用户名: 密码: 验证码:
氮氧化物存储还原催化剂存储组分—载体相互作用与低温氮氧化物存储稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NOx存储还原(NSR)技术是一种有效的氮氧化物脱除手段,其组成单元较多,催化转化过程复杂,催化剂载体、存储组分存在形式和相互作用对催化剂存储还原性能以及热稳定性影响明显。其中高性能NSR材料整体组合设计、优化以及在NSR催化反应中的电子传导路径、物种相互作用及转化规律、材料微观化学结构是该领域的科学技术研究的核心与热点问题。本研究设计将贵金属Pt/Al2O3与不同存储材料以机械混合的方式得到了相应的高性能NSR催化剂,并对其存储组分-载体相互作用与低温氮氧化物存储稳定性能进行了系统研究。
     在Pt/Al2O3+Ba/CeO2-ZrO2体系中,重点考察了不同比例Ce-Zr载体对Ba组分上NOx的存储与释放过程的影响:载体中高的Ce含量有利于NOx快速、稳定的存储在大量的小BaCO3颗粒上;而载体中高的Zr含量则有利于形成丰富的孔结构,但却会导致水热老化后无活性BaZrO3的生成。另外,Zr组分的引入会增加Ce-Zr组分的氧移动性,进而提高催化剂的氧化还原活性,降低了富燃阶段中NH3的释放量,但是如果催化剂的氧化活性过于强,则会形成稳定的中间产物,进而抑制NOx的还原。
     在Pt/Al2O3+Ba/CeO2-Al2O3体系中,研究了Ce-Al不同制备方式对NSR催化剂的结构,稳定性和催化活性的影响。CeO2负载在Al2O3载体上的样品表现出最优NSR活性,其原因是由于具有高比表面积的Al2O3上均匀分散了许多未配位的CeO2,Ba-Ce之间的化学接触有利于分散活性钡组分,进而促使这些未配位的CeO2上分布了大量的活性BaCO3颗粒。
     在明确了存储组分-载体相互作用的前提下,开始分别对Ce基与Ce-Zr基NSR催化存储材料的低温NOx存储稳定性进行考察。对Ce基存储材料(CeO2以及Ba/CeO2)的考察过程中发现,NOx在低温下的释放主要源于CeO2:低温存储时亚硝酸盐会在CeO2上生成,并随着NO的释放,这些亚硝酸盐会进一步转化为硝酸盐。而在Ba/CeO2基样品上Ba组分存储的亚硝酸盐稳定性要强于CeO2上存储的亚硝酸盐。
     对Ce0.6Zr0.4O2和Ce0.8Zr0.2O2基NSR催化体系的研究中发现,新鲜Ce-Zr和老化Ce0.6Zr0.4O2样品在低温下的NOx释放速率明显减慢,而老化Ce0.8Zr0.2O2却出现明显的NOx释放。研究表明新鲜样品上的亚硝酸盐可以被Ce-Zr中的晶格氧氧化,使得表面亚硝酸盐量少且稳定性高;而在老化Ce0.8Zr0.2O2上存在有大量的亚硝酸盐,老化后CeO2从Ce-Zr固溶体中脱离,进而导致表面存储的亚硝酸盐物种稳定性下降,最终随反应温度的升高而从表面脱附。
NOxstorage and reduction (NSR) is one of the most efficient NOxremovaltechnologies. It was composed of three major components. The complex catalyticconversion processes, and the forms of support oxides and storage components,significantly affect the NSR performance and NOxstorage stability. The design anddevelopment of the high-performance NSR materials is the core of this technology.The electrical conduction path of NSR catalytic reaction, the interactions of storagecomponents-support oxides, the transformation rule of components, materialmicro-chemical structure, and design, preparation and optimization of the overallportfolio is in the field of science and technology research hot spot. Herein, Pt/Al2O3part was blended with storage materials as physical mixtures to form NSR catalysts.
     The present work investigates the catalytic performances ofPt/Al2O3+Ba/CeO2-ZrO2NSR catalysts. The interests were focused on the effects ofCe–Zr compositions as support oxides to barium species in NOxstorage and releasecycles. Higher Ce content favors rapid NOxup-taking and stable adsorption inadequate amount of small BaCO3particles. The increasing amount of Zr inCexZr1xO2may benefit the formation of porous texture, but it brings the higher riskof BaZrO3formation during the ageing. Additionally, the introduced ZrO2mayincrease oxygen mobility to improve redox activities of the catalysts. Thisimprovement could lower the NH3release in rich period. However, to anotherextreme, a too strong oxidative activity is going to inhibit the NOxreduction due to itsstabilization to intermediate species.
     The structures, stability and catalytic behaviors of Pt/Al2O3+Ba/CeO2-Al2O3NSR catalysts were investigated. B-C/A shows the best performance due to the highersurface coverage of alumina surface with well-dispersed and uncoordinated ceriapatches, and high coverage of active BaCO3particles on the surface of ceria. Ba-Cechemical interactions are benefitting activation of basic barium species.
     The low-temperature NOxstorage efficiency of Ce-containing lean NOxtrapcatalysts was investigated using temperature program adsorption. As temperatureincreases from100°C to150°C, the rate of NOxstorage slows down over thecatalysts containing ceria as storage phase, while this phenomenon is less obvious ifceria is used as the support for barium oxides. It was found that the NOxrelease wasmainly from ceria. Thus, nitrite species are formed on ceria during the NOxstorage at low temperatures, and the nitrite species can be activated and transformed to nitratespecies upon further oxidation, accompanied by NO release; on the other hand, NOrelease occurs weakly on barium/ceria as the nitrites are more stable on the more basicBa phase than on the ceria.
     The Ce/Zr-containing catalysts maintain the cumulative NOxstored after thermalaging. FCZ64, FCZ82and ACZ64show significant improvement in slowing downthe premature NO release. However, an obvious NO release still occurs on ACZ82. Itwas found that nitrites oxidation by lattice oxygen of Ce/Zr was promoted on the freshsamples, resulting in low coverage of nitrite with high stability. On the other hand, alarge amount of nitrite was formed on ACZ82, which could desorb upon increasingtemperature. Segregation of CeO2from the Ce/Zr phase may have occurred onACZ82, resulting in a lower stability of the nitrite species.
引文
[1]王春霞,朱利中,江桂斌,环境化学学科前沿与展望,北京:科学出版社,2000.115~227
    [2] Kang C M, Lee H S, Kang B W, et al., Chemical characteristics of acidic gaspollutants and PM2.5species during hazy episodes in Seoul, South Korea,Atmospheric Environment,2004,38(28):4749~4760
    [3] Liousse C, Cachier H, Jennings S G, Optical and thermal measurements of blackcarbon aerosol content in different environments: Variation of the specific attenuationcross-section, sigma(σ), Atmospheric Environment. Part A. General Topics,1993,27(8):1203~1211
    [4] Schauer C, Niessner R, P schl U, Polycyclic aromatic hydrocarbons in urban airparticulate matter: decadal and seasonal trends, chemical degradation, and samplingartifacts, Environment Science&Technology,2003,37(13):2861-2868
    [5]郝吉明,贺克斌,王书肖,中国氮氧化物污染:历史趋势、未来挑战和控制策略,大气NOx污染控制技术研讨会,环境保护部科技标准司,2009,1~14
    [6]王务林,赵航,王继先,汽车催化转化器系统概论,北京:人民交通出版社,1999.10
    [7]龚金科,汽车排放及控制技术(第2版),北京:人民交通出版社,2012.30~138
    [8]李丽,王道,氮氧化物选择催化还原的研究进展,工业催化,2003,11(6):1~6
    [9]周黎明,稀燃发动机尾气NOx治理初步研究,硕士学位论文,中国科学院大连化学物理研究所,2004,3
    [10] Matsumoto S, DeNOxcatalyst for automotive lean-burn engine, Catalysis Today,1996,29(1-4):43~45
    [11] Takahashi N, Shinjoh H, Lijima T, et al., The new concept3-way catalyst forautomotive lean-burn engine: NOxstorage and reduction catalyst, Catalysis Today,1996,27(1-2):63~69
    [12] Alkemade U G, Schumann B, Engines and exhaust after treatment systems forfuture automotive applications, Solid State Ionics,2006,177(26-32):2291~2296
    [13] Kim D H, Chin Y H, Muntean G, et al., Design of a reaction protocol fordecoupling sulfur removal and thermal aging effects during desulfation ofPt-BaO/Al2O3lean NOxtrap catalysts, Industrial&Engineering Chemistry Research,2007,46(9):2735~2740
    [14] Roedel E, Urakawa A, Kureti S, et al., On the local sensitivity of different IRtechniques: Ba species relevant on NOxstorage-reduction, Physical ChemistryChemical Physics,2008,10(40):6190~6198
    [15]Epling W S, Kisinger D, Everest C, NOxstorage/reduction catalyst performancewith oxygen in the regeneration phase, Catalysis Today,2008,136(1-2):156~163
    [16] Epling W S, Campbell L E, Yezerets A, et al., Overview of the fundamentalreactions and degradation mechanisms of NOxstorage/reduction catalysts, CatalysisReviews: Science and Engineering,2004,46(2):163~245
    [17] Lesage T, Saussey J, Malo S, et al., Operando FTIR study of NOx storage over aPt/K/Mn/Al2O3-CeO2catalyst, Applied Catalysis B: Environmental,2007,72(1-2),166~177
    [18] Lesage T, Verrier C, Bazin P, et al., Comparison between a Pt-Rh/Ba/Al2O3and anewly formulated NOx-trap catalysts under alternate lean-rich flows, Topics inCatalysis,2004,30/31(1-4):31~36
    [19] Verrier C, Kwak J H, Kim D H, et al., NOxuptake on alkaline earth oxides (BaO,MgO, CaO and SrO) supported on γ-Al2O3, Catalysis Today,2008,136(1-2):121~127
    [20] Kobayashi H, Ohkubo K, Density functional study of NOx reduction in zeolitecage, Applied Surface Science,1997,121-122(2):111~115
    [21] Abdulhamid H, Fridell E, Skoglundh M, The reduction phase in NOxstoragecatalysis: Effect of type of precious metal and reducing agent, Applied Catalysis B:environmental,2006,62(3-4),319~328
    [22] Kim J G, Lee H M, Lee M J, et al., Effect of Co and Rh promoter on NOxstorageand reduction over Pt/BaO/Al2O3catalyst, Journal of Industrial and EngineeringChemistry,2008,14(6):841~846
    [23] Amberntsson A, Fridell E, Skoglundh M, Influence of Platium and rhodiumcomposition on the NOx storage and sulphur tolerance of a barium based NOx storagecatalyst, Applied Catalysis B: Environmental,2003,46(3):429-439
    [24] Breen J P, Burch R, Fontaine-Gautrelet C, et al., Insight into the key aspects ofthe regeneration process in the NOxstorage reduction (NSR) reaction probed usingfast transient kinetics coupled with isotopically labeled15NO over Pt andRh-containing Ba/Al2O3catalysts, Applied Catalysis B: Environmental,2008,81(1-2):150~159
    [25] Forzatti P, Castodi L, Nova I, et al., NOxremoval catalysis under lean conditions,Catalysis Today,2006,117(1-3),316~320
    [26] Roy S, Baiker A, NOxstorage-reduction catalysis: From mechanism andmaterials properties to storage-reduction performance, Chemical Reviews,2009,109(9):4054~4091
    [27] Li Y J, Roth S, Dettling J, et al., Effects of lean/rich timing and nature ofreductant on the performance of a NOxtrap catalyst, Topics in Catalysis,2001,16-17(1-4):139~144
    [28] Takahashi N, Yamazaki K, Sobukawa H, et al., The low-temperature performanceof NOxstorage and reduction catalyst, Applied Catalysis B: Environmental,2007,70(1-4),198~204
    [29] Epling W S, Yezerets A, Currier N W, The effect of exothermic reactions duringregeneration on the NOxtrapping efficiency of a NOxstorage/reduction catalyst,Catalysis Letters,2006,110(1-2):143~148
    [30] Abdulhamid H, Fridell E, Skoglundh M, Influence of the type of reducing agent(H2, CO C3H6and C3H8) on the reduction of stored NOxin a Pt/BaO/Al2O3modelcatalyst, Topics in Catalysis,2004,30/31(1-4),161~168
    [31] Epling W S, Yezerets A, Currier N W, The effects of regeneration conditions onNOxand NH3release from NOxstorage/reduction catalysts, Applied Catalysis B:Environmental,2007,74(1-2):117~129
    [32] Olsson L, Westerberg B, Persson H, et al., A kinetic study of oxygenadsorption/desorption and NO oxidation over Pt/Al2O3catalysts, Journal of PhysicalChemistry B,1999,103(47):10433~10439
    [33] Olsson L, Persson H, Fridell E, et al., A kinetic study of NO oxidation and NOxstorage on Pt/Al2O3and Pt/BaO/Al2O3, Journal of Physical Chemistry B,2001,105(29):6895~6906
    [34] Crocoll M, Kureti S, Weisweiler W, Mean field modeling of NO oxidation overPt/Al2O3catalyst under oxygen-rich conditions, Journal of Catalysis,2005,229(2):480~489
    [35] Mulla S S, Chen N, Cumaranatunge L, et al., Reaction of NO and O2to NO2onPt: Kinetics and catalyst deactivation, Journal of Catalysis,2006,241(2):389~399
    [36] Xue E, Seshan K, Ross J R H, Roles of supports, Pt loading and Pt dispersion inthe oxidation of NO to NO2and SO2to SO3, Applied Catalysis B: Environmental,1996,11(1):65~79
    [37] Nova I, Castoldi L, Lietti L, et al., NOxadsorption study over Pt-Ba/aluminacatalysts: FT-IR and pulse experiments, Journal of Catalysis,2004,222(2),377~388
    [38] Nova I, Castoldi L, Prinetto F, et al., NOx adsorption study over Pt-Ba/aluminacatalysts: FT-IR and reactivity study, Topics in Catalysis,2004,30/31(1-4):181~186
    [39] Olsson L, Fridell E, Skplungh M, et al., Mean field modeling of NOxstorage onPt/BaO/Al2O3, Catalysis Today,2002,73(3-4):263~270
    [40] Olsson L, Jozsa P, Nilsson M, et al., Fundamental studies of NOxstorage at lowtemperatures, Topics in Catalysis,2007,42-43(1-4):95~98
    [41] Anastasiadou T, Loukatzikou L A, Costa C N, et al., Understanding thesynergistic catalytic effect between La2O3and CaO for the CH4lean De-NOxreaction:Kinetic and mechanistic studies, Journal of Physical Chemistry B,2005,109(28),13693~13703
    [42] Elizundia U, Lopez-Fonseca R, Landa I, FT-IR study of NOxstorage mechanismover Pt/BaO/Al2O3catalysts. Effect of the Pt-BaO interaction, Topics in Catalysis,2007,42-43(1-4):37~41
    [43] Cant N W, Liu I O Y, Patterson M J, The effect of proximity between Pt and BaOon uptake, release and reduction of NOx on storage catalysts, Journal of Catalysis,2006,243(2):309~317
    [44] Kwak J H, Kim D H, Szailer T, et al., NOxuptake mechanism on Pt/BaO/Al2O3catalysts, Catalysis Letters,2006,111(3-4):119~126
    [45] Tonkyn R G, Disselkamp R S, Peden C H F, Nitrogen release from a NOxstorageand reduction catalyst, Catalysis Today,2006,114(1):94~101
    [46] Sakamoto Y, Motohiro T, Matsunaga S, et al., Transient analysis of the releaseand reduction of NOxusing a Pt/Ba/Al2O3catalyst, Catalysis Today,2007,121(3-4):217~225
    [47] Clayton R D, Harold M P, Balakotaiah V, NOxstorage and reduction with H2onPt/BaO/Al2O3monolith: Spatio-temporal resolution of product distribution, AppliedCatalysis B: Environmental,2008,84(3-4):616~630
    [48] Abdulhamid H, Fridell E, Dawody J, et al., In situ FTIR study of SO2interactionwith Pt/BaCO3/Al2O3NOxstorage catalysts under lean and rich conditions, Journal ofCatalysis,2006,241(1):200~210
    [49] Amberntsson A, Skoglundh M, Ljungstrom S, et al., Sulfur deactivation of NOxstorage catalysts: Influence of exposure conditions and noble metal, Journal ofCatalysis,2003,217(2):253~263
    [50] Kim D H, Kwak J H, Szanyi J, et al., Roles of Pt and BaO in the sulfation ofPt/BaO/Al2O3lean NOxtrap materials: Sulfur K-edge XANES and Pt LIII XAFSStudies, Journal of Physical Chemistry C,2008,112(8):2981~2987
    [51] Scholz C M L, Gangwal V R, de Croon M H J M, et al., Influence of CO2andH2O on NOxstorage and reduction on a Pt-Ba/γ-Al2O3catalyst, Applied Catalysis B:Environmental,2007,71(3-4):143~150
    [52] Medhekar V, Balakotaiah V, Harold M P, TAP study of NOxstorage andreduction on Pt/Al2O3and Pt/Ba/Al2O3, Catalysis Today,2007,121(3-4):226~236
    [53] Nova I, Lietti L, Forzatti P, Mechanistic aspects of the reduction of stored NOxover Pt-Ba/Al2O3lean NOxtrap systems, Catalysis Today,2008,136(1-2):128~135
    [54] Lee J, H, Kung H H, Effect of Pt dispersion on the reduction of NO by propeneover alumina-supported Pt catalysts under lean-burn conditions, Catalysis Letters,1998,51(1-2):1~4
    [55] Denton P, Giroir-Fendler A, Praliaud H, et al., Role of the nature of the support(alumina or silica), of the support porosity, and of the Pt dispersion in the selectivereduction of NO by C3H6under lean-burn conditions, Journal of Catalysis,2000,189(2):410~420
    [56] Kim D H, Chin Y H, Muntean G G, et al. Relationship of Pt particle size to theNOxstorage performance of thermally aged Pt/BaO/Al2O3lean NOxtrap catalysts,Industrial&Engineering Chemistry Research,2006,45(26):8815~8821
    [57] Schmitz P J, Kudla R J, Drews A R, et al., NO oxidation over supported Pt:Impact of precursor, support, loading, and processing conditions evaluated via highthroughput experimentation, Applied Catalysis B: Environmental,2006,67(3~4):246-256
    [58] Anderson J A, Bachiller-Baeza B, Fernandez-Garcia M, Role of Pt inPt/Ba/Al2O3NOxstorage and reduction traps, Physical Chemistry Chemical Physics,2003,5(20):4418~4427
    [59] Li X G, Meng M, Lin P Y, et al., A study on the properties and mechanisms forNOxSstorage over Pt/BaAl2O4-Al2O3catalyst, Topics in Catalysis,2003,22(1-2):111~115
    [60] Su Y, Amiridis M D, In situ FTIR studies of the mechanism of NOxstorage andreduction on Pt/Ba/Al2O3catalysts, Catalysis Today,2004,96(1-2):31~41
    [61] Dutta G, Waghmare U V, Baidya T, et al., Hydrogen spillover on CeO2/Pt:Enhanced storage of active hydrogen, Chemistry of Materials,2007,19(26):6430~6436
    [62] Abdulhamid H, Dawody J, Fridell E, et al., A combined transient in situ FTIRand flow reactor study of NOxstorage and reduction over M/BaCO3/Al2O3(M=Pt,Pd or Rh) catalysts, Journal of Catalysis,2006,244(2):169~182
    [63] Szailer T, Kwak J H, Kim D H, et al., Reduction of stored NOxon Pt/Al2O3andPt/BaO/Al2O3catalysts with H2and CO, Journal of Catalysis,2006,239(1):51~64
    [64] Olsson L, Fridell E, The influence of Pt oxide formation and Pt dispersion on thereactions NO2←→NO+1/2O2over Pt/Al2O3and Pt/BaO/Al2O3, Journal ofCatalysis,2002,210(2):340~353
    [65] Mulla S S, Chaugule S S, Yezerets A, et al., Regeneration mechanism ofPt/BaO/Al2O3lean NOxtrap catalyst with H2, Catalysis Today,2008,136(1-2):136~145
    [66] Koci P, Plat F, Stepanek J, et al., Dynamics and selectivity of NOxreduction inNOxstorage catalytic monolith, Catalysis Today,2008,137(2-4):253~260
    [67] Sedlmair C, Seshan K, Jentys A, et al., Elementary steps of NOxadsorption andsurface reaction on a commercial storage-reduction catalyst, Journal of Catalysis,2003,214(2):308~316
    [68] Epling W S, Parks J E, Campbell G C, et al., Further evidence of multiple NOxsorption sites on NOxstorage/reduction catalysts, Catalysis Today,2004,96(1-2):21~30
    [69] Cant N W, Patterson M J. The storage of nitrogen oxides on alumina-supportedbarium oxide, Catalysis Today,2002,73(3-4):271~278
    [70] Kabin K S, Muncrief R L, Harold M P, et al., NOxstorage and reduction on aPt/BaO/alumina monolithic storage catalyst, Catalysis Today,2004,96(1-2):79~89
    [71] Laurent F, Pope C J, Mahzoul H, et al., Modelling of NOxadsorption over NOxadsorbers, Chemical Engineering Science,2003,58(9):1793~1803
    [72] Castoldi L, Nova I, Lietti L, et al., Study of the effect of Ba loading for catalyticactivity of Pt-Ba/Al2O3model catalysts, Catalysis Today,2004,96(1-2):43~52
    [73] Lietti L, Forzatti P, Nova I, et al., NOxStorage Reduction over Pt-Ba/γ-Al2O3Catalyst, Journal of Catalysis,2001,204(1):175~191
    [74] Szailer Ta, Kwak J H, Kim D H, et al., Effects of Ba loading and calcinationtemperature on BaAl2O4formation for BaO/Al2O3NOxstorage and reductioncatalysts, Catalysis Today,2006,114(1):86~93
    [75] Kim D H, Chin Y H, Kwak J H, et al., Promotional effects of H2O treatment onNOxstorage over fresh and thermally aged Pt-BaO/Al2O3lean NOxtrap catalysts,Catalysis Letters,2008,124(1-2):39~45
    [76] Basile F, Fornasari G, Gambatesa A, et al., A., Reactivity of Mg-Ba catalyst inNOxstorage/reduction, Catalysis Today,2007,119(1-4):59~63
    [77] Shimizu K, Saito Y, Nobukawa T, et al., Effect of supports on formation andreduction rate of stored nitrates on NSR catalysts as investigated by in situ FT/IR,Catalysis Today,2008,139(1-2):24~28
    [78] Luo J Y, Meng M, Li X G, et al., Highly thermo-stable mesoporous catalystPt/BaCO3-Al2O3used for efficient NOxstorage and desulfation: Comparison withconventional impregnated catalyst, Microporous and Mesoporous Materials,2008,113(1-3):277~285
    [79] Malpartida I, Vargas M A L, Alemany L J, et al., Pt-Ba-Al2O3for NOxstorageand reduction: Characterization of the dispersed species, Applied Catalysis B:Environmental,2008,80(3-4):214~225
    [80] Casapu M, Grunwaldt J D, Maciejewski M, et al., Formation and stability ofbarium aluminate and cerate in NOxstorage-reduction catalysts, Applied Catalysis B:Environmental,2006,63(3-4):232~242
    [81] Piacentini M, Maciejewski M, Baiker A, Pt-Ba/alumina NOxstorage-reductioncatalysts: Effect of Ba-loading on build-up, stability and reactivity of Ba-containingphases, Applied Catalysis B: Environmental,2005,59(3-4):187~195
    [82] Frola F, Manzoli M, Prinetto F, et al., Pt-Ba/Al2O3NSR catalysts at different Baloading: Characterization of morphological, structural, and surface properties, Journalof Physical Chemistry C,2008,112(33):12869~12878
    [83] Szanyi J, Kwak J H, Kim D H, et al., NO2adsorption on BaO/Al2O3: The natureof nitrate species, Journal of Physical Chemistry B,2005,109(1):27~29
    [84] Ozensoy E, Peden C H F, Szanyi J, Model NOxstorage systems: Storage capacityand thermal aging of BaO/θ-Al2O3/NiAl(100), Journal of Catalysis,2006,243(1):149~157
    [85] Ozensoy E, Peden C H F, Szanyi J, NO2adsorption on ultrathin θ-Al2O3films.Formation of nitrite and nitrate species, Journal of Physical Chemistry B,2005,109(33):15977~15984
    [86] Kwak J H, Hu J Z, Mei D H, et al., Coordinatively unsaturated Al3+centers asbinding sites for active catalyst phases of platinum on γ-Al2O3, Science,2009,325(5948):1670~1673
    [87] Bowker M, Automotive catalysis studied by surface science, Chemical SocietyReviews,2008,37(10):2204~2211
    [88] Szanyi J, Kwak J H, Hanson J, et al., Changing morphology of BaO/Al2O3during NO2uptake and release, Journal of Physical Chemistry B,2005,109(15):7339~7344
    [89] Fridell E, Persson H, Westerberg B, et al., The mechanism for NOxstorage,Catalysis Letters,2000,66(1-2):71~74
    [90] Yi C W, Kwak J H, Szanyi J, Interaction of NO2with BaO: From cooperativeadsorption to Ba(NO3)2formation, Journal of Physical Chemistry C,2007,111(42):15299~15305
    [91] Kim D H, Chin Y H, Kwak J H, et al., Changes in Ba phases in BaO/Al2O3uponthermal aging and H2O treatment, Catalysis Letters,2005,105(3-4):259~268
    [92] Balint I, You Z X, Aika K, Morphology and oxide phase control in themicroemulsion mediated synthesis of barium stabilized alumina nanoparticles,Physical Chemistry Chemical Physics,2002,4(12):2501~2503
    [93] Perier-Camby L, Thomas G, Kinetic considerations about the successivenucleations of various aluminates in the BaCO3-γ-Al2O3reaction, Solid State Ionics,1997,93(3-4):315~320
    [94] Casapu M, Grunwaldt J D, Maciejewski M, et al., Thermal ageing phenomenaand strategies towards reactivation of NOx-storage catalysts, Topics in Catalysis,2007,42-43(1-4):3~7
    [95] Uy D, O'Neill A E, Li J, et al., UV and visible Raman study of thermaldeactivation in a NOxstorage catalyst, Catalysis Letters,2004,95(3-4):191~201
    [96] Hodjati S, Bernhardt P, Petit C, et al., Removal of NOx. Part I.Sorption/desorption processes on barium aluminate, Applied Catalysis B:Environmental,1998,19(3-4):209~219
    [97] Hodjati S, Bernhardt P, Petit C, et al., Removal of NOx. Part II. Species formedduring the sorption/desorption processes on barium aluminates, Applied Catalysis B:Environmental,1998,19(3-4):221~232
    [98] Yi C W, Kwak J H, Peden C H F,et al., Understanding practical catalysts using asurface science approach: The importance of strong interaction between BaO andAl2O3in NOxsorage materials, Journal of Physical Chemistry C,2007,111(41):14942~14944
    [99] Arena G E, Capito L, Centi G, In oxide based materials: New sources, novelphases, new applications,2005,155
    [100] Engstrom P, Amberntsson A, Skoglundh, et al., Sulphur dioxide interaction withNOxstorage catalysts, Applied Catalysis B: Environmental,1999,22(4):241~248
    [101] Limousy L, Mahzoul H, Brilhac J F, et al., A study of the regeneration of freshand aged SOxadsorbers under reducing conditions, Applied Catalysis B:Environmental,2003,45(3):169~179
    [102] Sedlmair C, Seshan K, Jentys A, et al., Studies on the deactivation of NOxstorage-reduction catalysts by sulfur dioxide, Catalysis Today,2002,75(1-4):413~419
    [103] Elbouazzaoui S, Corbos E C, Courtois X, et al., A study of the deactivation bysulfur and regeneration of a model NSR Pt/Ba/Al2O3catalyst, Applied Catalysis B:Environmental,2005,61(3-4):236~243
    [104] Kim D H, Szanyi J, Kwak J H, et al., Effect of barium loading on thedesulfation of Pt-BaO/Al2O3studied by H2TPRX, TEM, sulfur K-edge XANES, andin situ TR-XRD, Journal of Physical Chemistry B,2006,110(21):10441~10448
    [105] Westerberg B, Fridell E, A transient FTIR study of species formed during NOxstorage in the Pt/BaO/Al2O3system, Journal of Molecular Catalysis A: Chemical,2001,165(1-2):249-263
    [106] Svedberg P, Jobson E, Erkfeldt S, et al., Influence of the storage materials onthe storage of NOxat low temperatures, Topics in Catalysis,2004,30-31(1-4):199~206
    [107] Symalla M O, Drochner A, Vogel H, et al., IR-study of formation of nitrite andnitrate during NOx-adsorption on NSR-catalysts-compounds CeO2and BaO/CeO2,Topics in Catalysis,2007,42-43(1-4),199~202
    [108] Casapu M, Grunwaldt J D, Maciejewski M, et al., The fate of platinum inPt/Ba/CeO2and Pt/Ba/Al2O3catalysts during thermal aging, Journal of Catalysis,2007,251(1):28~38
    [109] Casapu M, Grunwaldt J D, Maciejewski M, et al., Comparative study ofstructural properties and NOxstorage-reduction behavior of Pt/Ba/CeO2andPt/Ba/Al2O3, Applied Catalysis B: Environmental,2008,78(3-4):288~300
    [110] Casapu M, Grunwaldt J D, Maciejewski M, et al., Enhancement of activity andself-reactivation of NSR-catalysts by temporary formation of BaPtO3-perovskite,Catalysis Letters,2008,120(1-2):1~7
    [111] Kwak J H, Kim D H, Szanyi J, et al., Excellent sulfur resistance ofPt/BaO/CeO2lean NOxtrap catalysts, Applied Catalysis B: Environmental,2008,84(3-4):545~551
    [112] Piacentini M, Strobel R, Maciejewski M, et al., Flame-made Pt-Ba/Al2O3catalysts: Structural properties and behavior in lean-NOxstorage-reduction, Journal ofCatalysis,2006,243(1):43~56
    [113] Piacentini M, Maciejewski M, Baiker A, Supported Pt-Ba NOxstorage-reduction catalysts: Influence of support and Ba loading on stability andstorage efficiency of Ba-containing species, Applied Catalysis B: Environmental,2006,66(1-2):126~136
    [114] Piacentini M, Maciejewski M, Baiker A, NOxstorage-reduction behavior ofPt-Ba/MO2(MO2=SiO2, CeO2, ZrO2) catalysts, Applied Catalysis B: Environmental,2007,72(1-2):105~117
    [115] Despres J, Koebel M, Krocher Oliver, et al., Storage of NO2on BaO/TiO2andthe influence of NO, Applied Catalysis B: Environmental,2003,43(4):389~395
    [116] Yamamoto K, Kikuchi R, Takeguchi T, et al., Development of NO sorbentstolerant to sulfur oxides, Journal of Catalysis,2006,238(2):449~457
    [117] Lindholm A, Currier N W, Fridell E, et al., NOxstorage and reduction over Ptbased catalysts with hydrogen as the reducing agent, Applied Catalysis B:Environmental,2007,75(1-2):78~87
    [118] Scholz C M L, Nauta K M, de Croon M H J M, et al., Kinetic modeling of NOxstorage and reduction with different reducing agents (CO, H2, and C2H4) on aPt-Ba/γ-Al2O3catalyst in the presence of CO2and H2O, Chemical EngineeringScience,2008,63(11):2843~2855
    [119] Cant N W, Patterson M J, The effect of water and reductants on the release ofnitrogen oxides stored on BaO/Al2O3, Catalysis Letters,2003,85(3-4):153~157
    [120] Kim D H, Kwak J H, Szanyi J, et al., Water-induced bulk Ba(NO3)2formationfrom NO2exposed thermally aged BaO/Al2O3, Applied Catalysis B: Environmental,2007,72(3-4):233~239
    [121] Szanyi J, Kwak J H, Kim D H, et al., Water-induced morphology changes inBaO/γ-Al2O3NOxstorage materials: an FTIR, TPD, and time-resolved synchrotronXRD Study, Journal of Physical Chemistry C,2007,111(12):4678~4687
    [122] Szanyi J, Kwak J H, Kim D H, et al., Water-induced morphology changes inBaO/γ-Al2O3NOxstorage materials, Chemical Communications,2007,(9),984~986
    [123] Jeguirim M, Tschamber V, Brilhac J F, et al., Oxidation mechanism of carbonblack by NO2: Effect of water vapour, Fuel,2005,84(14-15):1949~1956
    [124] Jacquot F, Logie V, Brilhac J F, et al., Kinetics of the oxidation of carbon blackby NO2. Influence of the presence of water and oxygen, Carbon,2002,40(3):335~343
    [125] Chen X Y, Schwank J, Steam effect on NOxreduction over lean NOxtrapPt-BaO/Al2O3model catalyst, Topics in Catalysis,2007,46(1-2):39~47
    [126] Corbos E C, Courtois X, Bion N, et al., Impact of support oxide and Ba loadingon the NOxstorage properties of Pt/Ba/support catalysts. CO2and H2O effects,Applied Catalysis B: Environmental,2007,76(3-4):357~367
    [127] Balcon S, Potvin C, Salin L, et al., Influence of CO2on storage and release ofNOxon barium-containing catalyst, Catalysis Letters,1999,60(1-2):39~43
    [128] Amberntsson A, Persson H, Engstrom P, et al., NOxrelease from a noblemetal/BaO catalyst: dependence on gas composition, Applied Catalysis B:Environmental,2001,31(1):27~38
    [129] Lietti L, Nova I, Forzatti P, Role of ammonia in the reduction by hydrogen ofNOxstored over Pt-Ba/Al2O3lean NOxtrap catalysts, Journal of Catalysis,2008,257(2):270~282
    [130] Epling W S, Campbell G C, Parks J E, The effects of CO2and H2O on the NOxdestruction performance of a model NOxstorage/reduction catalyst, Catalysis Letters,2003,90(1-2):45~56
    [131] Maeda N, Urakawa A, Baiker A, Support effects and chemical gradients alongthe catalyst bed in NOxstorage-reduction studied by space-and time-resolved in situDRIFTS, Journal of Physical Chemistry C,2009,113(38):16724~16735
    [132] Aneggi E, Boaro M, De Leitenburg C, et al., Insights into the redox propertiesof ceria-based oxides and their implications in catalysis, Journal of Alloys andCompounds,2006,408-412,1096~1102
    [133] Ka par J, Fornasiero P, Graziani M, Use of CeO2-based oxides in the three-waycatalysis, Catalysis Today,1999,50(2):285~298
    [134] Fernández-García M, Iglesias-Juez A, Martínez-Arias, A, et al., Role of the stateof the metal component on the light-off performance of Pd-based three-way catalysts,Journal of Catalysis,2004,221(2):594~600
    [135] Strobel R, Krumeich F, Pratsinis S E, et al., Flame-derived Pt/Ba/CexZr1-xO2:Influence of support on thermal deterioration and behavior as NOxstorage-reductioncatalysts, Journal of Catalysis,2006,243(2):229~238
    [136] Ji Y, Toops T J, Graham U M, Jacobs G, Crocker M, A kinetic and DRIFTSstudy of supported Pt catalysts for NO oxidation, Catalysis Letters,2006,110(1-2):29~37
    [137] Ji Y, Toops T J, Crocker M, Effect of ceria on the storage and regenerationbehavior of a model lean NOxtrap catalyst, Catalysis Letters,2007,119(3-4):257~264
    [138] Corbos E C, Elbouazzaoui S, Courtois X, et al., NOxstorage capacity, SO2resistance and regeneration of Pt/(Ba)/CeZr model catalysts for NOx-trap system,Topics in Catalysis,2007,42-43(1-4):9~13
    [139] Corbos E C, Courtois X, Bion N, et al., Impact of the support oxide and Baloading on the sulfur resistance and regeneration of Pt/Ba/support catalysts, AppliedCatalysis B: Environmental,2008,80(1-2):62-71
    [140] Milt V G, Querini C A, MiróE E, et al., Abatement of diesel exhaust pollutants:NOxadsorption on Co,Ba,K/CeO2catalysts, Journal of Catalysis,2003,220(2):424~432
    [141] Pisarello M L, Milt V G, Peralta M A, et al., Simultaneous removal of soot andnitrogen oxides from diesel engine exhausts, Catalysis Today,2002,75(1-4):465~470
    [142] Eguchi K, Hayashi T, Reversible sorption-desorption of NOxby mixed oxidesunder various atmospheres, Catalysis Today,1998,45(1-4):109~115
    [143] Ubaldini A, Buscaglia V, Uliana C, Kinetics and mechanism of formation ofbarium zirconate from barium carbonate and zirconia powders, Journal of theAmerican Ceramic Society,2003,86(1):19~25
    [144] Ji Y, Choi J S, Toops T J, et al., Influence of ceria on the NOxstorage/reductionbehavior of lean NOxtrap catalysts, Catalysis Today,2008,136(1-2):146~155
    [145] Ranga Rao G, Fornasiero P, Di Monte R, et al., Reduction of NO over partiallyreduced metal-loaded CeO2-ZrO2solid solutions, Journal of Catalysis,1996,162(1):1-9
    [146] Fornasiero P, Ranga Rao G, Ka par J, et al., Reduction of NO by CO overRh/CeO2-ZrO2catalysts: Evidence for a support-promoted catalytic activity, Journalof Catalysis,1998,175(2):269~279
    [147] Hu Z, Wan C Z, Liu Y K, Design of a novel Pd three-way catalyst: Integrationof catalytic functions in three dimensions, Catalysis Today,1996,30(1-3):83~89
    [148] Descorme C, Taha R, Mouaddib-Moral N, et al., Oxygen storage capacitymeasurements of three-way catalysts under transient conditions, Applied Catalysis A:General,2002,223(1-2):287~299
    [149] Mahzoul H, Brilhac J F, Gilot P, Experimental and mechanistic study of NOxadsorption over NOxtrap catalysts, Applied Catalysis B: Environmental,1999,20(1):47~55
    [150] Schmitz P J, Baird R J, NO and NO2adsorption on barium oxide: Model studyof the trapping stage of NOxconversion via lean NOxtraps, Journal of PhysicalChemistry B,2002,106(16):4172~4180
    [151] Cumaranatunge L, Mulla S S, Yezerets A, et al., Ammonia is a hydrogen carrierin the regeneration of Pt/BaO/Al2O3NOxtraps with H2, Journal of Catalysis,2007,246(1):29~34
    [152] Bunluesin T, Gorte R J, Graham G W, Studies of the water-gas-shift reaction onceria-supported Pt, Pd, and Rh: Implications for oxygen-storage properties, AppliedCatalysis B: Environmental,1998,15(1-2):107~114
    [153] Li Y, Fu Q, Flytzani-Stephanopoulos M, Low-temperature water-gas shiftreaction over Cu-and Ni-loaded cerium oxide catalysts, Applied Catalysis B:Environmental,2000,27(3):179~191
    [154] Andreeva D, Idakiev V, Tabakova T, et al., Low-temperature water-gas shiftreaction over Au/CeO2catalysts, Catalysisi Today,2002,72(1-2):51~57
    [155] Liotta L F, Macaluso A, Arena G E, et al., A study of the behaviour of Ptsupported on CeO2-ZrO2/Al2O3-BaO as NOxstorage-reduction catalyst for thetreatment of lean burn engine emissions, Catalysis Today,2002,75(1-4):439~449
    [156] Yang M, Li Y, Wang J, et al., Effects of CO2and steam on Ba/Ce-based NOxstorage reduction catalysts during lean aging, Journal of Catalysis,2010,271(2):228~238
    [157] Piacentini M, Maciejewski M, Bürgi T, et al., Role of support in lean DeNOxcatalysis, Topics in Catalysis,2004,30-31,71~80
    [158] Westerberg B, Fridell E, A transient FTIR study of species formed during NOxstorage in the Pt/BaO/Al2O3system, Journal of Molecular Catalysis A: Chemical,2001,165(1-2):249~263
    [159] Prinetto F, Ghiotti G, Nova I, et al., FT-IR and TPD Investigation of the NOxStorage Properties of BaO/Al2O3and Pt BaO/Al2O3Catalysts, Journal of PhysicalChemistry B,2001,105(51):12732~12745
    [160] Hesske H, Urakawa A, Baiker A, Ab initio assignments of fir, mir, and ramanbands of bulk Ba species relevant in NOxstorage-reduction, Journal of PhysicalChemistry C,2009,113(28):12286~12292
    [161] Azambre B, Zenboury L, Koch A, et al., Adsorption and desorption of NOxoncommercial ceria-zirconia (CexZr1-xO2) mixed oxides: A combined TGA, TPD-MS,and DRIFTS study, Journal of Physical Chemistry C,2009,113(30):13287~13299
    [162] Frola F, Prinetto F, Ghiotti G, et al., Combined in situ FT-IR and TRM analysisof the NOxstorage properties of Pt-Ba/Al2O3LNT catalysts, Catalysis Today,2007,126(1-2):81~89
    [163] Ji Y, Toops T J, Pihl J A, et al., NOxstorage and reduction in model lean NOxtrap catalysts studied by in situ DRIFTS, Applied Catalysis B: Environmental,2009,91(1-2):329~338
    [164] Hadjiivanov K, Saussey J, Freysz J L, et al., FT-IR study of NO+O2co-adsorption on H-ZSM-5: re-assignment of the2133cm-1band to NO+species,Catalysis Letters,1998,52(1-2):103~108
    [165] Chao C C, Lunsford J H, Infrared studies of the disproportionation reaction ofnitric oxide on Y-type zeolites, Journal of the Amercian Chemical Society,1971,93(1):71~77
    [166] Szanyi J, Paffett M T, The adsorption of carbon monoxide on H-ZSM-5andhydrothermally treated H-ZSM-5, Microporous Materials,1996,7(4):201~218
    [167] Djéga-Mariadassou G, From three-way to deNOxcatalysis: A general model,Catalysis Today,2004,90(1-2):27~34
    [168] Muncrief R L, Khanna P, Kabin K S, et al., Mechanistic and kinetic studies ofNOxstorage and reduction on Pt/BaO/Al2O3, Catalysis Today,2004,98(3):393~402
    [169] Berner U, Schierbaum K, Jones G, et al., Ultrathin ordered CeO2overlayers onPt(111): Interaction with NO2, NO, H2O and CO, Surface Science,2000,467(1-3):201~213
    [170] Wang J, Wen J, Shen M Q, Effect of interaction between Ce0.7Zr0.3O2and Al2O3on structural characteristics, thermal stability, and oxygen storage capacity, Journal ofPhysical Chemistry C2008,112(13):5113~5122
    [171] Martínez-Arias A, Fernández-Gracía M, Salamanca L N, et al., Structural andredox properties of ceria in alumina-supported ceria catalyst supports, Journal ofPhysical Chemistry B,2000,104(17):4038~4046
    [172] Martínez-Arias A, Fernández-García M, Ignesis-Juez A et al., In situ analysis ofCO oxidation and NO reduction under stoichiometric CO+NO+O2, Applied CatalysisB: Environmental,2001,31(1):51~60
    [173] Zhang F, Wang P, Koberstein J, et al., Cerium oxidation state in ceriananoparticles studied with X-ray photoelectron spectroscopy and absorption near edgespectroscopy, Surface Science,2004,563(1-3),74~82
    [174] Qiu, L M, Liu F, Zhao L Z, et al., Comparative XPS study of surface reductionfor nanocrystalline and microcrystalline ceria powder, Applied Surface Science,2006,252(14),4931~4935
    [175] Wang X Q, Shen M Q, Song L Y, et al., Surface basicity on bulk modifiedphosphorus alumina through different synthesis methods, Physical ChemistryChemical Physics,2011,13:15589~15596
    [176] Philipp S, Drochner A, Kunert J et al., Investigation of NO adsorption andNO/O2co-adsorption on NOx-storage-components by DRIFT-spectroscopy, Topics inCatalysis,2004,30-31(1-4):235~238
    [177] Desikusumastuti A, Staudt T, Gr nbeck H et al., Identifying surface species byvibrational spectroscopy: Bridging vs monodentate nitrates, Journal of Catalysis,2008,255(1):127~133
    [178] Nova I, Lietti L, Castoldi L et al., New insights in the NOxreductionmechanism with H2over Pt-Ba/gamma-Al2O3lean NOxtrap catalysts undernear-isothermal conditions, Journal of Catalysis,2006,239(1):244~254
    [179] Breen J P, Rioche C, Burch R et al., Identifying critical factors in theregeneration of NOx-trap materials under realistic conditions using fast transienttechniques, Applied Catalysis B: Environmental,2007,72(1):178~186
    [180] Twigg M V, Catalytic control of emissions from cars, Catalysis Today,2011,163(1):33~41
    [181] Haneda M, Morita T, Nagao Y, et al., CeO2-ZrO2binary oxides for removal bysorption, Physical Chemistry Chemical Physics,2001,3,4696~4700
    [182] Overbury S H, Mullins D R, Huntley D R, et al., Chemisorption and Reaction ofNO and N2O on Oxidized and Reduced Ceria Surfaces Studied by Soft X-RayPhotoemission Spectroscopy and Desorption Spectroscopy, Journal of Catalysis,1999,186(2):296~309
    [183] Rodriguez J A, Jirsak T, Sambasivan S, et al., Chemistry of NO2on CeO2andMgO: Experimental and theoretical studies on the formation of NO3, Journal ofChaimcal Physics,2000,112(22):9929~9940
    [184] Ji Y, Fisk C, Easterling V, et al., NOxstorage–reduction characteristics ofBa-based lean NOxtrap catalysts subjected to simulated road aging, Catalysis Today,2010,151(3-4):362~375
    [185] Rohart E, Bellière-Baca V, Yokota K, et al., Rare earths based oxides asalternative materials to Ba in NOx-trap catalysts, Topics in Catalysis,2007,42-43(1-4):71~75
    [186] Centi G, Perathoner S, Biglino D, et al., Adsorption and reactivity of No oncopper-on-alumina catalysts: I. Formation of nitrate species and their influence onreactivity in NO and NH3conversion, Journal of Catalysis,1995,152(1):75~92
    [187] Morrow B A, McFarlane R A, Moran L E, Infrared study of the reactionbetween nitric oxide and molecular oxygen and of the adsorption of nitrogen dioxideon platinum, Journal of Physical Chemistry,1985,89(1):77~80
    [188] Ito E, Mergler Y J, Nieuwenhuys B E, Infrared studies of NO adsorption andco-adsorption of NO and O2onto cerium-exchanged mordenite (CeNaMOR),Microporous Materials,1995,4(6):455~465
    [189] Urakawa A, Baiker A, Space-resolved profiling relevant in heterogeneouscatalysis, Topics in Catalysis,2009,52(10):1312~1322
    [190] Urakawa A, Maeda N, Baiker A, Space-and Time-Resolved Combined DRIFTand Raman Spectroscopy: Monitoring Dynamic Surface and Bulk Processes duringNOxStorage Reduction, Angewandte Chemie Inernational Edition,2008,47(48):9256~9259
    [191] Azambre B, Zenboury L, Delacroix F, et al., Adsorption of NO and NO2onceria–zirconia of composition Ce0.69Zr0.31O2: A DRIFTS study, Catalysis Today,137(2-4):278~282
    [192] Atribak, I, Azambre B, López A B, et al., Effect of NOxadsorption/desorptionover ceria-zirconia catalysts on the catalytic combustion of model soot, AppliedCatalysis B: Environmental,2009,92(1-2):126~137
    [193] Gracía-Gracía F R, Guerrero-Ruiz A, Rodríguez-Ramos I, Role of B5-TypeSites in Ru Catalysts used for the NH3Decomposition Reaction, Topics in Catalysis,2009,52(6-7):758~764
    [194] Levasseur B, Ebrahim A M, Bandosz T J, Role of Zr4+Cations in NO2Adsorption on Ce1-xZrxO2Mixed Oxides at Ambient Conditions, Langmuir,2011,27(15):9379~9386
    [195] Lei C, Shen M Q, Yang M, Modified textures and redox activities in Pt/Al2O3+BaO/CexZr1xO2model NSR catalysts, Applied Catalysis B: Environmental,2011,101(3-4):355~365
    [196] Arambre B, Atribak I, Bueno-López A, et al., Probing the surface ofceria zirconia catalysts using NOxadsorption/desorption: A first step toward theinvestigation of crystallite heterogeneity,2010,114(31):13300~13312
    [197] Nolan M, Parker S C, Watson G W, Reduction of NO2on ceria surfaces, Journalof Physical Chemistry B,2006,110(5):2256~2262
    [198] Tuttlies U, Schmei er V, Eigenberger G, A mechanistic simulation model forNOxstorage catalyst dynamics, Chemical Engineering Science,2004,59(22-23):4731~4738
    [199] Gandhi H S, Graham G W, McCabe R W, Automotive exhaust catalysis, Journalof Catalysis,2003,216(1-2):433~442
    [200] Broqvist P, Panas I, Fridell E, et al., NOxstorage on BaO(100) surface from firstprinciples: A two channel scenario, Journal of Physical Chemistry B,2002,106(1):137~145
    [201] Madier Y, Descorme C, Le Govic A M, et al., Oxygen Mobility in CeO2andCexZr(1-x)O2Compounds: Study by CO Transient Oxidation and18O/16O IsotopicExchange, Journal of Physical Chemistry B,1999,103(50):10999~11006
    [202] Daturi M, Finocchio E, Binet C, et al., Study of Bulk and Surface Reduction byHydrogen of CexZr1-xO2Mixed Oxides Followed by FTIR Spectroscopy andMagnetic Balance, Journal of Physical Chemistry B,1999,103(2):4884~4891
    [203] Fally F, Perrichon V, Vidal H, et al., Modification of the oxygen storagecapacity of CeO2-ZrO2mixed oxides after redox cycling aging, Catalysis Today,2000,59(3-4):373~386
    [204] Vidal H, K spar J, Pijolat M, et al., Redox behavior of CeO2-ZrO2mixed oxides:I. Influence of redox treatments on high surface area catalysts, Applied Catalysis B:Environmental,2000,27(1):49~63
    [205] Gennard S, Corà F, Catlow C R A, Comparison of the Bulk and SurfaceProperties of Ceria and Zirconia by ab Initio Investigations, Journal of PhysicalChemistry B,1999,103(46):10158~10170
    [206] Nelson A E, Schulz K H, Surface chemistry and microstructural analysis ofCexZr1xO2ymodel catalyst surfaces, Applied Surface Science,210(3-4):206~221
    [207] Reddy B M, Khan A, Yamada Y, et al., Raman and X-ray PhotoelectronSpectroscopy Study of CeO2ZrO2and V2O5/CeO2ZrO2Catalysts, Langmuir,2003,19(7):3025~3030
    [208] Reddy B M, Bharali P, Saikia P, et al., Thermal Stability and DispersionBehavior of Nanostructured CexZr1xO2Mixed Oxides over Anatase-TiO2: ACombined Study of CO Oxidation and Characterization by XRD, XPS, TPR, HREM,and UV Vis DRS,2009, Industrial&Engineering Chemistry Research,2009,48(1):453~462
    [209] Martinez-Arias A, Fernandez-Gracia M, Hungria A B, et al., SpectroscopicCharacterization of Heterogeneity and Redox Effects in Zirconium Cerium (1:1)Mixed Oxides Prepared by Microemulsion Methods, Journal of Physical Chemistry B,2003,107(12):2667~2677
    [210] Henderson M A, Perkins C L, Engelhard M H, et al., Redox properties of wateron the oxidized and reduced surfaces of CeO2(111), Surface Science,2003,526(1-2):1~18
    [211]Holgado J P, Munuera G, Espinós J P, et al., XPS study of oxidation processes ofCeOxdefective layers, Applied Surface Science,2000,158(1-2):164~171
    [212] Fornasiero P, Montini T, Graziani M, et al., Effects of thermal pretreatment onthe redox behaviour of Ce0.5Zr0.5O2: isotopic and spectroscopic studies, PhysicalChemistry Chemical Physics,2001,4,149~159
    [213] Karge H G, Dondur V, Investigation of the distribution of acidity in zeolites bytemperature-programmed desorption of probe molecules. I. Dealuminated mordenites,Journal Physical Chemistry,1990,94(2):765~772
    [214] Savara A, Danon A, Sachtler W M H, et al., TPD of nitric acid from BaNa–Y:evidence that a nanoscale environment can alter a reaction mechanism, PhysicalChemistry Chemical Physics,2009,11,1180~1188

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700