用户名: 密码: 验证码:
单组份磷—氮膨胀型阻燃剂的制备及其阻燃硬质聚氨酯泡沫材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬质聚氨酯泡沫材料(RPUF)以其优异的性能在军事和民事领域被广泛应用,然而,其自身的易燃性对人类财产和生命安全构成了巨大的威胁。目前,应用于阻燃聚氨酯泡沫材料的阻燃剂以含卤阻燃剂为主,由于其在燃烧过程中会释放出大量的有毒气体,因此,聚氨酯泡沫的无卤化阻燃成为聚氨酯材料领域的研究热点。复配型磷-氮膨胀型阻燃剂在无卤阻燃RPUF研究中虽取得了良好的效果,但该类阻燃剂存在着阻燃性能不持久、对RPUF力学性能破坏较大的缺点。单组份磷-氮膨胀型阻燃剂集炭源、酸源、气源于同一分子中,具有优良的阻燃性能和耐水溶性能,它不含卤素,与高分子基体具有很好的相容性,对聚合物本身的力学性能影响也较小,有效解决了复配型膨胀阻燃剂所存在的问题。
     基于单组份磷-氮膨胀型阻燃剂所具有的优点,本论文通过分子结构设计,逐步调控阻燃剂结构中的氮磷质量比,制备了三种单组份磷-氮膨胀型阻燃剂——季戊四醇螺环磷酰对甲苯胺(记为IFRA).聚乙二胺季戊四醇双磷酸酯(记为IFRB)和新戊二醇环磷酰三聚氰胺(记为IFRC),并应用于RPUF的阻燃。进一步考察了三种阻燃剂在RPUF中的阻燃性能、耐水溶性能和对RPUF力学性能的影响,同时研究了该类阻燃剂在RPUF中的阻燃机理,为制备高性能无卤阻燃RPUF提供理论基础和实验依据。本文的主要研究内容如下:
     1.以优质成炭剂——氯化螺环磷酸酯(SPDPC)和对甲苯胺为原料,制备了结构新颖的单组分磷-氮膨胀型阻燃剂IFRA,研究了IFRA的最佳制备工艺。通过红外光谱(FTIR)、核磁共振波谱(NMR)和元素分析(EA)等表征手段对其结构进行了表征,确定了其结构。热重(TGA)分析表明IFRA可在RPUF热解前开始分解成炭并具有良好的成炭性能,可用于RPUF的阻燃。将IFRA应用于RPUF基体中,制备了不同IFRA含量的阻燃RPUF (RPUF-IFRA),扫描电镜分析(SEM)和力学性能测试表明IFRA与RPUF基体具有良好的相容性,与传统的复配型磷-氮膨胀阻燃剂相比,IFRA对RPUF力学性能的破坏程度大幅下降。通过氧指数测定(LOI)、垂直燃烧性能测试(UL-94)、锥形量热测试(CCT)对RPUF-IFRA的阻燃性能进行了研究,测试表明,当IFRA的添加量达到30pph时,RPUF-IFRA(30)的氧指数达到26.5%,阻燃性能达到了UL-94V-0级别。与RPUF比,RPUF-IFRA(30)的热释放速率峰值(PHRR)下降了11.5%,热释放总量(THR)下降10.3%,RPUF-IFRA(30)表现出了良好的阻燃性能。耐水溶性能检测表明,RPUF-IFRA(30)有着良好的耐水溶性能,70℃下,水中浸泡168h后,RPUF-IFRA(30)的氧指数为26.0%,阻燃性能仍能获得UL-94V-0级别。
     2.以SPDPC和含氮量较高乙二胺为原料,制备了单组分磷-氮膨胀型阻燃剂IFRB,使其结构中氮-磷质量比相比于IFRA有所提高。通过优化制备工艺,使得IFRB的产率进一步提高。通过FTIR、NMR和EA确定了IFRB的结构。TGA分析表明IFRB可在RPUF热解前开始分解成炭并具有良好的成炭性能,IFRB可用于RPUF的阻燃。将IFRB应用到RPUF基体中,制备了不同IFRB含量的阻燃RPUF(RPUF-IFRB)。IFRB与RPUF表现出良好的相容性,与传统的复配型磷-氮膨胀型阻燃剂相比,其对RPUF力学性能的破坏程度大幅下降。通过LOI、UL-94和CCT对RPUF-IFRB的阻燃性能进行了测试,测试表明,当IFRB的添加量为25pph时,RPUF-IFRB(25)的氧指数达到27.0%,阻燃性能达到了UL-94V-0级别。与RPUF相比,RPUF-IFRB(25)的PHRR下降了27.5%,THR下降24.9%。耐水溶性能检测表明,RPUF-IFRB(25)有着良好的耐水溶性能,70℃下,水中浸泡168h后,RPUF-IFRB(25)的氧指数仍可达26.0%,阻燃性能仍能获得UL-94V-0级别。
     3.以新戊二醇磷酰氯(DPPC)和含氮量更高的三聚氰胺为原料,制备了结构新颖的单组分磷-氮膨胀型阻燃剂IFRC,进一步提高了IFRC中的氮-磷质量比。通过改变反应溶剂、反应时间和反应温度等条件得出了IFRC的最佳制备工艺。通过FTIR, NMR和EA确定了其结构。TGA分析表明IFRC可在RPUF热解前分解成炭并具有优良的成炭性能,IFRC适用于RPUF的阻燃。将IFRC应用到RPUF基体中,制备了不同IFRC含量的阻燃RPUF (RPUF-IFRC)。IFRC与RPUF表现出良好的相容性,与传统的复配型磷-氮膨胀型阻燃剂相比,其对RPUF的力学性能的破坏程度大幅下降。通过LOI、UL-94和CCT对RPUF-IFRC的阻燃性能进行了测试,测试表明,当IFRC的添加量达到25pph时,RPUF-IFRC(25)的氧指数达到29.5%,阻燃性能可达UL-94V-0级别。与RPUF相比,RPUF-IFRC(25)的PHRR下降50.4%,THR下降35.7%。耐水溶性能检测表明,RPUF-IFRC(25)有着良好的耐水溶性能,70℃下,水中浸泡168h后,RPUF-IFRC(25)氧指数可达28.5%,阻燃性能仍能获得UL-94V-0级别。
     4.通过TGA、SEM、FTIR等手段研究了IFRA、IFRB和IFRC在RPUF基体中的阻燃机理,结果表明:阻燃剂的加入能有效促进RPUF燃烧时的成炭反应,生成炭层的同时,阻燃剂可释放含氮不燃性气体促使炭层膨胀发泡,得到膨胀程度不同的致密炭层,从而有效保护内层RPUF不被燃烧。有效燃烧热测试表明:这三种阻燃剂在RPUF中的阻燃遵循固相阻燃机理。
     5.比较分析了阻燃剂IFRA、IFRB、IFRC的阻燃性能,发现三种阻燃剂中IFRC的阻燃性能最优。研究发现,IFRC有着更好的成炭性能,其阻燃后的RPUF可生成膨胀性和致密性良好的炭层。该结果表明,适当提高阻燃剂结构中的N/P质量比,可提高阻燃剂结构中酸源与气源间的协同效应,从而提高阻燃性能。
Since the advent of rigid polyurethane foams (RPUF), they are used in civil and military fields widely due to their excellent properties. However, the RPUF is very flammable, which threatens people's life and the property security seriously. Currently, the main flame retardants for RPUF are the compounds containing halogen which endow the RPUF excellent flame retardation. But when burning, these kinds of retardants release a lot of toxic gases, which pollutes environment, erodes instruments, and damages people's health. So the halogen-free flame retardant additives which show good flame retardant efficiency and hardly pollute environment are particularly needed. Mixed intumescent flame retardants have been widely utilized in the flame retardation of RPUF and manifested good efficiency, however, they are confronted with the problems of water solubility. Furthermore, they are not compatible with the RPUF matrix, which weakens the mechanical properties of the RPUF. The single intumescent flame retardant which chemically combines acid source, carbonization agent, and blowing agent into one molecule have been developed and proved to excellent flame-retardance and water resistance additives. And these flame retardants have little damage for the mechanical properties of polymeric matrix. It solves the problem of mixed intumescent flame retardants.
     Based on the superior performance of the single intumescent flame retardant, the three novel flame retardant, toluidine spirocyclic pentaerythritol bisphosphonate (IFRA), poly ethanediamine spirocyclic pentaerythritol bisphosphonate (IFRB),2,2-diethyl-1,3-propan ediol phosphoryl melamine (IFRC) were prepared by molecular design and used as a flame-retardant additive for RPUF. The effects of these compounds on the flame retardancy and water resistance and the influence on the compressive strength of the RPUF were examined, the flame retardant mechanism were also studied. The main contents are given as follows:
     1. A novel flame retardant IFRA was synthesized with spirocyclic pentaerythritol bisphosphorate disphosphoryl chloride (SPDPC) and toluidine as raw materials, and characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and elemental analysis (EA). The best preparation process was obtained, too. Thermogravimetic analysis (TGA) results show that IFRA has excellent charforming ablity, and the IFRA degrades earlier than RPUF and forms intumescent chars before RPUF decomposes, which indicates IFRA is a suitable flame retardant for RPUF matrix. Halogen-free flame retardant RPUF with different amount of IFRA were prepared successfully by using IFRA as a flame retardant. The scanning electron microscopy (SEM) and compressive strength test indicate IFRA exhibited favorable compatibility with RPUF and negligible negative influence on the mechanical properties of RPUF. The flame retardance of the flame retardant rigid polyurethane foam (RPUF-IFRA) was studied by limiting oxygen index (LOI), vertical burning test (UL-94) and cone calorimeter test (CCT). The results show when the content of IFRA is30pph, the LOI of RPUF-IFRA(30) could reach26.5%, and a UL-94V-0rating is achieved. The peak heat release rate (PHRR) and total heat release (THR) decrease by11.5%and13.1%, respectively, RPUF-IFRA (30) could obtain excellent flame retardance. Furthermore, the RPUF-IFRA(30) exhibites an outstanding water resistance that the LOI could still reach26.0%and obtain UL-94V-0rating after soaking in hot water for168h.
     2. The flame retardant IFRB was prepared with SPDPC and ethanediamine as raw materials, and characterized by FTIR, NMR and EA. The preparation method of IFRB was improved by changing the reaction conditions, and the reaction yield increased by20.4%. TGA indicates that IFRB degrades earlier than RPUF and formes intumescent chars before RPUF decomposes; it is a suitable flame retardant for RPUF. The high char weight indicates that IFRB is an efficient charforming agent. The flame retardant RPUF was prepared by using IFRB as a flame retardant. The SEM and compressive strength test show IFRB exhibited favorable compatibility with RPUF and small influence on the mechanical properties of RPUF. The flame retardance of the flame retardant rigid polyurethane foam (RPUF-IFRB) was studied by LOI, UL-94test and CCT. The results show when the content of IFRB is25pph, the LOI of RPUF-IFRB (25) can reach27.0%, and a UL-94V-0rating is achieved. The PHRR and THR decrease by20.7%and27.3%, respectively. The RPUF-IFRB has excellent water resistance that the LOI could still26.0%and obtain UL-94V-0rating after soaking in hot water for168h.
     3. A novel flame retardant IFRC was prepared with DPPC and melamine as raw materials, and characterized by FTIR, NMR and EA. The best preparation process of IFRC was obtained by changing solvent type, reaction temperature and reaction time. TGA results shows that IFRC is a more efficient charforming agent, IFRC degrades earlier than RPUF and forms intumescent chars before RPUF decomposes, it is a suitable flame retardant for RPUF. Flame retardant RPUF with different amount of IFRC were prepared. The SEM and compressive strength test show IFRC exhibited favorable compatibility with RPUF and lesser negative influence on the mechanical properties of RPUF. The flame retardance of the flame retardant rigid polyurethane foam (RPUF-IFRC) was test by LOI, UL-94test and CCT, the results showed when the content of IFRC was25pph, the LOI of RPUF-IFRC(25) could reach29.5%, and UL-94V-0rating is achieved. The PHRR and THR decrease by50.4%and37.8%, respectively. The RPUF-IFRC(25) has an outstanding water resistance that the LOI can still reach28.5%and obtain a UL-94V-0rating after soaking in hot water for168h.
     4. The flame retardant mechanism was studied of IFRA, IFRB and IFRC by TGA, SEM and FTIR. The results show the charforming reaction of flame retardant RPUF can been promoted when flame retardants are added into RPUF matrix, and the more intumescent and compact chars can be formed on the surface of flame retardant RPUF, which is a critical factor for protecting the substrate material from burning. The flame retardance of the flame retardant make effect in RPUF through solid phase flame retardant mechanism.
     5. The flame retardance of IFRA, IFRB and IFRC were compared and the reason is analysised. The results show the charforming performance and quality of char layer of flame retardant are more excellent, the flame retardance of flame retardant is more superior. Furthermore, the structure of IFRA, IFRB and IFRC was contrasted. The results show the flame retardance can be improved with synergistic effect between blowing agent and acid source through increasing the proportion of N/P.
引文
[1]X. Y. Zhong, Q. I. Lu. Modified Melamine Formaldehyde Resin and Study on Melamine Fiber [J]. Polymer Materials Science & Engineering.2008,1:040.
    [2]D.K. Chattopadhyay. Thermal stability and flame retardancy of polyurethanes[J]. Progress in Polymer Science.2009,34 (10):1068-1133.
    [3]S. L. Cooper, V. Arthur. Properties of linear elastomeric polyurethanes[J]. Journal of Applied Polymer Science.1966,10 (12):1837-1844.
    [4]C. S Schollenberger, H. Scptt. Polyurethan VC, a virtually crosslinked elastomer[J]. Rubber Chemistry and Technology.1962,35 (3):742-752.
    [5]D.K. Chattopadhyay. Structural engineering of polyurethane coatings for high performance applications [J]. Progress in Polymer Science.2007,32 (3):352-418.
    [6]M. Szycher. Handbook of polyurethanes[R]. CardioTech International Inc., Woburn, MA (US),1999.
    [7]K. Lilley, A. Mani. Roof-crush strength improvement using rigid polyurethane foam[J]. Journal of materials engineering and performance.1998,7 (4):511-514.
    [8]胡忠伟.国内外聚氨酯工业发展近况[J].聚氨酯工业.1999,14(1):1-7.
    [9]A. McIntyre, G. E. Anderton. Fracture properties of a rigid polyurethane foam over a range of densities[J]. Polymer.1979,20 (2):247-253.
    [10]Y. L. Yang, C. Mool. Conductive carbon nanofiber-polymer foam structures[J]. Advanced materials.2005,17 (16):1999-2003.
    [11]Y. L. Yang, C. Mool. Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding[J]. Nano letters.2005,5 (11):2131-2134.
    [12]W. H. Tao, C. C. Chang. An Energy-Efficiency, Performance Study of, Vacuum Insulation Panels[J]. Journal of cellular plastics.2000,36 (6):441-450.
    [13]W H. David, K. Gayani. FTIR analysis of thermally processed PU foam[J]. Polymer Degradation and Stability.2005,87 (3):555-561.
    [14]王向东,杨惠娣.国内外聚氨酯工业概况与进展[J].中国塑料.1999,13(8):21-27.
    [15]唐希玲,高性能硬质聚氨酯泡沫塑料的制备及其阻燃性能的研究[M].浙江大学, 2007.
    [16]丁雪佳,薛海蛟,李洪波.硬质聚氨酯泡沫塑料研究进展[J].化工进展,2009(2):278-282.
    [17]K. Pielichowski, S. Dominika, D. Euzebiusz. Segmented MDI/HMDI-based polyurethanes with lowered flammability[J]. Journal of Applied Polymer Science.2004,91 (5):3214-3224.
    [18]W. Zatorski, K. Zbigniew, K. Andrzej. New developments in chemical modification of fire-safe rigid polyurethane foams[J]. Polymer Degradation and Stability.2008,93 (11): 2071-2076.
    [19]C. G. Shayne, C. Ann. Influence of heating rates on the toxicity of evolved combustion products:results and a system for research[J]. Journal of Fire Sciences.1983,1 (6):465-479.
    [20]M. Ravey, E. M Pearce. Flexible polyurethane foam. Ⅲ. Phosphoric acid as a flame retardant[J]. Journal of Applied Polymer Science.1999,74 (5):1317-1319.
    [21]P. V. Bonsignore, T. L. Levendusk. Alumina trihydrate as a flame retardant and smoke suppressive filler in rigid high density polyurethane foams [J]. Journal of Fire and Flammability.1977,8:95-114.
    [22]B. M. Alexander. Flame retarded polymer layered silicate nanocomposites:a review of commercial and open literature systems[J]. Polymers for advanced technologies.2006,17 (4): 206-217.
    [23]C. Branca, D. Blasi, C. Casu. Reaction kinetics and morphological changes of a rigid polyurethane foam during combustion[J]. Thermochimica acta.2003,399 (1):127-137.
    [24]J. P. Anthony. Reactive flame retardants for polyurethane foams[J]. Industrial & Engineering Chemistry Product Research and Development.1970,9 (4):478-496.
    [25]D. L. Buszard, R. J. Dellar. The performance of flame retardants in rigid polyurethane foam formulations. Fire and cellular polymers (Springer,1987), pp.265-277.
    [26]S. Oprea. Effect of structure on the thermal stability of curable polyester urethane urea acrylates[J]. Polymer Degradation and Stability.2002,75 (1):9-15.
    [27]Z. S. Petrovic, Z. Z. Flyn. Thermal degradation of segmented polyurethanes [J]. Journal of Applied Polymer Science.1994,51 (6):1087-1095.
    [28]Y. Zhang, S. B. Shang, X. Y. Zhang. Influence of the composition of rosin-based rigid polyurethane foams on their thermal stability[J]. Journal of Applied Polymer Science.1996, 59(7):1167-1171.
    [29]Y. M. Song, W.C. Chen, T. L. Yu. Effect of isocyanates on the crystallinity and thermal stability of polyurethanes[J]. Journal of Applied Polymer Science.1996,62 (5):827-834.
    [30]S. Zulfiqar, M. Zulfiqar, K. Tasneem. Thermal degradation of phenyl methacrylate-methyl methacrylate copolymers[J]. Polymer Degradation and Stability.1987, 17 (4):327-339.
    [31]D. Wlodarczak. Studies of temperature and atmosphere composition influence on thermal degradation products of polyurethane foam[J]. Journal of Applied Polymer Science.1988,36 (2):377-386.
    [32]M. Herrera, G Matuschek, A. Kettrup. Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI[J]. Polymer Degradation and Stability.2002, 78 (2):323-331.
    [33]G. Montaudo, P. Concetto, S. Emilio. Mechanism of thermal degradation of polyurethanes. Effect of ammonium polyphosphate[J]. Macromolecules.1984,17 (8): 1605-1614.
    [34]L. G Lage, K. Yoshio. Thermal degradation of biomedical polyurethanes-A kinetic study using high-resolution thermogravimetry[J]. Journal of Applied Polymer Science.2001,79 (5): 910-919.
    [35]H. K. Lee, K. S. Won. Structure and thermal properties of polyether polyurethaneurea elastomers[J]. Journal of Applied Polymer Science.1993,50 (7):1269-1280.
    [36]N. Grassie, P. Mendoza, A. Gilberto. Thermal degradation of polyether-urethanes:5. Polyether-urethanes prepared from methylene bis (4-phenylisocyanate) and high molecular weight poly (ethylene glycols) and the effect of ammonium polyphosphate[J]. Polymer Degradation and Stability.1985,11 (4):359-379.
    [37]H. J. Fabris. Thermal and oxidative stability of urethanes[J]. Advances in urethane science and technology.1976,4:891-911.
    [38]G N. Mathur, J. E. Kresta. Thermooxidation and stabilization of urethane and urethane-urea block copolymers, in Polymer Additives (Springer,1984), pp.135-153.
    [39]F. Bellucci, G. Camino, A. Frache. Catalytic charring-volatilization competition in organoclay nanocomposites[J]. Polymer Degradation and Stability.2007,92 (3):425-436.
    [40]A. Takahara, A. J. Coury, R.W. Hergenrother. Effect of soft segment chemistry on the biostability of segmented polyurethanes. I. In vitro oxidation[J]. Journal of biomedical materials research.1991,25 (3):341-356.
    [41]T. Servay, R. Voelkel, H. Schmiedberge. Thermal oxidation of the methylene diphenylene unit in MDI-TPU[J]. Polymer.2000,41 (14):5247-5256.
    [42]S. Khatua, Y. L. Hsieh. Chlorine degradation of polyether-based polyurethane[J]. Journal of Polymer Science Part A:Polymer Chemistry.1997,35 (15):3263-3273.
    [43]F. D. Hileman, K. J. Voorhees, L. H. Wojcik. Pyrolsis of a flexible urethane foam[J]. Journal of Polymer Science:Polymer Chemistry Edition.1975,13 (3):571-584.
    [44]P. S. Wang, W. Y. Chiu, L.W. Chen. Thermal degradation behavior and flammability of polyurethanes blended with poly (bispropoxyphosphazene) [J]. Polymer Degradation and Stability.1999,66 (3):307-315.
    [45]J. V. Ken. Mechanisms of pyrolysis for a specifically labeled deuterated urethane[J]. Journal of Polymer Science:Polymer Chemistry Edition.1982,20 (6):1457-1467.
    [46]S. Y. Lu, H. Ian. Recent developments in the chemistry of halogen-free flame retardant polymers[J]. Progress in Polymer Science.2002,27 (8):1661-1712.
    [47]C. E. Talsness. Overview of toxicological aspects of polybrominated diphenyl ethers:a flame-retardant additive in several consumer products[J]. Environmental Research.2008,108 (2):158-167.
    [48]R. Renner. What fate for brominated fire retardants. Environmental science & technology[J],2000,34 (9):222A-226A.
    [49]A. Davis. Flame retardant polyurethane elastomer, fiber and textile formed therefrom, and method for their production:U.S. Patent Application 13/334,790[P].2011-12-22.
    [50]J. M. Wu, Y. H. Wang. Flame retardant polyurethane elastomer nanocomposite applied to coal mines as air-leak sealant[J]. Journal of Applied Polymer Science.2013,129(6): 3390-3395.
    [51]L. H. Lv, M. Zuo, C. Y. Wei. Fabrication and mechanical properties analysis of flame-retardant fiberboards made of abandoned flax fibers and polyurethanes[J]. Advanced Materials Research.2013,62(7):892-895.
    [52]A. Dasari, Z. Z. Yu, G P. Cai. Recent developments in the fire retardancy of polymeric materials[J]. Progress in Polymer Science,2002,27(8):1661-1712.
    [53]X. L. Chen, L. L. Huo, C. M. Jiao. TG-FTIR characterization of volatile compounds from flame retardant polyurethane foams materials[J]. Journal of Analytical and Applied Pyrolysis.2013,100:186-191.
    [54]S. Duquesne, L. B. Michel, B. Serge. Mechanism of fire retardancy of polyurethanes using ammonium polyphosphate[J]. Journal of Applied Polymer Science.2001,82 (13): 3262-3274.
    [55]D. W. Krevelen. Some basic aspects of flame resistance of polymeric materials[J]. Polymer.1975,16 (8):615-620.
    [56]S. Bourbigot, D. Sophie. Fire retardant polymers:recent developments and opportunities[J]. Journal of Materials Chemistry.2007,17 (22):2283-2300.
    [57]C. Li, Y. Z. Wang. A review on flame retardant technology in China. Part I:development of flame retardants[J]. Polymers for advanced technologies.2010,21 (1):1-26.
    [58]H. D. Lu, L. Song, Y. Hu. A review on flame retardant technology in China. Part II:flame retardant polymeric nanocomposites and coatings[J]. Polymers for advanced technologies. 2011,22 (4):379-394.
    [59]M. Jimenez, S. Duquesne, S. Bourbigot. Intumescent fire protective coating:toward a better understanding of their mechanism of action[J]. Thermochimica acta.2006,449 (1): 16-26.
    [60]B. Schartel, M. Bartholmai, U. Knoll. Some comments on the main fire retardancy mechanisms in polymer nanocomposites[J]. Polymers for advanced technologies.2006,17 (9): 772-777.
    [61]S. B. Bras, M. Le, L. Robert. Recent advances in the use of zinc borates in flame retardancy of EVA[J]. Polymer Degradation and Stability.1999,64 (3):419-425.
    [62]H. O. Yu, Z. W. Jiang, J. W. Gilman. Promoting carbonization of polypropylene during combustion through synergistic catalysis of a trace of halogenated compounds and Ni2O3 for improving flame retardancy[J]. Polymer.2009,50 (26):6252-6258.
    [63]G. Camino, L. Costa, L. Trossarelli. Study of the mechanism of intumescence in fire retardant polymers:Part I-Thermal degradation of ammonium polyphosphate-pentaerythritol mixtures[J]. Polymer Degradation and Stability.1984,6 (4):243-252.
    [64]C. Giovanni, L. Costa, L. Trossarelli. Study of the mechanism of intumescence in fire retardant polymers:Part IV-Evidence of ester formation in ammonium polyphosphate-pentaerythritol mixtures[J]. Polymer Degradation and Stability.1984,8 (1): 13-22.
    [65]R. Delobel, L. B. Michel, O. Najib. Thermal behaviours of ammonium polyphosphate-pentaerythritol and ammonium pyrophosphate-pentaerythritol intumescent additives in polypropylene formulations[J]. Journal of Fire Sciences.1990,8 (2):85-108.
    [66]孙刚,刘预,冯芳.聚氨酯泡沫材料的研究进展[J].材料导报.2006,20(3):29-36.
    [67]韩秀山.我国聚氨酯发展概况[J].特种橡胶制品.2003,24(5):54-55.
    [68]C. F. Cullis, M. M Hirschler. The combustion of organic polymers [M]. Oxford: Clarendon Press,1981.
    [69]S. Bourbigot, L. Bras, M. D. Sophie. Recent advances for intumescent polymers[J]. Macromolecular Materials and Engineering.2004,289 (6):499-511.
    [70]刘益军,柏松.聚氨酯泡沫塑料的阻燃[J].塑料工业.2003,31(10):1-4.
    [71]张骥红,陈峰.聚氨酯泡沫阻燃剂浅谈[J].聚氨酯工业.2001,16(4):6-8.
    [72]X. Cao, J. Lee, L. W. Tomy. Polyurethane/clay nanocomposites foams:processing, structure and properties[J]. Polymer.2005,46 (3):775-783.
    [73]M. Ravey, K. I. Weil, D. Edward. Flexible polyurethane foam. Ⅱ. Fire retardation by tris (1,3-dichloro-2-propyl) phosphate part A. Examination of the vapor phase (the flame) [J]. Journal of Applied Polymer Science.1998,68 (2):217-229.
    [74]M. Ravey, K. I. Weil, D. Edward. Flexible polyurethane foam. Ⅱ. Fire retardation by tris (1,3-dichloro-2-propyl) phosphate. Part B. Examination of the condensed phase (the pyrolysis zone) [J]. Journal of Applied Polymer Science.1998,68 (2):231-254.
    [75]E. D. Weil, S. V. Levchik. Commercial flame retardancy of polyurethanes[J]. Journal of Fire Sciences.2004,22 (3):183-210.
    [76]M. Modesti, L. Zanella, A. Lorenzetti. Thermally stable hybrid foams based on cyclophosphazenes and polyurethanes[J]. Polymer Degradation and Stability.2005,87 (2): 287-292.
    [77]K. H. Badri, S. H. Ahmad, S. Zakaria. Development of zero ODP rigid polyurethane foam from RBD palm kernel oil[J]. Journal of materials science letters.2000,19 (15): 1355-1356.
    [78]E. D. Rosado, J. J Liggat. C. E. Snape. Thermal degradation of urethane modified polyisocyanurate foams based on aliphatic and aromatic polyester polyol[J]. Polymer Degradation and Stability.2002,78 (1):1-5.
    [79]M. P. Luda, L. Costa, P. Bracco. Relevant factors in scorch generation in fire retarded flexible polyurethane foams:Ⅱ Reactivity of isocyanate, urea and urethane groups[J]. Polymer Degradation and Stability.2004,86 (1):43-50.
    [80]王希光,王锦贵.浅谈聚氨酯泡沫塑料阻燃技术的应用[J].消防科学与技术.2002,3:60-61.
    [81]N. Pietruszka, Z. K. Brzozowskp, L. Zabski. A new group of liquid reactive nitrogen and nitrogen-phosphorus flame retardants for self-extinguishing polyurethane expanded polymers. III. Applications to rigid polyurethane foams[J]. Polimery(Poland).2000,45 (6):428-432.
    [82]F. T. Lee, J. Green, R. D. Gibilisco. Recent developments using phosphorus-containing diol as a reactive combustion modifier for rigid polyurethane foams-Part Ⅲ[J]. Journal of cellular plastics.1985,21 (2):93-100.
    [83]P. M. Hergenrother, C. M. Thompson, J. Smith. Flame retardant aircraft epoxy resins containing phosphorus[J]. Polymer.2005,46 (14):5012-5024.
    [84]C. S. Wang, C. H. Lin, Properties and curing kinetic of diglycidyl ether of bisphenol A cured with a phosphorus-containing diamine[J]. Journal of Applied Polymer Science.1999, 74 (7):1635-1645.
    [85]W. Liu, D. Q. Chen, Y. Z. Wang. Char-forming mechanism of a novel polymeric flame retardant with char agent[J]. Polymer Degradation and Stability.2007,92 (6):1046-1052.
    [86]C. Sivriev, L. Zabski. Flame retarded rigid polyurethane foams by chemical modification with phosphorus-and nitrogen-containing polyols[J]. European polymer journal.1994,30 (4): 509-514.
    [87]Y. L. Liu, G. H. Hsiue, C. W. Lan. Phosphorus-containing epoxy for flame retardance:Ⅳ. Kinetics and mechanism of thermal degradation[J]. Polymer Degradation and Stability.1997, 56 (3):291-299.
    [88]M. Gleria, D. J. Roger. Aspects of phosphazene research[J]. Journal of Inorganic and Organometallic Polymers.2001,11 (1):1-45.
    [89]M. Taniguchi, Y. J. Tada. Flame-retardant epoxy resin composition, molded article thereof, and electronic part:U.S. Patent 6,797,750[P].2004-9-28.
    [90]B. Czuprynski, P. S. Joanna, L. Joanna. Studies on Effect of Tri (2-hydroxypropyl), Tri (2-hydroxybutyl) and Tri (hydroxythiodiethylene) Borates on Thermal and Heat Properties of Rigid Polyurethane-Polyisocyanurate Foams[J]. Chinese Journal of Chemistry.2006,24 (12): 1796-1799.
    [91]B. Czuprynski, J. P. Sadowska, L. Joanna. Effect of selected boranes on properties of rigid polyurethane-polyisocyanurate foams[J]. Journal of polymer engineering.2002,22 (1): 59-74.
    [92]B. Janowski, P. Krzysztof. Thermo (oxidative) stability of novel polyurethane/POSS nanohybrid elastomers[J]. Thermochimica acta.2008,478 (1):51-53.
    [93]L. A. Mercado, M. Galia, and J. A. Reina, Silicon-containing flame retardant epoxy resins:Synthesis, characterization and properties [J]. Polymer Degradation and Stability.2006, 91 (11):2588-2594.
    [94]A. R. Horrocks, P. Dennis. Fire retardant materials[M]. woodhead Publishing,2001.
    [95]P. Walch. Halogenated Polyetherpolyol for Rigid Cellular PUR Materials with Improved Flame Retardancy, in Fire and cellular polymers (Springer,1987), pp.251-263.
    [96]刘兴允,董芸.含磷含氮多元醇反应型阻燃剂[J].聚氨酯工业.1991,4:12-16.
    [97]L. Zhang, C. Z. Li, Q. L. Zhou. Aluminum hydroxide filled ethylene vinyl acetate (EVA) composites:effect of the interfacial compatibilizer and the particle size[J]. Journal of Materials Science.2007,42 (12):4227-4232.
    [98]J. P. Lv, W. H. Liu. Flame retardancy and mechanical properties of EVA nanocomposites based on magnesium hydroxide nanoparticles/microcapsulated red phosphorus[J]. Journal of Applied Polymer Science.2007,105 (2):333-340.
    [99]方禹声,朱吕民.聚氨酯泡沫塑料[M].化学工业出版社,1994.
    [100]U. A. P. Visconte, L. L. Yuan, G. Jorge. Flame retardancy in thermoplastic polyurethane elastomers (TPU) with mica and aluminum trihydrate (ATH) [J]. Polymer Degradation and Stability.2000,69 (3):257-260.
    [101]S. V. Levchik, E. D. Weil. Flame retardancy of thermoplastic polyesters-a review of the recent literature[J]. Polymer International.2005,54 (1):11-35.
    [102]刘正勤.聚氨酯硬质泡沫塑料用阻燃剂的研究[J].消防科学与技术.2003,22(4):07-10.
    [103]夏英,蹇锡高,刘俊龙.聚磷酸铵/季戊四醇复合膨胀型阻燃剂阻燃ABS的研究[J].中国塑料.2005,19(5):39-42.
    [104]B. N. Jang, C. Marius, C. A. Wilkie, The relationship between thermal degradation behavior of polymer and the fire retardancy of polymer/clay nanocomposites[J]. Polymer. 2005,46(24):10678-10687.
    [105]L. Song, Yuan H. T. Yong. Study on the properties of flame retardant polyurethane/organoclay nanocomposite[J]. Polymer Degradation and Stability.2005,87 (1): 111-116.
    [106]X. Y. Meng, Y. Ling, X. G. Zhang. Effects of expandable graphite and ammonium polyphosphate on the flame-retardant and mechanical properties of rigid polyurethane foams[J]. Journal of Applied Polymer Science.2009,114 (2):853-863.
    [107]M. T. Byrne, Y. K. Gunko. Recent advances in research on carbon nanotube-polymer composites[J]. Advanced materials.2010,22 (15):1672-1688.
    [108]G H. Singh, S. N, Kiesel. Nanodispersions of carbon nanofiber for polyurethane foaming[J]. Polymer.2010,51 (15):3349-3353.
    [109]Y. S. Kim, D. Rick, A. A. Cain, Development of layer-by-layer assembled carbon nanofiber-filled coatings to reduce polyurethane foam flammability[J]. Polymer.2011,52 (13): 2847-2855.
    [110]M. Modesti, L. Alessandra. Improvement on fire behaviour of water blown PIR-PUR foams:use of an halogen-free flame retardant[J]. European polymer journal.2003,39 (2): 263-268.
    [111]M. Modesti, L. Alessandra. Halogen-free flame retardants for polymeric foams[J]. Polymer Degradation and Stability.2002,78 (1):167-173.
    [112]H. Q. Zhang, B. Q. Zhao. Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites[J]. Composites Part A:Applied Science and Manufacturing.2009,40 (9):1506-1513.
    [113]L. Ye, X. Y. Meng, X. Ji. Synthesis and characterization of expandable graphite-poly (methyl methacrylate) composite particles and their application to flame retardation of rigid polyurethane foams[J]. Polymer Degradation and Stability.2009,94 (6):971-979.
    [114]G C. Costa, L. D. Cortemiglia, MP. Overview of fire retardant mechanisms [J]. Polymer Degradation and Stability.1991,33 (2):131-154.
    [115]S. V. Levchik, E. D. Weil. A review of recent progress in phosphorus-based flame retardants[J]. Journal of Fire Sciences.2006,24 (5):345-364.
    [116]K. S. Betts. New thinking on flame retardants. Environmental Health Perspectives [J]. 2008,116(5):A210.
    [117]F. L. Bonnaud, L. A. Michael. New prospects in flame retardant polymer materials: From fundamentals to nanocomposites[J]. Materials Science and Engineering:R:Reports. 2009,63 (3):100-125.
    [118]杨锦飞.三(2,3--氯丙基)磷酸酯阻燃剂在聚氨酯泡沫塑料上的应用[J].聚氨酯工业.1990,2:32-33.
    [119]钟柳,刘治国,欧育湘.一种新型含氯的磷-膦酸酯阻燃聚氨酯的阻燃性能.阻燃材料与技术[J].2007,(4):9-11.
    [120]A. R. Horrocks, D. Price. The burning behaviour of combustion modified high resilience polyurethane foams. Journal of Fire Sciences[J].1992,10 (1):28-39.
    [121]H. Horacek, R. Grabner. Advantages of flame retardants based on nitrogen compounds[J]. Polymer Degradation and Stability.1996,54 (2):205-215.
    [122]邹德荣.低特征信号PP衬层用阻燃消烟剂研究[J].推进技术论文集,扬州,1999,
    [123]殷锦捷,赵志超,戴英华.阻燃聚氨酯泡沫塑料的研制[J].塑料助剂.2010,4:007-011.
    [124]肖新颜,万彩霞,陈国栋.双氯螺磷及膨胀型阻燃剂(IFR)的合成研究[J].化学工业与工程.2000,17(5):274-277.
    [125]S. Bourbigot, B. M. Le, D. Francois. PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations[J]. Fire and Materials.2000,24 (4):201-208.
    [126]G Bertelli, G Camino, E. Marchetti. Parameters affecting fire retardant effectiveness in intumescent systems. Polymer Degradation and Stability[J].1989,25 (2):277-292.
    [127]A. B. Morgan, J. W. Gilman. An overview of flame retardancy of polymeric materials: application, technology, and future directions [J]. Fire and Materials.2013,37(4):259-279.
    [128]褚劲松.新型磷氮系阻燃剂的合成及阻燃性能研究[D].华中师范大学,2006.
    [129]高富业,欧育湘,田雨晴.磷-氮系膨胀型阻燃剂1,2-二(2-氧代-5,5-二甲基-1,3-二氧-2-磷杂环己基-2-亚氨基)乙烷及其同系物的合成[J].化学世界.1999,7:353-353.
    [130]李巧玲,欧育湘.一种含P-N键的双环磷酸酯化合物的合成及晶体结构[J].结构化学.2001,20(2):128-130.
    [131]李巧玲,欧育湘.新型磷-氮阻燃剂N,N'-双(2-氧-5,5-二甲基-1,3,2-二氧磷杂环己烷)-2,2'-间苯二胺的合成研究[J].化学世界.1999,5:239-239.
    [132]G. Montaudo, E. Scamporrino. Intumescent flame retardant for polymers. Ⅲ. The polypropylene-ammonium polyphosphate-polyurethane system[J]. Journal of Applied Polymer Science.1985,30 (4):1449-1460.
    [133]G. B. Huang, J. R. Gao. Functionalizing nano-montmorillonites by modified with intumescent flame retardant:Preparation and application in polyurethane[J]. Polymer Degradation and Stability.2010,95 (2):245-253.
    [134]X. L. Chen, C. M. Jiao. Microencapsulation of ammonium polyphosphate with hydroxyl silicone oil and its flame retardance in thermoplastic polyurethane[J]. Journal of Thermal Analysis and Calorimetry.2011,104 (3):1037-1043.
    [135]M. Modesti, A. Lorenzetti. Influence of different flame retardants on fire behaviour of modified PIR/PUR polymers [J]. Polymer Degradation and Stability.2001,74 (3):475-479.
    [136]陈一民,刘芳.全水发泡非卤阻燃聚氨酯硬质泡沫塑料的制备与性能[J].聚氨酯 工业.2007,22(1):24-27.
    [137]D. Enescu, A. Frache. Novel phosphorous-nitrogen intumescent flame retardant system. Its effects on flame retardancy and thermal properties of polypropylene[J]. Polymer Degradation and Stability.2013,98(1):297-305.
    [138]M. M. Aslzadeh, A. Majid. Preparation and characterization of new flame retardant polyurethane composite and nanocomposite[J]. Journal of Applied Polymer Science.2013, 127 (3):1683-1690.
    [139]M. Gao, Y. Q. Wo. Microencapsulation of intumescent flame-retardant agent and application to epoxy resins[J]. Journal of Applied Polymer Science.2013,128 (1):923-923.
    [140]J. S. Yi, Y. Liu, D. Pan. Synthesis, thermal degradation, and flame retardancy of a novel charring agent aliphatic-aromatic polyamide for intumescent flame retardant polypropylene[J]. Journal of Applied Polymer Science.2013,127 (2):1061-1068.
    [141]马志领,崔海香,张娇娇.膨胀型阻燃剂二溴新戊二醇磷酸酯三聚氰胺盐的合成及应用[J].河北大学学报:自然科学版.2008,28(3):258-262.
    [142]T. Tirri, A. Melanie,. Novel tetrapotassium azo diphosphonate (INAZO) as flame retardant for polyurethane adhesives[J]. Polymer Degradation and Stability.2012,97 (3): 375-382.
    [143]L. Chen, L. Song, P. Lv. A new intumescent flame retardant containing phosphorus and nitrogen:Preparation, thermal properties and application to UV curable coating[J]. Progress in Organic Coatings.2011,70 (1):59-66.
    [144]卢林刚,王晓,杨守生.单组份磷-氮膨胀阻燃剂的合成及成炭性能[J].高分子材料科学与工程.2012,28(7):10-13.
    [145]张丽丽,李斌.新型大分子磷氮阻燃剂的合成及其在阻燃聚碳酸酯中的应用[J].合成化学.2012,20(3):334-336.
    [146]H. Ma, L. Tong. A novel intumescent flame retardant:Synthesis and application in ABS copolymer[J]. Polymer Degradation and Stability.2007,92 (4):720-726.
    [147]L. C. Wang, J. Jiang, P. Jiang. Synthesis, characteristic of a novel flame retardant containing phosphorus and its application in poly (ethylene-co-vinyl acetate) [J]. Fire and Materials.2011,35 (4):193-207.
    [148]J. Y. Zhang. Preparation and flame retardancy of a novel flame-retardant poly (ethylene-co-vinyl acetate)/aluminum hydroxide composites containing phosphorus[J]. Polymer Composites.2011,32 (12):1970-1978.
    [149]S. Zhang, Horrocks, R. Substantive intumescent flame retardants for functional fibrous polymers[J]. Journal of Materials Science.2003,38 (10):2195-2198.
    [150]董平,秦丽华,邵伟.氯化螺环磷酸酯的合成[J].塑料.2010,1:010.
    [151]G Camino, G Martinasso, L. Costa. Thermal degradation of pentaerythritol diphosphate, model compound for fire retardant intumescent systems:Part I-Overall thermal degradation[J]. Polymer Degradation and Stability.1990,27 (3):285-296.
    [152]G. Camino, G Martinasso, L. Costa. Thermal degradation of pentaerythritol diphosphate, model compound for fire retardant intumescent systems:Part II-Intumescence step[J]. Polymer Degradation and Stability.1990,28 (1):17-38.
    [153]彭华乔.不同结构的双环笼状含磷阻燃剂的合成及其在聚丙烯阻燃改性中的应用[D].四川大学,2007.
    [154]Z. Tang, M. John. Thermal degradation behavior of rigid polyurethane foams prepared with different fire retardant concentrations and blowing agents[J]. Polymer.2002,43 (24): 6471-6479.
    [155]S. V. Levchik, E. D. Weil. Thermal decomposition, combustion and fire-retardancy of polyurethanes-a review of the recent literature [J]. Polymer International.2004,53 (11): 1585-1610.
    [156]M. Berta, C. Lindsay, G Pans. Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites[J]. Polymer Degradation and Stability.2006,91 (5):1179-1191.
    [157]D. Enescu, A. Frache, M. Lavaselli. Novel phosphorous-nitrogen intumescent flame retardant system. Its effects on flame retardancy and thermal properties of polypropylene[J]. Polymer Degradation and Stability.2013,98 (1):297-305.
    [158]F. Gao, L. Tong, Z. Fang, Effect of a novel phosphorous-nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly (butylene terephthalate) [J]. Polymer Degradation and Stability.2006,91 (6):1295-1299.
    [159]M. Modesti, A. Lorenzetti. Flame retardancy of polyisocyanurate-polyurethane foams: use of different charring agents[J]. Polymer Degradation and Stability.2002,78 (2):341-347.
    [160]K. Yang, M. Xu. Synthesis of N-ethyl triazine-piperazine copolymer and flame retardancy and water resistance of intumescent flame retardant polypropylene[J]. Polymer Degradation and Stability.2013,98(7):1397-1406.
    [161]J. Li, Y. Liu. Flame-Retarded High Density Polyethylene with an Intumescent Flame Retardant Synthesized in a Phosphorus-Containing Solvent. Polymer-Plastics Technology and Engineering[J],2013,52 (1):38-44.
    [162]S. Nie, M. Zhang, S. Yuan. Thermal and flame retardant properties of novel intumescent flame retardant low-density polyethylene (LDPE) composites [J]. Journal of Thermal Analysis and Calorimetry.2012,109 (2):999-1004.
    [163]于健.锥形量热仪的实验技术与测试分析[J].实验室研究与探索.2009,28(12):53-58.
    [164]N. Usta. Investigation of fire behavior of rigid polyurethane foams containing fly ash and intumescent flame retardant by using a cone calorimeter [J]. Journal of Applied Polymer Science.2012,124 (4):3372-3382.
    [165]郝权,蒋曙光,位爱竹.锥形量热仪在火灾科学研究中的应用[J].能源技术与管理.2009.1:72-75.
    [166]K. C. Tsai, C. F. Kuan. Study on thermal degradation and flame retardant property of halogen-free polypropylene composites using XPS and cone calorimeter[J]. Journal of Applied Polymer Science.2013,127 (2):1084-1091.
    [167]L. Du, G. Xu, Zhang, Y. Synthesis and properties of a novel intumescent flame retardant (IFR) and its application in halogen-free flame retardant ethylene propylene diene terpolymer (EPDM) [J]. Polymer-Plastics Technology and Engineering.2011,50 (4):372-378.
    [168]J. Zhan, L. Song, S. Nie. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant[J]. Polymer Degradation and Stability.2009,94 (3):291-296.
    [169]J. Zuo, Y. Su,. Preparation and properties of FR-PP with phosphorus-containing intumescent flame retardant[J]. Journal of Polymer Research.2011,18 (5):1125-1129.
    [170]B. Qu, R. Xie. Intumescent char structures and flame-retardant mechanism of expandable graphite-based halogen-free flame-retardant linear low density polyethylene blends[J]. Polymer International.2003,52 (9):1415-1422.
    [171]H. W. Xiang, C. Sun,. A novel halogen-free intumescent flame retardant containing phosphorus and nitrogen and its application in polypropylene systems [J]. Journal of Vinyl and Additive Technology,2010,16 (4):261-271.
    [172]C. Nguyen, J. Kim. Thermal stabilities and flame retardancies of nitrogen-phosphorus flame retardants based on bisphosphoramidates[J]. Polymer Degradation and Stability.2008, 93 (6):1037-1043.
    [173]范瑞兰,云冠群,边占喜.几种新型高含磷含氮聚磷酰胺阻燃剂的合成与表征[J].功能材料.2011,42(12):2157-2161.
    [174]刘芳,孙令,罗远芳.用锥形量热仪研究膨胀性非卤阻燃聚丙烯阻燃性米[J].华南理工大学学报(自然科学版).2009,37(3):10-13.
    [175]舒中俊.聚合物及其复合材料火灾危险与对策[J].工程塑料应用.1999,11:13-17.
    [176]M. L. Bras, D. S. Fois. Intumescent polypropylene/flax blends:a preliminary study[J]. Polymer Degradation and Stability.2005,88 (1):80-84.
    [177]Y. Tang, D. Y. Wang, X. K. Jing. A formaldehyde-free flame retardant wood particleboard system based on two-component polyurethane adhesive[J]. Journal of Applied Polymer Science.2008,108 (2):1216-1222.
    [178]房晓敏.4种PEPA衍生物阻燃剂的合成[J].精细化工,2007,24(4):401-403.
    [179]A. R. Tarakcilar. The effects of intumescent flame retardant including ammonium polyphosphate/pentaerythritol and fly ash fillers on the physicomechanical properties of rigid polyurethane foams[J]. Journal of Applied Polymer Science.2011,120 (4):2095-2102.
    [180]X. L. Liu, S. B. Nie. Investigation on Flame Retardant and Thermal Properties of Novel Intumescent Flame Retardant Low-Density Polyethylene Composites[J]. Advanced Materials Research.2012,548:64-67.
    [181]K. Wu, Y. Hu, L. Song. Flame retardancy and thermal degradation of intumescent flame retardant starch-based biodegradable composites [J]. Industrial & Engineering Chemistry Research,2009,48 (6):3150-3157.
    [182]L. Lu, X. Xu, Wang, D. Preparation and flame retardancy of intumescent flame-retardant polypropylene [J]. Fuhe Cailiao Xuebao(Acta Materiae Compositae Sinica). 2013,30(1):83-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700