用户名: 密码: 验证码:
液固流化床中颗粒分选行为和运动特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液固流化床分选机作为目前对粗煤泥分选最有效的方法之一,被广泛应用于国内外选煤厂。对于固体颗粒在液固流化床中的分选行为和运动特性的研究对液固流化床分选技术的进一步发展和创新具有十分重要的理论意义。本论文建立了改进后的新型液固流化床分选系统,研究了液固流化床分选理论,对颗粒流态化特性以及粗煤泥分选特性进行了试验研究和数值模拟,并利用高速动态分析系统研究了固体颗粒在分选过程中的运动特性,得出了以下结论:
     不同密度、不同粒度的颗粒具有不同的初始流态化速度,数值上与颗粒的沉降速度相等,并随着颗粒密度和粒度的增加而增加;颗粒在不同上升水速时具有不同的床层膨胀特性,初始流态化速度越低,其床层膨胀程度越高。当较窄粒度级的不同密度颗粒混合流态化时,主要体现为按密度分层,当混合颗粒的粒度级逐渐变宽时,按密度分层越来越不明显,甚至会出现按粒度分层;根据试验研究进行总结,提出当分选流化床颗粒入料下限为0.25mm时,应当避免>1mm的颗粒进入分选机,以能保证良好的分选精度。
     在液固流化床分选粗煤泥的过程中,分析了不同高度处的瞬时液相速度,并推导得出其与表观水速和颗粒松散程度的关系式:
     Vdh=Qu/dhθS·=VS/θdh=VS/1-λdh
     并指出在分选机下部的瞬时水流速度高于分选机上部。通过试验研究得出颗粒相的浓度在整体上呈现下高上低的分布,在给料口附近的颗粒浓度稍高于附近区域,柱体高度越高,高密度颗粒的含量越来越少,而低密度颗粒的含量逐渐增加,使得由颗粒和流体共同组成的混合床层的密度在整体上随着高度的升高而降低,呈现床层密度的梯度变化,仅在给料口处的床层密度稍高于附近区域,随后会继续降低。在分选过程中,粗煤泥的灰分也在床层高度上呈现下高上低的梯级分布规律。推导出床层密度与颗粒松散程度和颗粒组分性质的函数表达式:
     ρdh(v,h)=λdh(v,h)(Σi(v,h)δi(v,h)-1)+1
     通过示踪颗粒测速方法,对颗粒在分选过程中的运动进行了研究,得出颗粒在液固流化床中分选时的运动特性因颗粒密度的不同而不同,总体趋势上低密度颗粒向上运动、高密度颗粒向下运动,中等密度颗粒向床层中部运动。通过研究指出单个颗粒运动的瞬时速度是不断改变的,会在某一范围内波动,速度的波动符合正态分布规律,变化均值与同类颗粒群在相同区域内运动的平均速度接近。
     对临沂矿物局古城选煤厂的粗煤泥进行了分选,并对结果进行了整体优化,最优的操作参数组合下可以得到产品的精煤产率为71.52%,精煤灰分为6.87%,可燃体回收率为82.26%,数量效率为91.77%。通过试验结果与目前现场实际生产相结合,创新性地提出了“液固流化床分选机+旋流微泡浮选柱”配套组合进行重介中煤再选的新工艺,为选煤厂提高精煤回收率提出了新的构思。
Liquid-solid fluidized bed separator, as one of the most effective coarse coal slimeseparation, has been widely used in many coal preparation plants at home and abroad. It is ofgreat theoretical significance for further development and innovation of the liquid-solid fluidizedbed separation technology to study separation behavior and movement characteristics of solidparticles in liquid-solid fluidized bed. In this thesis, based on setting up the improved liquid-solidfluidized bed separation system and studying the liquid-solid fluidized bed separation theory,experimental study and numerical simulation is carried out for particulate fluidizationcharacteristics and coarse coal slime separation characteristics and high speed dynamic analysissystem is used to study kinetic characteristic of solid particle in the process of sorting. Theconclusions are drawn as following.
     The particles of different density and size have different initial fluidization velocity which isequal to settling velocity on numerical. The initial fluidization velocity increase with the increaseof the density and particle size. Different bed expansion characteristics come out when the risingwater velocity is different. The lower the initial fluidization velocity, the higher bed expansiondegree. When different density particles are fluidized, the particles layer by the density innarrow grain size, but blend or layer by the size in more and more wide grain size. It is proposedby tests that when the lower limit of0.25mm in fluidized bed separation, particles of>1mmshould be avoided into the separator to ensure the sorting accuracy.
     The velocity of transient liquid phase at different heights is analyzed in the process ofliquid-solid fluidized bed of coarse coal slime separation. And the relationship of the velocity oftransient liquid phase and apparent water velocity and particle loose is derived as follows:
     Vdh=Qu/dhθS·=VS/θdh=VS/1-λdh
     The paper indicate that Instantaneous flow rate at the bottom of the cylinder is higher thanthat at the upper of the cylinder. The study concludes that the concentration of the particle phasedistribution at the bottom is in high concentration and the upper is in low concentration on thewhole, and particle concentration at material inlet is higher than that at the near area. The contentof high density particles is lower and lower as column height increase, while the content of lowdensity particles is gradually higher. Eventually it leads to the reducing bed density constitutedby particles and fluid with the increase of height. The density presents gradient variation and itincrease slightly at material inlet and will continue to reduce latterly. In the process of separating, the ash of coarse slime presents cascade distribution of high bottom and low upper in bed height.The paper elicits the function expression regarding with bed density, particles loose degree andParticle composition properties.
     ρdh(v,h)=λdh(v,h)(Σi(v,h)δi(v,h)-1)+1
     When particle density is different, the kinetic characteristics of particle in the liquid-solidfluidized bed is different. On the whole, low density particles move up while high densityparticles down, and middle density particles stay in the middle of the bed. The study concludesthat instantaneous velocity of single particle is constantly changing and fluctuates in a certainrange. The fluctuating of velocity conform to the law of normal distribution. The averagefluctuating is close to the average velocity of similar particle group in the same area.
     The result of separating of coarse slime of Gu Cheng coal preparation plant in Lin YiMineral bureau has been integrative optimized. Clean coal yield of product is71.52%, clean coalash is6.87%, combustible material recovery is82.26%and recovery efficiency is91.77%at theoptimum operating parameters combination. The thesis proposes an innovative technique on thecombination of liquid solid fluidized bed separator and micro-bubble flotation column is used tore-separate middlings resulting in a new idea in improving clean coal yield in coal preparationplant.
引文
[1]叶大武.我国选煤的发展及其对策.第十届全国煤炭分选及加工学术研讨会论文集,徐州:中国矿业大学出版社,2004:3-7.
    [2]刘峰.近年选煤技术综合评价[J].太原科技,2007(7):10-14.
    [3]陈清如.中国洁净煤战略思考[J].黑龙江科技学院学报,2004,14(5):261-264.
    [4]常耀鸿,张延玺,王建设,李树人.中国煤炭工业可持续发展研究[J].太原科技,2007(7):10-14.
    [5]王怀法.近年来选煤技术的发展与思考.第十届全国煤炭分选及加工学术研讨会论文集,徐州:中国矿业大学出版社,2004:3-7.
    [6]杨俊利.我国选煤技术现状及其发展方向[J].第十届煤炭分选及加工学术研讨会论文集,徐州:中国矿业大学出版社,2004:16-18.
    [7]欧泽深.粉煤处理的若干问题探讨[R].煤炭学会年度论文,2002,12.
    [8]周晓华,赵朝勋,刘炯天.煤泥脱硫技术现状及发展方向[J].选煤技术,2002(1):52-55.
    [9]高丰.粗煤泥分选方法探讨[J].选煤技术,2006(3):40-43.
    [10]王宏.液固流化床分选粗煤泥试验研究[D].徐州:中国矿业大学,2009.
    [11]张鸿波,边炳鑫,赵寒雪.螺旋分选机结构参数对分选效果的影响[J].煤矿机械,2002(08):24-25.
    [12]齐正义.粗煤泥分选工艺分析[J].选煤技术,2008(2):46-48.
    [13]陆宝成,李梦昆.炼焦煤选煤厂选煤工艺的设计与选择[J].选煤技术,2008(4):119-121.
    [14]王建军,焦红光,谌伦建.细粒煤液固流化床分选技术的发展与应用[J].煤炭技术,2007(4):81-83.
    [15]于开平,魏镜弢,张文彬.细粒重选设备开发研究探讨[J].云南冶金,2001,30(3):10-12.
    [16]焦红光,谌伦建,铁占续.细粒煤重选设备的技术现状与分析[J].煤炭工程,2006(2):14-17.
    [17]阮明武,康为民.水介旋流器在粗煤泥回收作业中的应用[J].选煤技术,2002(3):38.
    [18]董连平.大锥角水介质旋流器的应用研究.煤炭科学技术,2004,32(11).
    [19]张悦秋,谢广元,俞和胜.煤泥重介旋流器选煤技术现状及发展[J].煤炭工程,2005(12):14-16.
    [20]王建明.西曲矿选煤厂煤泥重介系统的改造[J].山西焦煤科技,2003(12):38-39.
    [21]陈建中,沈丽娟,戴化震等.煤泥重介质旋流器分选粗煤泥的探讨[J].选煤技术,2010(4):48-50.
    [22]符东旭.煤泥重介工艺的应用效果及其作用分析.中国煤炭,2002,28(12).
    [23]孙永新.螺旋分选机在王坡选煤厂的应用[J].煤炭加工与综合利用,2007(3):37-39.
    [24]陈宸.粗粒煤泥回收的两种方法[J].煤炭加工与综合利用,2010(5):43-45.
    [25]谢国龙.粗煤泥分选设备及其应用分析.煤矿机械,2008,29(3).
    [26]刘佳喜.煤用LD7型螺旋分选机在西铭矿选煤厂的应用.山西焦煤科技,2008,5.
    [27]董玉蛟.旋流微泡浮选柱处理粗颗粒煤泥的试验研究[D].江苏徐州:中国矿业大学,2011.
    [28]连桂森.多相流基础[M].浙江大学出版社,1989,6.
    [29]倪晋仁,王光谦、张红武.固液两相流基本理论及其最新应用[M].科学出版社,1991,3.
    [30] Soo S L.Multiphase Fluid Dynamics.Beijing:Science Press and Gower Technical,1990.
    [31]刘大有.二相流体动力学.北京:高等教育出版社,1993.
    [32]周力行.湍流气粒两相流动和燃烧的理论与数值模拟.北京:科学出版社,1994.
    [33]王沁.格子Boltzmann方法理论及其在泥石流研究中的应用[D].四川成都:西南交通大学,2007.
    [34] Hinze J.O.Turbulence. McGraw-Hill Book Co.2rd,1975.
    [35] Happle J, Brenner H. Low reynolds number hudrodynamics, Prentice Hall, New Jersey,1965.
    [36] Brenner H. Rheology of two-phase systems, Ann. Rev. Fluid Mech.1966,2,137.
    [37] Batchlor G.K. Transport properties of two-phase materials with random structure, Ann.Rev.Fluid Mech.1974,6,227-255.
    [38] Herbzynski R, Pienkowska I. Toward a statistical theory of suspension, Ann.Rev.Fluid Mech.1980,12,237-269.
    [39] Leal L.G. Particle motions in a viscous fluid. Ann.Rev.Fluid Mech.1980,12,435-476.
    [40] Liu X B,Cheng L J.The General Solution of Equation of Motion for a Particle in Arbitrary FlowField.Mathematic Application,1997,10(2):93-96.
    [41]葛蔚,李静海.颗粒流体系统的宏观拟颗粒模拟.科学通报,2001,46(10):802-806.
    [42]李鹏程.粗颗粒垂直管水里提升规律研究[D].北京:清华大学,2007.
    [43]刘会娥,魏飞,金涌.提升管内稀相中颗粒的运动行为[J].化工学报,2003,54(9):1306-1310.
    [44]刘会娥,魏飞,金涌.提升管内密相颗粒团的运动行为[J].化工学报,2003,54(11):1632-1635.
    [45]陈新国,徐春明,郭印诚.用颗粒流的动力学理论模拟提升管反应器流动特征[J].化工学报,2000,51(2):264-268.
    [46]程从礼,李静海,张忠东等.气固垂直并流向上两相流流体动力学模型[J].化工学报,2001,52(8):684-689.
    [47]孔春林,黄卫星,潘永亮等.提升管气固两相流中颗粒速度的实验研究[J].四川大学学报,2002,34(3):41-45.
    [48] Cao J,Ahmadi G.Gas-particle two-phase turbulent flow in vertical duct.InternationalJournal of MultiphaseFlow,1995,21:1203-1228.
    [49] Kussin J,Sommerfeld M.Investigation of particle behaviour and turbulence modification in particle ladenchannel flow.Proceedings of International Congress for Particle Technology. Nuremberg:2001:1-8.
    [50] Mathiesen V,Solberg T.Laser-based Flow Measurements of Dilute Verticle Pneumatic Transport. ChemicalEngineering Communications,2004,191:414-433.
    [51] Rubinnow S.L. and Keller J.B. The transverse force on a spinning sphere moving in a viscous fluid[J],Fluid Mech,1961,11,447-459.
    [52] Saffman P.G. The lift on a small sphere in a slow shear flow[J], Fluid Mech,1966,22,385-400.
    [53] Corrsin S. and Lumley J. On the equation of motion for a particle in turbulet fluid[J],Appl.Sci.Res,1956,6,114-116.
    [54] Zuber N. On the dispersed two-phase flow in the laminar flow regime, Chem.Eng.Sci,1964,19,897-903.
    [55] Murray J.D. Some basic aspects of one-dimensional incompressible particle-fluid two-phase flows[J],Astronaut,1967,13,417-430.
    [56] Bagnold R.A. Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid undershear[J], Proc.R.Soc,1954,225,49-63.
    [57] Wang G Q and Fei X J. The kinetic model for granular flow, In Proceedings of the Fourth InternationalSymposium on River Sedimentations, Beijing,1989,1459-1467.
    [58]查旭东,樊建人,郑友取等.采用欧拉和拉格朗日混合模型对浓相颗粒流的研究.动力工程,2000,20(5):884-891.
    [59] Kartushinsky A,Michaelides E E.An analytical approach for the closure equations of gas–solid flowswith inter-particle collisions.International Journal of Multiphase Flow,2004,30:159-180.
    [60] Mathiesen V,Solberg T,Hjertager B H.An experimental and computational study of multiphase flowbehavior in a circulating fluidized bed.International Journal of Multiphase Flow,2000,26:387-419.
    [61] Gera D,Syamlal M,Brien T J.Hydrodynamics of particle segregation in fluidized beds.InternationalJournal of Multiphase Flow,2004,30:419-428.
    [62]欧阳洁,李静海.模拟气固两相流动非均匀结构的颗粒运动分解轨道模型[J].中国科学(B辑),1999,29(1):29-38.
    [63]李延峰.液固流化床粗煤泥分选机理与应用研究[D].江苏徐州:中国矿业大学,2008,8.
    [64]唐利刚,谢广元,赵跃民.内构件对提高干扰床细粒煤分选性能的影响[J].煤炭科学技术,2012,9:117-120.
    [65]高晓根,刘文东,魏耀东等.液固流化床内床层动态特性的CFD模拟[J].燃烧化学学报,2006,34(4):492-498.
    [66]王一平,周翠彦,朱丽等.液固分布器的数值模拟和结构优化[J].化工学报,2006,34(4):492-498.
    [67]李国美,王跃社,亢力强等.突扩圆管内液固两相流固体颗粒运动特性的DPM数值模拟[J].工程热物理学报,2008,29(12):2061-2064.
    [68]孟晓刚,倪晋仁.固液两相流中颗粒受力及其对垂直分选的影响[J].水利学报,2002(9):6-13.
    [69]倪晋仁,曲轶众.固液两相流中固体颗粒的垂直分选模型[J].水动力学研究与进展,2003(3):349-354.
    [70]曲轶众,倪晋仁,孟晓刚.固液两相流中固体颗粒的垂直分选机理[J].水动力学研究与进展,2003(4).483-488.
    [71] Tsuji Y,Kawaguchi T,Tanaka T.Discrete particle simulation of two-dimensional fluidized bed.PowderTechnology,1993,77:79-87.
    [72] Hoomans B,Kuipers J A,Briels W J,et al.Discrete particle simulation of bubble and slug formation in atwo-dimensional gas-fluidised bed:a hard-sphere approach.ChemicalEngineering Science,1996,51(1):99-118.
    [73] Hoomans B,Kuipers J,Swaaij W P.Granular dynamics simulation of segregation phenomena in bubblinggas-fluidised beds.Powder Technology,2000,109:41-48.
    [74] Andrews M J,O'Rourke P J.The multiphase particle-in-cell(MP-PIC) method for dense particulate flows.International Journal of Multiphase Flow,1995,22(2):379-402.
    [75] Tsuji Y,Tanaka T,Yonemura S.Cluster patterns in circulating fluidized beds predicted by numericalsimulation(discrete particle model versus two-fluid model).Powder Technology,1998,95:254-264.
    [76] Sommerfeld M.Validation of a stochastic Lagrangian modelling approach for inter-particle collisions inhomogeneous isotropic turbulence.International Journal of Multiphase Flow,2001,27:1829-1858.
    [77] Yamamoto Y,Potthoff M,Tanaka T,et al.Large-eddy simulation of turbulent gas-particle flow in a verticalchannel:effect of considering inter-particle collisions.Journal of Fluid Mechanics,2001,442(1):303-334.
    [78] Wang A,Liu N S,Lu X Y.Large eddy simulation of particle transport in fully developed vertical turbulentchannel flow.Journal of Hydrodynamics(Ser.B),2001,16(4):386-392.
    [79] Winkler C,Rani S L,Vanka S.Preferential concentration of particles in a fully developed turbulent squareduct flow.International Journal of Multiphase Flow,2004,30:27-50.
    [80]柳朝晖,翁磊,贺铸等.三维槽道两相湍流的大涡模拟.华中科技大学学报,2004,32(11):10-12.
    [81] Elghobashi S.Particle-laden turbulent flows:direct simulation and closure models.Applied ScientificResearch,1991,48:301-314.
    [82] Singh P,Hesla T I,Joseph D D.Distributed Lagrange multiplier method for particulate flows withcollisions.International Journal of Multiphase Flow,2003,29:495-509.
    [83]贺铸,柳朝晖,郑楚光.三维均匀各向同性两相湍流的直接模拟.工程热物理学报,2003,24(4):621-624.
    [84] Tsuji T,Narutomi R,Yokomine T,et al.Unsteady three-dimensional simulation of interactions betweenflow and two particles. International Journal of Multiphase Flow,2003,29:1431-1450.
    [85] Dorgan A,Loth E.Simulation of particles released near the wall in a turbulent boundary layer.InternationalJournal of Multiphase Flow,2004,30:649-673.
    [86] Brandon D J,Aggarwal S K.A numerical investigation of particle deposition on a square cylinder placedin a channel flow.Aerosol Science and Technology,2001,34:340-352.
    [87] Rodriguez-Paz M X,Bonet J.A corrected smooth particle hydrodynamics method for the simulation ofdebris flows.Numerical Methods for Partial Differential Equations,2003,20(1):140-163.
    [88] Yang Z L,Dinh T N,Nourgaliev R R,et al.Evaluation of the Darcy's law performance for two-fluid flowhydrodynamics in a particle debris bed using a lattice-Boltzmann model.Heat and MassTransfer,2000,36:295-304.
    [89] Feng Z G,Michaelides E E.Interparticle forces and lift on a particle attached to a solid boundary insuspension flow.Physics of Fluids,2002,14(1):49-60.
    [90] Bahary, M.Experimental and computational studies of hydrodynamics in three-phase and two-phasefluidised beds. Ph.D. Thesis, Illinois Institute of Technology,1994,Chicago.
    [91] Bouillard, J.X., Lyczkowski, R.W., Gidaspow, D.. Porosity distribution in a fluidised bed with animmersed obstacle. A.I.Ch.E. Journal.1989,35,908–922.
    [92] Briens, L.A., Ellis, N.. Hydrodynamics of three-phase fluidised bed systems examined by statistical,fractal, chaos and wavelet analysis methods. Chemical Engineering Science,2005,60,6094–6106.
    [93] Bunner, B., Tryggvason, G.. Direct numerical simulations of dispersed flows. In:Proceedings of the NinthWorkshop on Two-Phase Flow Predictions, Germany,1999,13–19.
    [94] Chen, R.C., Reese, J., Fan, L.S.. Flow structure in a three-dimensional bubble column and three-phasefluidised beds. A.I.Ch.E. Journal,1994,40,1093–1104.
    [95] Chen, Z., Zheng, C., Feng, Y.. Distributions of flow regimes and phase holdups in three-phase fluidisedbeds. Chemical Engineering Science,1995,50,2153–2159.
    [96] Cheung, S.C.P., Yeoh, G.H., Tu, J.Y.. On the numerical study of isothermal vertical bubbly flow usingtwo population balance approaches. Chemical Engineering Science,2007,62,4659–4674.
    [97] Devanathan, N., Moslemian, D., Dudukovic, M.P. Flow mapping in bubble columns using CARPT.Chemical Engineering Science,1990,45,2285–2291.
    [98] Dudukovic, M.P., Devanathan, N., Holub, R. Multiphase reactors. Models and experimental verification.Revue de l'Institute Francais du Petrole,1991,46,439–465.
    [99] Dudukovic, M.P., Larachi, F., Mills, P.L. Multiphase reactors—revisited. Chemical EngineeringScience,1999,54,1975–1995.
    [100] Feng, W., Wen, J., Fan, J., Yuan, Q., Jia, X., Sun, Y. Local hydrodynamics of gas–liquid–nanoparticles three-phase fluidization. Chemical Engineering Science,2005,60,6887–6898.
    [101] Fraguío, M.S., Cassanello, M.C., Larachi, F., Chaouki, J. Flow regime transition pointers in three-phasefluidised beds inferred from a solid tracer trajectory. Chemical Engineering and Processing,2006,45,350–358.
    [102] Gidaspow, D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions.Academic Press,1994. New York.
    [103] Grace, J.R. Shapes and velocities of bubbles rising in infinite liquids. Transactions of the Institute ofChemical Engineers.1973,51,116–120.
    [104] Grevskott, S., Sann s, B.H., Dudukovic, M.P., Hjarbo, K.W., Svendsen, H.F.Liquid circulation, bubblesize distributions, and solids movement in two-and three-phase bubble columns. Chemical EngineeringScience,1996,51,1703–1713.
    [105] Grienberger, J., Hofmann, H. Investigations and modeling of bubble column.Chemical EngineeringScience,1992,47,2215–2220.
    [106] Jakobsen, H.A., Sann s, B.H., Grevskott, S., Svendsen, H.F. Modeling of vertical bubble-driven flows.Industrial and Engineering Chemistry Research,1997,36,4052–4074.
    [107] Jianping, W., Shonglin, X. Local hydrodynamics in a gas–liquid–solid three-phase bubble columnreactor. Chemical Engineering Journal,1998,70,81–84.
    [108] Jiradilok, V., Gidaspow, D., Breault, R.W. Computation of gas and solid dispersion coefficients inturbulent risers and bubbling beds. Chemical Engineering Science,2007,62,3397–3409.
    [109] Joshi, J.B. Axial mixing in multiphase contactor—a unified correlation.Transactions of the Institute ofChemical Engineers,1980,58,155–165.
    [110] Joshi, J.B. Computational flow modelling and design of bubble column reactors.Chemical EngineeringScience,2001,56,5893–5933.
    [111] Kiared, K., Larachi, F., Chaouki, J., Guy, C. Mean and turbulent particle velocity in the fully developedregion of a three-phase fluidised bed.Chemical Engineering&Technology,1999,22,683–689.
    [112] Krishna, R., De Swart, J.W.A., Ellenberger, J., Martina, G.B., Maretto, C. Gas holdup in slurry bubblecolumns: effect of column diameter and slurry concentrations. A.I.Ch.E. Journal,1997,43,311–316.
    [113] Kulkarni, A.A., Ekambara, K., Joshi, J.B. On the development of flow pattern in a bubble columnreactor: experiments and CFD. Chemical Engineering Science,2007,62(4),1049–1072.
    [114] Larachi, F., Cassanello, M., Chaouki, J., Guy, C. Flow structure of the solids in a3-D gas–liquid–solidfluidised bed. A.I.Ch.E. Journal,1996,42,2439–2452.
    [115] Lee S.L, De Lasa H.I. Phase holdups in three-phase fluidised beds. A.I.Ch.E.Journal,1987,33,1359–1370.
    [116] Li Y., Zhang J., Fan L.-S. Numerical simulation of gas–liquid–solid fluidization systems using acombined CFD–VOF–DPM method: bubble wake behavior.Chemical Engineering Science,1999,54,5101–5107.
    [117] Matonis, D., Gidaspow, D., Bahary, M. CFD simulation of flow and turbulence in a slurry bubblecolumn. A.I.Ch.E. Journal,2002,48,1413–1429.
    [118] Mitra-Majumdar, D., Farouk, B., Shah, Y.T. Hydrodynamic modeling of three-phase flows through avertical column. Chemical Engineering Science,1997,52,4485–4497.
    [119] Muroyama, A., Fan, L.-S. Fundamentals of gas–liquid–solid fluidization. A.I.Ch.E.Journal,1985,30,1–34.
    [120] Padial, N.T., Van der Heyden, W.B., Rauenzahn, R.M., Yarbro, S.L. Three-dimensional simulation of athree-phase draft-tube bubble column. Chemical Engineering Science,2000,55,3261–3273.
    [121] Pan, Y., Dudukovic, M.P., Chang, M. Dynamic simulation of bubbly flow in bubble columns. ChemicalEngineering Science,1999,54,2481–2489.
    [122] Pan, Y., Dudukovic, M.P., Chang, M. Numerical investigation of gas-driven flow in2-D bubble columns.A.I.Ch.E. Journal,2000,46,434–449.
    [123] Panneerselvam, R., Savithri, S., Surender, G.D. CFD based investigations on hydrodynamics and energydissipation due to solid motion in liquid fluidised bed. Chemical Engineering Journal,2007,132,159–171.
    [124] Patil, D.J., van Sint Annaland, M., Kuipers, J.A.M. Critical comparison of hydrodynamic models for gas–solid fluidised beds—Part I: bubbling gas–solid fluidised beds operated with a jet. ChemicalEngineering Journal,2005,60,57–72.
    [125] Rafique, M., Chen, P., Dudukovic, M. Computational modeling of gas–liquid flow in bubble columns.Reviews in Chemical Engineering,2004,20(3–4),225–375.
    [126] Raw, M.J. A coupled algebraic multigrid method for the3-D Navier Stokes equations. In: Proceedingsof the Tenth GAMM-Seminar, Notes on Numerical Fluid Mechanics,1994,49,204–215.
    [127] Rhie, C.M., Chow, W.L. A numerical study of the turbulent flow past an isolated airfoil with trailingedge separation. AIAA Journal,1982,21,1525–1532.
    [128] Rigby, G.R., Van Brokland, G.P., Park, W.H., Capes, C.E. Properties of bubbles in three-phase fluidisedbed as measured by an electroresistivity probe. Chemical Engineering Science,1970,25,1729–1741.
    [129] Roy, S., Dudukovic, M.P. Flow mapping and modeling of liquid–solid risers.Industrial EngineeringChemistry and Research,2001,40,5440–5454.
    [130] Roy, S., Kemoun, A., Dahhan, Al., Dudukovic, M.P. Experimental investigation of the hydrodynamicsin a liquid–solid riser. A.I.Ch.E. Journal,2005,51,802–835.
    [131] Sato, Y., Sadatomi, M., Sekoguchi, K. Momentum and heat transfer in two-phase bubble flow.International Journal of Multiphase Flow,1981,7,167–177.
    [132] Schallenberg, J., En, J.H., Hempel, D.C. The important role of local dispersed phase hold-ups for thecalculation of three-phase bubble columns. Chemical Engineering Science,2005,60,6027–6033.
    [133] Schijnung, B. Numerische Simulation teilchenbeladener vertikaler Rohrstromungen. Ph.D. Thesis,1983,University Karlsruhe.
    [134] Sokolichin, A., Eigenberger, G., Lapin, A. Simulation of buoyancy driven bubbly flow: establishedsimplifications and open questions. A.I.Ch.E. Journal,2004,50,24–45.
    [135] Tomiyama, A. Struggle with computational bubble dynamics. In: Third International Conference onMultiphase Flow, ICMF'98,1998, Lyon, France.
    [136] Wang, F., Mao, Z.S., Wang, Y., Yang, C. Measurement of phase holdups in liquid–liquid–solidthree-phase stirred tanks and CFD simulation. Chemical Engineering Science,2006,61,7535–7550.
    [137] Warsito, W., Fan, L.S. Measurement of real-time flow structures in gas–liquid and gas–liquid–solidflow systems using electrical capacitance tomography (ECT). Chemical Engineering Science,2001,56,6455–6462.
    [138] Warsito, W., Fan, L.S. ECT imaging of three-phase fluidised bed based on three-phase capacitancemodel. Chemical Engineering Science,2003,58,823–832.
    [139] Wen, C.Y., Yu, Y.H. Mechanics of fluidisation. Chemical Engineering Progress Symposium Series,1966,62,100–111.
    [140] Yu Y.H., Kim S.D. Bubble characteristics in the radial direction of three-phase fluidised beds. A.I.Ch.E.Journal,1988,34,2069–2072.
    [141] Yu, Y.H., Kim, S.D. Bubble-wake model for radial velocity profiles of liquid and solid phases inthree-phase fluidised beds. Industrial and Engineering Chemistry Research,2001,40,4463–4469.
    [142] Zhang, X., Ahmadi, G. Eulerian–Lagrangian simulations of liquid–gas–solid flows in three-phaseslurry reactors. Chemical Engineering Science,2005,5089–5104.
    [143] S. Benyahia, H. Arastoopour, T.M. Knowlton, H. Massah, Simulation of particles and gas flow behaviorin the riser section of a circulating fluidized bed using the kinetic theory approach for the particulatephase, Powder Technology,2000,112,24–33.
    [144] H. Arastoopour, D. Gidaspow, Analysis of IGT pneumatic conveying data and fast fluidization using athermo-hydrodynamic model,Powder Technology,1979,22(1),77–87.
    [145] J. Sinclair, R. Jackson,Gas-particle flowin a vertical pipewith particle–particle interactions, AIChEJournal,1989,35(9),1473–1486.
    [146] K. Agrawal, P. Loezos, M. Syamlal, S. Sundaresan, The role of meso-scale structures in rapid gas–solid flows, Journal of Fluid Mechanics,2001,445,151–185.
    [147]陈子彤等.干扰床分选机工作原理及分选理论基础研究[J].煤炭工程,2006(4).
    [148] Drummond R,Nicol S,Swanson A. A teetered bed separators-the Australian experience[J].Journal of thesouth African institute of mining and metallurgy,2002,102(7):385-392.
    [149] Galvin K P, Pratten S J, Nicol S K. Dense medium separation using a teetered bed separator[J]. MinerEng,1999,12(9):1059–1067.
    [150] Galvin KP, Pratten SJ, Lambert N, Callen AM, Lui J. Influence of a jigging action on the gravityseparation achieved in a teetered bed separator. Miner Eng2002;15(12):1199–202.
    [151] Biswajit Sarkar, Avimanyu Das, S.P. Mehrotra. Study of separation features in floatex density separatorfor cleaning fine coal.ScienceDirect,2008,86.
    [152] Sarkar B, Das A, Mehrotra SP. Study of separation features in floatex density separator for cleaning finecoal. Int J Miner Process2008;86(1/4):40–9.
    [153] Sarkar B, Das A, Roy S, Rai SK. In depth analysis of alumina removal from iron ore fines using teeteredbed gravity separator. Miner Process Extr M (Trans. Inst. Min. Metall. C)2008;117(1):48–55.
    [154] Das A, Sarkar B, Biswas P, Roy S. Performance prediction of floatex density separator in processing ironore fines–a relative velocity approach. Miner Process Extr M (Trans. Inst. Min. Metall. C)2009;118(2):78–84.
    [155] Das A, Sarkar B, Mehrotra SP. Prediction of separation performance of floatex density separator forprocessing of fine coal particles. Int J Miner Process2009;91(1/2):41–9.
    [156] Mukherjee AK, Mishra BK, Kumar RV. Application of liquid/solid fluidization technique inbeneficiation of fines. Int J Miner Process2009;92(1/2):67–73.
    [157] Sarkar B, Das A. A comparative study of slip velocity models for the prediction of performance offloatex density separator. Int J Miner Process2010;94(1/2):20–7.
    [158] Galvin KP, Callen A, Zhou J, Doroodchi E. Performance of the Reflux Classifier for gravity separation atfull scale. Miner Eng2005;18(1):19–24.
    [159] Galvin KP, Zhou J, Walton K. Application of closely spaced inclined channels in gravity separation offine particles. Miner Eng2010;23(4):326–38.
    [160] Galvin KP, Callen AM, Spear S. Gravity separation of coarse particles using the Reflux Classifier. MinerEng2010;23(4):339–49.
    [161]郭占科.RC1800粗煤泥分选机的应用分析[J].山西煤炭,2011,4:75-76.
    [162]赵宏霞.干扰床分选技术的研究.中国矿业大学硕士学位论文,2005.
    [163]刘文礼等.干扰床分选机分选粗煤泥的规律研究[J].选煤技术2007(4).
    [164]吕一波.流化床粗煤泥分选床层特性[J].黑龙江科技学院学报2012(3):225-229.
    [165]张秀峰.液固流化床的流场模拟与结构优化研究[D].江苏徐州:中国矿业大学,2011,6.
    [166]卢瑜,王迪业.XGR系列干扰床分选机的研制与应用[J].选煤技术,2009,3:22-26.
    [167]桂夏辉,李延锋,刘炯天等.液固流化床内颗粒沉降特性试验研究[J].煤炭学报,2010,35(8):1374-1379.
    [168]于宁涛,铁占续,舒建峰等.液固流化床内颗粒沉降的基础研究[J].矿山机械,2011,8:112-116.
    [169]张卫义,陈罕,方陈靖.液固流化床最小流态化速度计算方法改进[J].石油化工设备,2011,1:5-9.
    [170]张卫义,方陈靖,陈罕.液固流化床固体颗粒终端速度V-t研究[J].石油化工设备,2011,2:10-13.
    [171]楚振峰.基于PTV技术的固体颗粒在TBS中运动规律研究[D].江苏徐州:中国矿业大学,2011,6.
    [172]高征,刘文礼,梁鹏飞等.稳流斜板对干扰床分选效果的影响[J].煤炭科学技术,2011,11:126-129.
    [173]王光谦,倪晋仁.固液两相流流速分布特性的试验研究[J].水利学报,1992(11):43-49.
    [174]王殿常,禹明忠,王兴奎.明槽水流中颗粒运动特性的试验研究.应用基础与工程科学学报,2000,8(3):301-309.
    [175] Saffman P.G. The lift on a small sphere in a slow shear flow[J], Fluid Mech,1966,22,385-400.
    [176] Murray J.D. Some basic aspects of one-dimensional incompressible particle-fluid two-phase flows[J],Astronaut,1967,13,417-430.
    [177]骆振福,赵跃民.流态化分选理论[M].徐州:中国矿业大学出版社,2002.
    [188]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700