoned mine, Goesdorf, Luxembourg[J]. Applied Geochemistry,2009,24(1):52-61.
    [201]van Beek C G E M., de Zwart A H, Balemans M, et al. Concentration and size distribution of particles in abstracted groundwater[J]. Water Research,2010,44(3):868-878.
    [202]Ranville J F, Chittleborough D J, Beckett R. Particle-size and element distributions of soil colloids:implications for colloid transport[J]. Soil Science Society of America Journal,2005, 69(4):1173-1184.
    [203]Pronk M, Goldscheider N, Zopfi J. Particle-size distribution as indicator for fecal bacteria contamination of drinking water from karst springs[J]. Environmental Science and Technology, 2007,41(24):8400-8405.
    [204]Kim J, Lawler D F. The influence of hydraulic loads on depth filtration[J]. Water Research, 2012,46(2):433-441.
    [205]Ahfir N D, Benamar A, Alem A, et al. Influence of internal structure and medium length on transport and deposition of suspended particles:a laboratory study[J]. Transport in Porous Media,2009,76(2):289-307.
    [206]Gravelle A, Peysson Y, Tabary R, et al. Experimental investigation and modeling of colloidal release in porous media[J]. Transport in Porous Media,2011,88(3):441-459
    [207]7D-Soft High Technology Inc. lstOpt manual, Release 3.0[EB/OL]. http://www.7d-soft.com, 2010.
    [208]Liu Y S, Wu J Y. Modeling of xanthophyllomyces dendrorhous growth on glucose and overflow metabolism in batch and fed-batch cultures for astaxanthin production[J]. Biotechnology and Bioengineering,2008,101(5):996-1004.
    [209]Wang J, Hu J, Zhang S. Studies on the sorption of tetracycline onto clays and marine sediment from seawater[J]. Journal of colloid and interface science,2010,349(2):578-582.
    [210]Fang X D, Dai Q M, Yin Y X, et al. A compact and accurate empirical model for turbine mass flow characteristics[J]. Energy,2010,35(12):4819-4823.
    [211]Perkins T K, Johnston O C.A review of diffusion and dispersion in porous media[J]. Old SPE Journal,1963,3(1):70-84.
    [212]Bear J. Dynamics of fluids porous media[M]. New York: Elsevier,1972.
    [213]Gaganis P, Skouras E D, Theodoropoulou M A, et al. On the evaluation of dispersion coefficients from visualization experiments in artificial porous media[J]. Journal of Hydrology, 2005,307(1-4):79-91.
    [214]Sahimi M. Flow and transport in porous media and fractured rock: from classical methods to modern approaches[M]. New York:John Wiley and Sons,1995.
    [215]Ovaysi S, Piri M. Pore-scale modeling of dispersion in disordered porous media[J]. Journal of Contaminant Hydrology,2011,124(1-4):68-81.
    [216]Auset M, Keller A A. Pore-scale processes that control dispersion of colloids in saturated porous media[J]. Water Resources Research,2004,40(3):W03503.1-W03503.11.
    [217]James S C, Chrysikopoulos C V. Analytical solutions for monodisperse and polydisperse colloid transport in uniform fractures[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2003,226(1-3):101-118.
    [218]Elimelch M. Effect of particle size on the kinetics of particle deposition under attractive double layer interactions[J]. Journal of colloid and interface science,1994,164(1):190-199.
    [219]Saada Z, Canou J, Dormieux L et al. Modelling of cement suspension flow in granular porous media[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2005, 29(7):691-711.
    [220]帖卉霞.浅埋近距隧道下穿高速公路差异沉降率理论分析与施工措施[J].铁道标准设计,2008,(4):94-97.
    [221]吕培林,周顺华.软土地区盾构隧道下穿铁路干线引起的线路沉降规律分析[J].中国铁道科学,2007,28(2):12-16
    [222]洪开荣.盾构隧道穿越广州火车站站场的设计[J].现代隧道技术.2002,39(6):34-37.
    [223]张成平,张顶立,吴介普等.暗挖地铁车站下穿既有地铁隧道施工控制[J].中国铁道科学,2009,30(1):69-73.
    [224]姚海波,王梦恕,张顶立等.热力隧道下穿地面建筑物的安全评价与对策[J].岩土力学,2006,27(1):112-116.
    [225]孙尚业,蒋美蓉,王波等.九华山隧道穿越段明城墙沉降的三维数值分析[J].解放军理 工大学学报,2007,8(1):58-62.
    [226]逢铁铮.全程注浆在隧道穿越既有建筑物中的试验研究[J].岩土力学,2008,29(12):3451-3458.
    [227]王德民,程杰成,吴军政,等.聚合物驱油技术在大庆油田的应用[J].石油学报,2005,26(1):74-78.
    [228]王正茂,廖广志.中国陆上油田聚合物驱油技术适应性评价方法研究[J].石油学报,2007,28(13):80-84.
    [229]马立军,闫建华,李志勇.聚合物驱油技术在大港油田港西三区的推广应用[J].油气地质与采收率,2001,8(6):71-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700