用户名: 密码: 验证码:
电磁谐波活齿传动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了一种新型的机电集成传动装置——电磁谐波活齿传动系统。该系统将电磁谐波传动与活齿传动集成起来,可实现系统的低速大扭矩输出。由于该装置中没有高速旋转的机械部件,因此可以获得更快的响应速度,并且系统的体积、重量均较小。
     本文给出了电磁谐波活齿传动的驱动原理,将传动的关键零件——柔轮简化为圆环薄壳,在弹性圆环理论的基础上,建立了电磁力作用下柔轮的力学模型,给出了电磁力的表达式,推导了电磁力作用下柔轮的位移、内力及应力计算公式,分析了其沿轴向、周向及径向坐标的分布规律,讨论了其随系统参数的变化规律。对活齿进行了受力分析,得到了系统的输出力矩,分析了输出力矩特性以及随系统参数的变化规律。
     针对传动中柔轮在磁场力作用下发生变形,导致气隙长度随时改变这一现象,引入气隙函数对磁场进行分析,给出了电磁谐波传动考虑定子槽和柔轮变形的气隙系数,进而得到电磁谐波活齿传动总的气隙系数,从而可以更加准确地描述磁场及柔轮受力状态。
     分析系统中存在的电磁-结构耦合关系,进行离散化处理,通过引入运动网格场域,建立了电磁场和结构场的耦合控制方程,讨论了两场之间存在的耦合条件和边界条件,推导出位移和力在两个物理场交界面上传递的表达式,得到了柔轮的径向位移及轴向位移分布。按照耦合问题的迭代求解步骤,对系统进行了机电耦合有限元模拟,模拟结果证实了理论分析的正确性。
     对电磁谐波活齿传动的电磁损耗和机械损耗问题进行了研究,分析了铜损及铁损的影响因素以及不同功率时铜损、铁损相对总电磁损耗的比例,讨论了机械损耗的影响因素及影响规律。建立了电磁谐波活齿传动系统三维温度场计算模型,采用迭代的方法对温度场进行了计算,得到了样机的温度分布曲线。
     依据电磁谐波活齿传动原理,进行了电磁谐波活齿传动样机的结构设计、加工制作和原理性实验。
In this paper, a new type of integrated electromechanical transmission device,electromagnetic harmonic movable teeth transmission system, was researched. As theskillfully combine of electromagnetic harmonic transmission with movable teethtransmission, this system can get low speed and large torque output. The system can get afaster response speed, smaller size and weight, due to the lack of high-speed rotatingmachine parts of the device.
     The driving principle of harmonic electromagnetic movable tooth transmission wasgot, as assuming flexspline to be shell, based on elastic ring theory, the flexspline forcemodel under action of electromagnetic force was created, displacement, force and stresscalculation formula was derived, their distribution along with axial and circumferentialcoordinates is analyzed, their variation laws with the system parameter variation arediscussed. The stress of movable tooth is analyzed, and the system output torque isobtained, finally this output torque features and variation laws with the system parametervariation are analyzed.
     Inwiew of the phenomenon of flexspline will deform in the magnetic field, thisdeformation will change the air gap length at any moment, the concept of air gap functionwas introduced to analyse magnetic field, the harmonic transmission air gap coefficientwas given by considering stator slots and deformation flexspline, then the total gapcoefficient of harmonic electromagnetic movable tooth transmission was got, therefore themagnetic field and flexspline electromagnetic force state could be described accurately.
     By analyzing the electromagnetic-structural coupling relationship of the system andconducting discretization, governing equations of electromagnetic and structural fieldwere established by applying moving grid field, coupling conditions and boundaryconditions exist between two fields were discussed, expression that displacement andforce transfer in both physical field interface were derived, distribution of flexspline radialand axial displacement was got. According to coupling problem iterative solving steps, thesystem was simulated with electromechanical coupling finite element, results confirm thetheory analysis is correct.
     The electromagnetic losses and mechanical losses of harmonic electromagneticmovable tooth transmission were studied. Influencing factors of copper losses and ironlosses, ratio relative to the total losses in different power, and influencing factors and rulesof mechanical power losses were analyzed. Three-dimensional temperature field model forelectromagnetic harmonic movable teeth transmission system was established, calculatedtemperature field by iterative method, prototype temperature distribution curve was got.
     According to harmonic electromagnetic movable teeth transmission principle, thedesign, manufacture and principle experiment of harmonic electromagnetic movable toothtransmission prototype were conducted.
引文
[1] Rossetti M A, Macor A S. Multi-objective Optimization of Hydro-mechanical Power SplitTransmissions [J]. Mechanism and Machine Theory,2013,62(4):112-128.
    [2] Tjahjowidodo T, Bender F. Theoretical Modelling and Experimental Identification of NonlinearTorsional Behaviour in Harmonic Drives[J]. Mechatronics,2013,23(5):497-504.
    [3] Wentzell S, Nesbitt R S. Measuring Strain Using Digital Image Correlation of Second HarmonicGeneration Images[J]. Journal of Biomechanics,2013,46(12):2032-2038.
    [4] Hosseinkhani Y, Erkorkmaz K. High Frequency Harmonic Cancellation in Ball-screw Drives[J].Procedia CIRP,2012.1:615-620.
    [5] Tang J Y, Feng Y, Chen X M. The Principle of Profile Modified Face-gear Grinding based on DiskWheel[J]. Mechanism and Machine Theory,2013,70(12):1-15.
    [6] Иванов M. H.谐波齿轮传动[M].沈允文,李克美.译.北京:国防工业出版社,1987:1-613-16.
    [7] Musser C W. Strain Wave Gearing. US Patent2906143:85-89.
    [8]秦宇辉,辛洪兵,李增,肖亚平.谐波齿轮减速器传动性能的实验研究[J].北京工商大学学报(自然科学版),2004,22(3):17-20.
    [9]钟健,宋志刚,朱梅.基于谐波传动技术的气动步进马达设计研究[J].液压与气动,2010.1:49-52.
    [10] Ishikawa S, Kiyosawa Y. Study of Three-dimensional Tooth Engagement on the Cup-shaped StrainWave Gearing. Composite Structures,1996,22(5):589-595.
    [11] Rathindranath M. A Novel Harmonic Drive with Pure Involute Tooth Gear Pair[J]. Journal ofMechanical Design,2004,126(1):178-182
    [12] Han S J, Se H O. A Study on Stress and Vibration Analysis of a Steel and Hybrid Flexspline forHarmonic Drive. Composite Structures[J],1999,47(1):827-833.
    [13] Kiyosawa.Y, Sasahara. M. Development of a New Thin Harmonic Drive[C]. JSME, Robotics andMechatronics Lecture Meeting Paper A,1992:943-948.
    [14] Rached D, Fathi H, Prasanna S. A New Dynamic Model of Hysteresis in Harmonic Drives. IEEETransactions on Industrial Electronics[J],2003,50(6):1165-1171.
    [15] Hee S O, Kwang S J, Lee D G. Design and Manufacture of the Composite Flexspline of aHarmonic Drive with Adhesive Joining. Composite Structures[J],1994,28(3):307-314.
    [16] Stephen M. Phillips M M. Effect of Rotor Slip on the Gear Ratio of Harmonic Side-driveMicromotors. Sensors and Actuators A: Physical,1993,36(3):249-254.
    [17] Benhabib B, Dai M Q. Mechanical Design of a Modular Robot for Industrial Applications. Journalof Manufacturing Systems,1991,10(4):297-306.
    [18]沈允文.谐波齿轮传动的基本原理及运动学[J].齿轮,1977,4:46-53.
    [19]沈允文.谐波齿轮传动的几何理论[J].齿轮,1986,5:51-56.
    [20]尤竹平,马清武.谐波齿轮传动的运动分析及对柔轮强度计算的几点看法[J].大连工学院学报,1978,4:86-94.
    [21]尹仪方,夏平畴,张勇等.太阳能跟踪聚光系统的研究[J].太阳能学报,1984,5(1):58-64.
    [22]司晨光.谐波齿轮传动[M].北京:国防工业出版社,1978:23-36.
    [23]饶振纲.关于200的谐波齿轮传动设计计算[J].工程机械,1979,8:16-20.
    [24]吴从忻.关于平面谐波传动与齿轮传动几个基本问题的数学处理[J].应用数学学报,1976,1:69-77.
    [25]吴从忻.计算平面谐波传动共轭齿廓的数值方法[J].应用数学学报,1979,2(1):18-22.
    [26]吴克成.塑料谐波传动柔性齿轮强度计算[J].国外塑料,1988,4:48-53.
    [27]顾钟秀.高精度谐波传动刚轮柔轮的检测[J].光学机械,1978,6:36-40.
    [28]曹廷驹.动力柔轮传动中柔轮强度计算方法[J].华北水利水电学院学报,1981,4:91-95.
    [29]施祖康,肖诗林,迟云.谐波齿轮传动的机械传动效率[J].南京理工大学学报,1985.4:107-117.
    [30]姚汝平.填补我国空白的“谐波减速器标准系列产品”在北京正式通过鉴定[J].齿轮,1985.9(5):58.
    [31]杨世雄,李克美,范又功.国内外谐波传动系列化、标准化简介[J].齿轮,1984,8(5):1-8.
    [32]韩健华,范祖尧.谐波传动中杯形柔轮的应力分析[J].齿轮,1987,11(5):6-9.
    [33]曹廷驹.动力谐波齿轮传动的共轭运动分析[J].华北水利水电学院学报,1982,1:103~109.
    [34]陈志光,曹廷驹.谐波齿轮的瞬时啮合研究[J].武汉水利水电学院学报,1983,8:55~64.
    [35]杨志刚,郑志峰,杨子万.链条谐波传动的动力学分析[J].机械设计,1987.6:41~44.
    [36]任德清.谐波齿轮传动中柔性轴承寿命的计算[J].轴承,1990.3:9-12.
    [37]谢金瑞,何惠阳.精密步进谐波传动的研究[J].光学机械,1982.1:50-58.
    [38]叶庆泰,朱正.谐波传动的动态特性及其减震措施[J].传动技术,1994.2:1-4.
    [39]颜毅华,尤竹平.电磁谐波传动内的磁场问题[J].机械传动,1993,17(1):4-7.
    [40]关崇复,袁盛治.谐波传动柔轮筒体应力计算[J].机械强度,1994,16(1):24-27.
    [41]翁立军,汪晓萍.谐波齿轮传动减速器的固体润滑失效机理[J].摩擦学学报,1997,17(2):178-181.
    [42]赵阳,李玉光.工业机器人中谐波传动的振动[J].制造技术与机床,1997.1:32-33.
    [43]辛洪兵,张庆夫.四齿差谐波齿轮传动的啮合原理[J].北京轻工业学院学报,1998,16(4):20-24.
    [44]陶学恒,尤竹平.谐波齿轮传动系统动态特性的测试与分析[J].大连理工大学学报,1992,32(5):550-554.
    [45]任秉银,白绥滨.新型电磁端面谐波传动装置[J].哈尔滨工业大学学报,1994,26(6):94-98.
    [46]朱林剑,高文泉,包海涛等.基于超磁致伸缩材料的谐波传动研究[J].磁性材料及器件,2009,40(3):35-37.
    [47]陈晓霞,林树忠,刑静忠.谐波齿轮传动中基于柔轮装配变形的共轭精确算法[J].中国机械工程,2010,21(17):2053-2057.
    [48]刘文芝,张乃仁,张春林等.谐波齿轮传动中杯形柔轮的有限元计算与分析[J].机械工程学报,2006,42(4):52-57.
    [49]秦磊,许立忠.机电集成静电谐波传动的动力学特性[J].振动与冲击,2008,27(12):64-68.
    [50]吕辉龙.超磁致伸缩驱动的谐波传动驱动装置设计研究[D].大连:大连理工大学,2013:58-66.
    [51]肖前进.啮齿式谐波传动中短环形柔轮变形及应力[J].塑性工程学报,2012,19(6):28-34.
    [52]董惠敏,张春懋.齿啮式谐波传动柔轮负载变形函数及齿形修正的研究[J].机械传动,2011,35(7):7-11.
    [53]赵杰亮.谐波传动对柔性机械臂动力学特性的影响[J].清华大学学报,2013,53(4):482-486.
    [54]张勇.仿人机器人用1/4比例柔轮谐波传动啮合理论与分析[D].哈尔滨:哈尔滨工业大学,2011:69-86.
    [55] Cristofaro S D, Stefanini C. Electromagnetic Wobble Micromotor for Microrobots Actuation[J].Sensors and Actuators A: Physical,2010,161(1-2):234-244.
    [56] Colak I, Kabalci E. Practical Implementation of a Digital Signal Processor Controlled MultilevelInverter with Low Total Harmonic Distortion for Motor Drive Applications[J]. Journal of PowerSources,2011,196(18):7585-7593.
    [57]郑德林,李华敏.端面谐波步进电机的研究[J].机械工程学报,1993,29(5):96-98.
    [58]尚振国,尤竹平.电磁式谐波齿轮传动控制系统[J].制造技术与机床,1997,(3):7-10.
    [59] Ishida M, Hamaguchi J, Shirasuka K, et al. A New Friction-type Piezoelectric Motor UtilizingMechanism of the Strain Wave Gearing. IEEE Transactions on Industrial Electronics,1992,39(1):30-35.
    [60] King T, Xu W. Flexure Hinges for Piezoactuator Displacement Amplifiers: Flexibility, Accuracy,and Stress Considerations[J]. Precision Engineering,1996,19(1):4-10.
    [61] Tim G. King, Wei Xu. Design and Characteristics of Piezomotors Using Flexure-hingedDisplacement Amplifiers. Robotics and Autonomous Systems,1996,19(2):189-197.
    [62] Barth O. Harmonic Piezodrive—Miniaturized Servo Motor[J]. Mechatronics,2000,10(4-5):545-554.
    [63]邢继春.旋转惯性压电电机研究[D].秦皇岛:燕山大学,2012:109-123.
    [64]沈允文,叶庆泰.谐波齿轮传动的理论和设计[M].北京:机械工业出版社,1984:123-134.
    [65]程耿东.工程结构优化设计基础[M].大连:大连理工大学出版社,2012:98-110.
    [66]励鹤鸣,励庆孚.电磁减速式电动机[M].北京:机械工业出版社,1982:176-188.
    [67] Pryor P, Jennings E. Harmonic Mitigation for AC Variable Frequency Pump Drives[J]. WorldPumps,2007,(488):26-28.
    [68] Hopkins J B, Panas R M. Design of flexure-based precision transmission mechanisms using screwtheory[J]. Precision Engineering,2013,37(2):299-307.
    [69] Liu J, Liu K. A Tunable Electromagnetic Vibration Absorber: Characterization and Application.Journal of Sound and Vibration,2006,295(3–5):708-724.
    [70] Шувалоа С А, Пантнюхин П Я. Исследование Волновой Элктромагнитной Пипа Респансин,Известия Вузоз[J], Машиностроение,1973,.5:86-90.
    [71] Spring W B. Electromagnetic harmonic drive: U.S. Patent3,169,201[P].1985-2-9.
    [72] Ting C S, Chang Y N. Observer-based Backstepping Control of Linear Stepping Motor[J]. ControlEngineering Practice,2013,21(7):930-939.
    [73] Shi J z, Zhang H m, Liu X. Novel Integrated Position Measurement Unit for Stepping Motor ServoControl[J]. Measurement,2011,44,(1):80-87.
    [74] George C. Newton Jr. Performance Capabilities of Two Types of Variable-reluctance SteppingMotors. Automatica,1974,10(3):257-265.
    [75] Harmonic Drive Division, USM Corporation,Responsyn Stepping Motors, Machine Design,1979,51(4):22.
    [76] Rafael E. Nonlinear Time-harmonic Finite-Element Analysis of Coupled Circuits and Fields inLow Frequency Electromagnetic Devices.Finite Elements in Analysis and Design,2010,46(10):829-837.
    [77] Zienkiewicz J, Lyness D. Three-dimensional Magnetic Field Determination Using a ScalarPotential, Magnetics. IEEE Transactions on,1977,13(5):1649-1656.
    [78] Misra A, Prasad R C, Vishal S. Effect of Peierls’ Stress on the Electromagnetic Radiation DuringYielding of Metals[J]. Mechanics of Materials,2010,42(5):505-521.
    [79]祝翠荣.机电集成静电谐波微传动系统机电耦合动力学[D].秦皇岛:燕山大学,2006:1-6.
    [80] Myron S. Gearless Speed Reducers[J]. Machine Design,1984,11(8):140~141.
    [81] В.И.Безруков. О зубчатой эвольвентной передаче, составленной из конический колес спроизвольным расположением и хосей, Известия Вузов[J].Машиностроение,1963,(2):12~15.
    [82] Tadao T, Takasu I. An Optimum Design of Planetary Reduction Gear Using Rollers as GearTeeth[J]. Bulletin of The JSME,1980,123(183):1530~1538.
    [83] Р.М.Игнатищев. Общие сведения о синусошариковых передачах[J]. Вестник Машиностроения,1986,(2):24~28.
    [84] В.И.Безруков, Элеметы геомегрцческой теорий пространственных зубчатных передач,составленных из эвольвентно-конических колес, Теория передач в машинах,1966,(4):26~30.
    [85] White G. Compounded Two-path Variable Ratio Transmissions with Coaxial Gear Trains.Mechanism and Machine Theory,1976,11(3):227-240.
    [86] Edward C, Tibbals J, High N C. Wobble Type Axial Speed Reducer Apparatus[P]. United StatesPatent,1986,4563915.
    [87] Eyer E, Dipl-lng et al. Movable Teeth Transmission[P]. Deutsches Patentamt,1990, P3920317.4.
    [88] Hidetsugu T, Hiroshi M, Kenji I. Fundamental Analysis of Cycloid Ball Reducer[R](1streport).JSPE,1988,54(11):2101~2106.
    [89] Hidetsugu T, Hiroshi M, Kenji I. Fundamental Analysis of Cycloid Ball Reducer[R](4threport).JSPE,1997,56(4):751~756.
    [90]周有强,王宏猷.套筒活齿少齿差传动装置.中国专利,1988, CN87209455U.
    [91]高靖中,赵纯.介绍一种新型传动——滚道减速器[J].齿轮,1981.2:35-40.
    [92]陈仕贤.活齿针轮减速机的设计和试验[J].传动技术,1989.1:37-45.
    [93]刘生林,赵宗涛,吴序堂等.推杆减速器的优化设计[J].机械设计,1999,16(1):44~46.
    [94] Wu Xutang, Zao Zongtao, Liu Shenglin. Study on a New Type of Swing Link Speed ReducerProceedings of Ninth World Congress on the Theory of Machines and Mechanisms, Milan, Italy,1995:76~80.
    [95]徐礼钜,梁尚明.滚子活齿行星减速器强度的模糊可靠性设计[J].机械传动,1998,22(3):3~4.
    [96]梁尚明,徐礼钜.摆动活齿减速器的多目标模糊优化设计[J].机械传动,1999,22(3):11~13.
    [97]安子军,周加龙,曲继方.新型摆杆活齿传动齿形综合研究[J].机械传动,2003,27(2):12-13.
    [98]安子军,周加龙.摆杆活齿传动参数优化设计研究[J].机械传动,2006,30(2):30-31.
    [99]安子军,高飞.摆杆活齿传动啮合刚度分析[J].机械制造,2007,45(510):3-5.
    [100]安子军,胡瑞雪.摆线钢球行星传动齿廓误差的参数分析[J].机械传动,2007,31(2):63-65.
    [101]安子军,张鹏,杨作梅.摆线钢球行星传动系统参数振动特性研究[J].工程力学,2012,29(3):244-251.
    [102]栾振辉,范英铭.套筒式活齿泵的齿形理论[J].安徽理工大学学报(自然科学版),2004,24(4):33-36.
    [103]Li Mingshan, Li Huamin, Zhou Youqiang. Study on Gap Distribution in Movable Sleeve-toothDrive[J]. Chinese Journal of Mechanical Engineering(English Edition),1997,(4):12~15.
    [104]尹成湖,曲继方.套筒活齿传动的理论研究[J].河北机电学院学报,1991,(2):28~30.
    [105]Dong Zhifeng, Zhou Youqiang. An Equivalent Mechanism Method for Analyzing Forces in theMovable Sleeve Tooth Transmission with Small Tooth Difference.Proceedings of Ninth WorldCongress on The Theory of Machines, Michanisms, Milan Italy,1995:113~116.
    [106]周建军,陈子辰.摆线钢球行星传动接触疲劳强度研究[J].机械传动,2000,24(3):27~29.
    [107]周建军.摆线钢球行星传动机构简介[J].机械设计与研究,1997,(2):22~23.
    [108]Zhou Jianjun. Computerized Design of Cycloidal Gear Drive with Improved Gear ToothModification.Proceedings of the International Conference on Mechanical Transmissions2001,167~170.
    [109]黄清世,肖志宏,黄涛.径向直动推杆活齿传动若干问题的研究[J]石油机械,1998,26(12):36~39.
    [110]张均富,梁尚明,徐礼钜.摆动活齿减速器传动系统扭矩振动建模[J].四川大学学报,2002,34(1):81~84.
    [111]梁尚明,徐礼钜,杨忠福.摆动活齿传动啮合刚度的研究[J].机械传动,2000,24(3):20~23.
    [112]梁尚明,徐礼钜,张莉.摆动活齿传动的强度计算[J].机械,2000,27(1):18-19.
    [113]徐礼钜,梁尚明.摆动活齿减速器的效率[J].机械设计,2002(7):13~14.
    [114]梁尚明,张杰,周荣亮等.二齿差摆动活齿传动的虚拟装配与运动学仿真[J].煤矿机械,2012,33(1):40-42.
    [115]梁尚明,黄博,张杰等.凸轮激波摆动活齿传动啮合效率的研究[J].四川大学学报(工程科学版),2012,44(1):192-195.
    [116]梁尚明,徐礼钜.摆动活齿传动系统的模糊故障树分析[J].四川大学学报(工程科学版),2000,32(5):71~74,85.
    [117]安子军,曲志刚,王广欣.基于模糊理论的摆线钢球行星传动接触疲劳强度可靠性研究[J].中国机械工程,2002,13(23):2010-2012.
    [118]张文举,安子军.基于振动理论的摆动活齿传动机构动态优化设计[J]机械设计2009,26(1):33-35.
    [119]孙国庆,王文中,孙玉鑫.活齿与波形轮接触处油膜厚度计算[J].机械,2000,27(4):20~21.
    [120]宜亚丽.摆动活齿传动性能分析与设计研究[D].秦皇岛:燕山大学,2010:69-73.
    [121]宜亚丽,安子军.摆动活齿传动啮合副运动状态分析与共轭齿廓滑动率研究[J].机械传动,2013,37(4):6-11.
    [122]李瑰贤,孙瑜,李笑等.圆柱正弦活齿传动受力分析研究[J].哈尔滨工业大学学报2003,35(11):1381~1383.
    [123]李瑰贤,杨伟君.滚柱活齿传动的故障树分析[J].机械科学与技术,2002,21(6):904~908.
    [124]李瑰贤,孙瑜,胡长胜.圆柱正弦活齿传动接触强度的模糊可靠性研究[J].机械工艺师,2004.(6):29~31.
    [125]李瑰贤,于广滨,孙瑜.基于灰色关联的微小型活齿传动模糊故障树分析[J].中国工程机械学报,2006,4(2):127~132.
    [126]李剑锋,何爱颖,董新蕊.凸轮激波滚动活齿传动的几何设计[J].机械工程学报,2011,47(1):24~29.
    [127]李剑锋,董新蕊.凸轮激波滚动活齿传动啮合力分析方法[J].机械工程学报,2008,44(5):39~44.
    [128]李剑锋,董新蕊.凸轮激波滚动活齿传动内齿轮齿廓修形方法[J].北京工业大学学报,2008,34(10):1009~1013.
    [129]李剑锋,周丽艳,董新蕊.结构参数对凸轮激波滚动活齿传动重合度及齿形特性的影响[J].北京工业大学学报,2009,35(8):1021~1025.
    [130]李菲,赵成刚.活齿端面谐波齿轮啮合副修形后的啮合总面积[J].武汉理工大学学报,2010,32(15):80-84.
    [131]白鑫,王素.离散齿谐波传动结构及齿形分析[J].机电工程,2012,29(1):19-23.
    [132]白鑫,王素.离散齿谐波传动啮合力及接触应力分析[J].重庆大学学报,2013,36(1):35-42.
    [133]沈煜,杨玉虎.新型活齿分度凸轮机构的原理及动态静力分析[J].天津大学学报,2008,41(8):972-977.
    [134]韩敏,高媛.圆形活齿行星传动中内齿圈应力的研究[J].机械设计与制造,2009(8):140-141.
    [135]汪国栋.电机学[M].北京:机械工业出版社,1987:118-121.
    [136]舒波夫著,沈官秋译.电机的噪声和振动[M].北京:机械工业出版社,1980:86~89.
    [137]徐芝纶.弹性力学(第三版:下)[M].北京:高等教育出版社,1992:250-294.
    [138]S.铁摩辛柯,S.沃诺斯基著.板壳理论[M].北京:科学出版社,1977:538~543.
    [139]王洪欣,螺旋副钢球行星传动机构的运动学与受力分析[J].机械传动,1998,22(1):9-12.
    [140]Glabwell G M L.经典弹性理论中的接触问题[M].北京:科学出版社,1991:81~83.
    [141]Doinikov N I, Simakov A S. Application of a Modified Scalar Potential to the Numerical Solutionof Three-dimensional Magnetostatic Problems[J].USSR Computational Mathematics andMathematical Physics,1973,13(4):216-228.
    [142]Hegde V, Maruthi G S. Experimental Investigation on Detection of Air gap Eccentricity inInduction Motors by Current and Vibration Signature Analysis Using Non-invasiveSensors[J].Energy Procedia,2012,14:1047-1052.
    [143]颜毅华.电磁式谐波传动的计算电磁力学研究[D].大连:大连理工大学,1989:66-73.
    [144]Cunha F R,. Couto H L G. A New Boundary Integral Formulation to Describe Three-dimensionalMotions of Interfaces between Magnetic fluids[J]. Applied Mathematics and Computation,2008,199(1):70-83.
    [145]彭细荣,杨庆生,孙卓.有限单元法及其应用[M].北京:清华大学出版社,2012:5.
    [146]丁皓江.弹性和塑性力学中的有限单元法[M].北京:机械工业出版社,1989:60-6172-7565-69.
    [147]颜威利,杨庆新,汪友华.电气工程电磁场数值分析[M].北京:机械工业出版社,2005:125-2636-3876-79.
    [148]Estruch O, Lehmkuhl R. A Parallel Radial Basis Function Interpolation Method for UnstructuredDynamic Meshes[J]. Computers&Fluids,2013,80(10):44-54.
    [149]Tadi B Y, Movahhedy M R. Consistent Arbitrary Lagrangian Eulerian Formulation for LargeDeformation Thermo-mechanical Analysis[J]. Materials&Design,2010,31(8):3690-3702.
    [150]Erzincanli B, Sahin M. An Arbitrary Lagrangian–Eulerian Formulation for Solving MovingBoundary Problems with Large Displacements and Rotations[J]. Journal of ComputationalPhysics,2013,255,(15):660-67.
    [151]Raulli M, Maute K. Optimization of Fully Coupled Electrostatic-fluid-structure InteractionProblems[J]. Computers and Structures,2005,83(2-3):221-233.
    [152]Farhat C, Degand C, Koobus B, et al. Torsional Springs for Two-dimensional DynamicUnstructured Fluid Meshes[J]. Computer Methods in Applied Mechanics and Engineering,1998,163(1-4):231-245.
    [153]Degand C, Farhat C. A Three-dimensional Torsional Spring Snalogy Method for UnstructuredDynamic Meshes[J]. Computers and Structures,2002,80(3-4):305-316.
    [154]Maman N, Farhat C. Matching Fluid and Structure Meshes for Aeroelastic Computations: aParallel Approach[J]. Computers and Structures,1995,54(4):779-785.
    [155]秦磊.机电集成静电谐波传动研究[D].秦皇岛:燕山大学,2009:108~111.
    [156]倪栋,段进,徐久成.通用有限元分析ANSYS7.0实例精解[M].北京:电子工业出版社,2003:380
    [157]马海阳,王艳华,王明亮等.光开关中静电驱动的微悬臂梁耦合分析[J].光学仪器,2003,25(3):17-20.
    [158]王月清,吴桂生,王石.工程电磁场导论[M].北京:.电子工业出版社,2005:198~210.
    [159] Iwasaki S, Deodhar R. Influence of PWM on the Proximity Loss in Permanent-Magnet BrushlessAC Machines[C].IEEE Transactions on Industry Applications,2009,45(4):1359~1367.
    [160]胡敏强,黄学良.电机运行性能数值计算方法及其应用[M].南京:东南大学出版社,2003:72~77.
    [161]赵海森.超高效异步电机损耗模型及降耗措施研究[D].北京:华北电力大学,2011:59~63.
    [162]万长森.滚动轴承的分析方法[M].北京:机械工业出版社,1987:171-176.
    [163]李友荣,吴双应.传热学[M].北京:科学出版社,2012:122-128.
    [164]董新蕊.凸轮激波传动的理论及结构设计[D].北京:北京工业大学,2007:30-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700