用户名: 密码: 验证码:
多面体螺旋曲线啮合齿轮变速器几何学设计理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代机械中,齿轮变速器被广泛用于各种原动机和工作机之间,起着匹配转速和传递转矩的作用。传统齿轮变速器采用传统曲面啮合齿轮作为传动部件,在结构和大小方面受到一定的限制,其输出数目比较有限。
     空间曲线啮合齿轮是一种基于空间曲线啮合原理的新型齿轮。目前,该齿轮已经具备了一定的设计理论和制造基础,其啮合理论、重合度、弹性变形准则、弯曲强度校核准则、制造工艺以及安装精度分析等均取得一定的进展,已开始逐步应用至微小变速器等领域。其中,螺旋曲线啮合齿轮是最常见的空间曲线啮合齿轮,其技术最为成熟。
     本文基于螺旋曲线啮合齿轮提出了一种多轴输出的微小变速器——多面体螺旋曲线啮合齿轮变速器,并系统地研究了其几何学设计理论。该变速器的主要特征包括齿轮组的应用、传动轴的多面体三维几何布局、单输入多输出的并联式单级传动和串-并联混合式的多级传动方式等。该变速器具有尺寸小,质量轻,灵活性高等特点,特别适合作为微小机械装置的变速机构。
     具体而言,本文的研究内容主要包括以下四个方面:
     1.钩杆半径不相等的螺旋曲线啮合齿轮设计理论。根据空间曲线啮合齿轮传动基于钩杆接触线的建模思路,求解了空间曲线啮合齿轮的啮合方程、接触线方程和中心线方程;给出了螺旋曲线啮合齿轮的相关方程,并在设定主、从动钩杆半径不相等的条件下,推导得到了主、从动钩杆的中心线方程,完成了主、从动齿轮的三维实体建模,并通过软件仿真和实物验证了其传动的连续性。
     2.多面体螺旋曲线啮合齿轮变速器的布局规范与安装尺寸链计算公式。分析了螺旋曲线啮合齿轮副在斜交轴、正交轴与平行轴三种情况下的安装尺寸链;设计了单主动轮-多从动轮的螺旋曲线啮合齿轮组;研究了齿轮组的初始安装角度;分析了齿轮组的啮合情况,进而提出了完成啮合的必要条件;在齿轮组的基础上,提出了多面体螺旋曲线啮合齿轮变速器的概念与安装规范,并推导得到传动系统和箱体结构尺寸的设计公式。
     3.多面体螺旋曲线啮合齿轮变速器几何约束与不干涉条件的计算公式。分别从接触线、齿轮副和齿轮组三个层面对螺旋曲线啮合齿轮传动的几何约束进行了定义和计算,并相应地提出了接触线互不干涉条件、齿轮副互不干涉条件和齿轮组互不干涉条件;以带有螺旋曲线啮合齿轮组的正四面体螺旋曲线啮合齿轮变速器作为例子,运用本文研究的几何约束和不干涉条件进行设计计算,确定了各坐标系位置参数的选择范围。
     4.螺旋曲线啮合齿轮基于滑动率的坐标系位置参数选用准则及计算公式。参照传统的空间共轭曲面啮合齿轮,定义并计算了空间共轭曲线、空间曲线啮合齿轮接触线及螺旋曲线啮合齿轮接触线的滑动率;分析了螺旋曲线啮合齿轮中接触线滑动率的单调性与可行域,并确定了其最优啮合条件与坐标系位置参数选用准则及计算公式。
Gear reducers are widely used between prime motors and working mechanisms withinmodern machines to change values and directions of rotation speeds. Commonly usingtraditional space curve meshing gears as transmission components, classical gear reducers arestuck with their structures and sizes as well as their limited output shafts.
     The Space Curve Meshing Wheel (SCMW) is an innovative gear, which has possesseddecent design theory and fabrication foundation. Progresses have been achieved in manyaspects like meshing equations, contact ratio, elastic deformation criterion, manufacturingtechnology and assembly accuracy. It has begun to be applied in the fields like micro reducers.The Helix Curve Meshing Wheel (HCMW) is the most common SCMW with the mostmatured technology.
     Based on the HCMW, a micro reducer with multiple output shafts named PolyhedralHelix Curve Meshing Wheel Reducer (Polyhedral HCMWR) was proposed in thisdissertation, and its design theory was studied from geometrical perspectives. The features ofthis reducer include the application of the transmission train, the polyhedral3D geometriclayout of the input and output shafts, and single input and multiple outputs in either singlestage reducer of parallel transmissions or multiple stage reducer of mixed transmissions. Witha small size, light weight and high flexibility, this reducer is very suitable to serve in a smalldevice.
     Specifically speaking, the followings were concerned in the dissertation:
     (1) Design of the HCMW with unequal tine radii. The design fundamental based on thecontact curves were expounded, the meshing equation of the SCMW was solved in the spacecurve meshing coordinates as well as its contact curves and center curves. As an illustration,equations of the HCMW were derived, the driving and driven wheels were simulated with3Dmodeling software, and its transmission continuity was testified by virtual simulation andpractical experiment.
     (2) Component layout specification and installation dimension chains formulation for thePolyhedral HCMWR. The installation chains of the HCMW were analyzed according to threedifferent cases (intersecting axis, vertical axis, or parallel axis), respectively; the HCMW trainwith a single driving wheel and multiple driven wheels was designed; the initial installationangle of the HCMW train was studied; the mesh requirement was proposed after the analysisof the mesh status in the HCMW train; and based on the HCMW train, the concept of the Polyhedral HCMWR and its component layout specification were defined, and the designformulas of the transmission system and the box structure were derived.
     (3) Geometrical constrain demarcations and interference-proof condition deductions inthe Polyhedral HCMWR. The geometric constraints were defined and calculated in the threeaspects: contact curves, HCMW pair and HCMW train; the interference-proof conditionswere proposed in the same three aspects. As a practical example, the parameter selection of atetrahedron HCMWR with HCMW trains was illustrated to show the process of determiningthe feasibility range of the position parameters.
     (4) Selection criterion and calculation formulas of the position parameters based on thesliding rates. With the slide rates of classical space conjugate surfaces referred, the slide ratesof two conjugate curves in the space were defined and calculated, and subsequently those ofthe contact curves in the SCMW and the HCMW were derived; and optimal meshingcondition and position-parameter selection criterion of the HCMW were obtained based onthe analysis of the monotonicity and feasible region of its sliding rates.
引文
[1]李盛其.中国齿轮行业“十二五”发展规划纲要(上)[J].现代零部件,2011,1:59-61
    [2]李盛其.中国齿轮行业“十二五”发展规划纲要(下)[J].现代零部件,2011,2:30-32
    [3]陈柳钦.加快振兴高端装备制造业[J].高科技与产业化,2011,9:48-51
    [4]卢祁.“十二五”:高端装备制造业迎来黄金十年——访中国自动化学会资深专家孙柏林教授[J].中国仪器仪表,2012,8:25-30
    [5]游小叶.齿轮转动的历史印记——记华南理工大学陈扬枝教授发明新型齿轮机构[J].科学中国人,2009,8:90-91
    [6]邓学忠,姚明万.中国古代指南车和记里鼓车[J].中国计量,2009,8:54-56
    [7]厉海祥.点线啮合齿轮传动[M].北京:机械工业出版社,2010
    [8] Goss V. G. A. Application of analytical geometry to the form of gear teeth[J]. Resonance,2013,18(9):817-831
    [9] Litvin Faydor L.,Fuentes Alfonso. Gear geometry and applied theory (2nd edition)[M].Cambridge: Cambridge university press,2004
    [10]李特文F. L.齿轮几何学与应用理论[M].上海:上海科学技术出版社,2008
    [11] Figliolini Giorgio, Stachel Hellmuth,Angeles Jorge. On Martin Disteli's spatial cycloidalgearing[J]. Mechanism and Machine Theory,2013,60:73-89
    [12] Sandor George N, Erdman Arthur G,Raghavacharyulu E. Double-valued solutions of theEuler-Savary Equation and its counterpart in bobillier's construction[J]. Mechanism andMachine Theory,1985,20(2):145-148
    [13] Sandor George N, Xu Yongxian,Weng Tzu-Chen. A graphical method for solving theEuler-Savary equation[J]. Mechanism and Machine Theory,1990,25(2):141-147
    [14] Pfauter H. Taper Hobbing on Pfauter Hobbing Machine[J]. Pfauter Engineering Letter,1963,30:1-8
    [15] Wildhaber Ernest. Wildhaber Gear Coupling[P]. U.S. Patents:3,321,935,1967-5-30
    [16] Ernest Wildhaber. Wildhaber Gear Tooth Shape[P]. U.S. Patents:3,251,236,1966-5-17
    [17] Hxjmphbis Frank. Frank Hxjmphbis[P]. U.S. Patents:1,323,188,1919-11-25
    [18] Frank Humphris. Mechanical press[P]. U.S. Patents:1,473,478,1923-11-6
    [19] HTTMPHRIS FRANK. Frank Humphris[P]. U.S. Patents:1,704,608,1926-3-5
    [20] Wildhaber Ernest. Helical gearing[P]. U.S. Patents:1,601,750,1926-10-5
    [21]闻智福.抛物线齿轮[J].华东纺织工学院学报,1982,3:8-14
    [22]闻智福.抛物线齿轮[M].北京:科学技术文献出版社,1989
    [23]吴祚常,闻智福.抛物线齿轮在啮合过程中接触线长度的变化[J].中国纺织大学学报,1990,16(5):131-137
    [24] Komori T, Ariga Y,Nagata S. A new gears profile having zero relative curvature at manycontact points (Logix Tooth Profile)[J]. Journal of Mechanical Design,1990,112(3):430-436
    [25] Komori T,Nagata S. A new gears profile having zero relative curvature at many contactpoints (Logix Tooth Profile)[J]. Journal of Mechanical Design,1990,112(3):430-436
    [26] Xianying Feng, Aiqun Wang,Lee Linda. Study on the design principle of the LogiX geartooth profile and the selection of its inherent basic parameters[J]. The InternationalJournal of Advanced Manufacturing Technology,2004,24(11-12):789-793
    [27] Litvin Faydor L. Theory of gearing[R]. DTIC Document,1989
    [28] Litvin F. L., Vecchiato D., Demenego A., et al. Design of one stage planetary gear trainwith improved conditions of load distribution and reduced transmission errors[J]. Journalof Mechanical Design,2002,124(4):745-752
    [29] Litvin Faydor L., Lian Qiming,Kapelevich Alexander L. Asymmetric modified spur geardrives: reduction of noise, localization of contact, simulation of meshing and stressanalysis[J]. Computer Methods in Applied Mechanics and Engineering,2000,188(1–3):363-390
    [30] Litvin Faydor L., Gonzalez-Perez Ignacio, Fuentes Alfonso, et al. Generalized concept ofmeshing and contact of involute crossed helical gears and its application[J]. ComputerMethods in Applied Mechanics and Engineering,2005,194(34–35):3710-3745
    [31] Litvin Faydor L.,Feng Pin-Hao. Computerized design and generation of cycloidalgearings[J]. Mechanism and Machine Theory,1996,31(7):891-911
    [32] Litvin F. L.,Lu J. Computerized design and generation of double circular-arc helicalgears with low transmission errors[J]. Computer Methods in Applied Mechanics andEngineering,1995,127(1–4):57-86
    [33] Litvin Faydor L., Fuentes Alfonso, Zanzi Claudio, et al. Design, generation, and stressanalysis of two versions of geometry of face-gear drives[J]. Mechanism and MachineTheory,2002,37(10):1179-1211
    [34] Argyris John, Fuentes Alfonso,Litvin Faydor L. Computerized integrated approach fordesign and stress analysis of spiral bevel gears[J]. Computer Methods in AppliedMechanics and Engineering,2002,191(11–12):1057-1095
    [35] Alfonso Fuentes, L. Litvin Faydor, R. Mullins Baxter, et al. Design and stress analysis oflow-noise adjusted bearing contact spiral bevel gears[J]. Journal of Mechanical Design,2002,124(3):524-532
    [36] Litvin Faydor L, Lundy M, Heine C, et al. Determination of settings of a tilted headcutter for generation of hypoid and spiral bevel gears[J]. Journal of Mechanisms,Transmissions and Automation in Design,1988,110(4):495-500
    [37] Litvin FL,Gutman Ye. Methods of synthesis and analysis for hypoid gear-drives of“formate” and “helixform”—Part1. Calculations for machine settings for member gearmanufacture of the formate and helixform hypoid gears[J]. Journal of Mechanical Design,1981,103(1):83-88
    [38] Litvin Faydor L., Gonzalez-Perez Ignacio, Fuentes Alfonso, et al. Design andinvestigation of gear drives with non-circular gears applied for speed variation andgeneration of functions[J]. Computer Methods in Applied Mechanics and Engineering,2008,197(45–48):3783-3802
    [39] Litvin F. L., Zhang Y., Wang J.-C., et al. Design and Geometry of Face-Gear Drives[J].Journal of Mechanical Design,1992,114(4):642-647
    [40] Litvin Faydor L., Fuentes Alfonso,Howkins Matt. Design, generation and TCA of newtype of asymmetric face-gear drive with modified geometry[J]. Computer Methods inApplied Mechanics and Engineering,2001,190(43–44):5837-5865
    [41] Litvin Faydor L., Gonzalez-Perez Ignacio, Fuentes Alfonso, et al. Design, generation andstress analysis of face-gear drive with helical pinion[J]. Computer Methods in AppliedMechanics and Engineering,2005,194(36–38):3870-3901
    [42] Seol I. H.,Litvin F. L. Computerized design, generation and simulation of meshing andcontact of worm-gear drives with improved geometry[J]. Computer Methods in AppliedMechanics and Engineering,1996,138(1–4):73-103
    [43] Litvin F. L., Argentieri G., De Donno M., et al. Computerized design, generation andsimulation of meshing and contact of face worm-gear drives[J]. Computer Methods inApplied Mechanics and Engineering,2000,189(3):785-801
    [44]孙殿柱.真实齿面啮合理论[M].北京:科学出版社,2006
    [45] Dooner David B. On the Three Laws of Gearing[J]. Journal of Mechanical Design,2002,124(4):733-744
    [46] Yu Bowen,Ting Kwun-lon. Free-Form Conjugation Modeling and Gear Tooth ProfileDesign[J]. Journal of Mechanisms and Robotics,2013,5(1):011001
    [47] Fan Qi. Computerized modeling and simulation of spiral bevel and hypoid gearsmanufactured by gleason face hobbing process[J]. Journal of Mechanical Design,2006,128(6):1315-1327
    [48] Fan Qi. Enhanced algorithms of contact simulation for hypoid gear drives produced byface-milling and face-hobbing processes[J]. Journal of Mechanical Design,2007,129(1):31-37
    [49] Fan Qi. Tooth surface error correction for face-hobbed hypoid gears[J]. Journal ofMechanical Design,2010,132(1):011004
    [50] Fan Qi, DaFoe Ronald S,Swanger John W. Higher-order tooth flank form errorcorrection for face-milled spiral bevel and hypoid gears[J]. Journal of MechanicalDesign,2008,130(7):072601
    [51] Artoni A., Guiggiani M., Kahraman A., et al. Robust Optimization of Cylindrical GearTooth Surface Modifications Within Ranges of Torque and Misalignments[J]. Journal ofMechanical Design,2013,135(12):121005
    [52] Düzcüko lu Hayrettin, Yakut Rifat,Uysal Eyyub. The Use of Cooling Holes to Decreasethe Amount of Thermal Damage on a Plastic Gear Tooth[J]. Journal of Failure Analysisand Prevention,2010,10(6):545-555
    [53] Tsay Ming-Feng,Fong Zhang-Hua. Study on the generalized mathematical model ofnoncircular gears[J]. Mathematical and computer modelling,2005,41(4):555-569
    [54]张欣浪.小齿轮大技术——记台湾中正大学机械系教授冯展华[J].科学中国人,2007,7:52-54
    [55] Fong ZH,Tsay Chung-Biau. A mathematical model for the tooth geometry of circular-cutspiral bevel gears[J]. Journal of Mechanical Design,1991,113(2):174-181
    [56] Lin Chung-Yunn, Tsay Chung-Biau,Fong Zhang-Hua. Computer-aided manufacturing ofspiral bevel and hypoid gears with minimum surface-deviation[J]. Mechanism andMachine Theory,1998,33(6):785-803
    [57] Fong Zhang-Hua. Mathematical model of universal hypoid generator with supplementalkinematic flank correction motions[J]. Journal of Mechanical Design,2000,122(1):136-142
    [58] Lin Chung-Yunn, Tsay Chung-Biau,Fong Zhang-Hua. Computer-aided manufacturing ofspiral bevel and hypoid gears by applying optimization techniques[J]. Journal ofMaterials Processing Technology,2001,114(1):22-35
    [59] Wang Pei-Yu,Fong Zhang-Hua. Fourth-order kinematic synthesis for face-milling spiralbevel gears with modified radial motion (MRM) correction[J]. Journal of MechanicalDesign,2006,128(2):457-467
    [60] Shih Yi-Pei,Fong Zhang-Hua. Flank modification methodology for face-hobbing hypoidgears based on ease-off topography[J]. Journal of Mechanical Design,2007,129(12):1294-1302
    [61] Shih Yi-Pei,Fong Zhang-Hua. Flank correction for spiral bevel and hypoid gears on asix-axis CNC hypoid generator[J]. Journal of Mechanical Design,2008,130(6):062604
    [62]厉海祥,王秀芝.渐开线点啮合齿轮传动[J].齿轮,1986,10(5):42-45
    [63]王均荣.“点线啮合齿轮传动”列入“九五”国家科技成果重点推广计划指导项目[J].武汉交通科技大学学报,1999,6:654
    [64]袁东升,张伟蓬,黄海等.单点线啮合齿轮齿厚测量尺寸研究[J].机械,2010,37(12):34-36
    [65]罗齐汉,厉海祥,张予川等.点线啮合齿轮参数选择的封闭图[J].机械工程学报,2005,41(1):37-40
    [66]黄海,厉海祥,罗齐汉等.点线啮合齿轮冷胶合计算研究[J].机械传动,2011,35(02):4-8
    [67]黄海,厉海祥,罗齐汉等.基于啮合动态激励机理的点线啮合齿轮噪声研究[J].机械制造,2011,(02):68-70
    [68]陈邹铭,厉海祥.点线啮合齿轮传动的理论体系与实际应用[J].武汉船舶职业技术学院学报,2005,4(3):24-27
    [69]罗齐汉,厉海祥. DQJ点线啮合齿轮减速器的研制[J].起重运输机械,2006,5:39-42
    [70]任重义,段建中.四圆弧齿廓齿轮的设计及数字化加工[J].煤矿机械,2009,30(2):106-107
    [71]狄玉涛.弧齿线圆柱齿轮传动理论的研究[D].哈尔滨:哈尔滨工业大学,2006
    [72]吴伟伟.渐开线弧齿圆柱齿轮加工方法及其加工装置的研究[D].扬州:扬州大学,2010
    [73]张小萍,陈厚军,王君泽等.成形法加工新型环面蜗杆的原理性误差分析[J].机械设计,2012,28(12):44-48
    [74] Chen Houjun, Ju Zhilan, Qu Chang, et al. Error-sensitivity analysis of hourglass wormgearing with spherical meshing elements[J]. Mechanism and Machine Theory,2013,70:91-105
    [75] Chen Yangzhi, Xing Guoquan,Peng Xuefei. The Space Curve Mesh Equation and ItsKinematics Experiment [M].12th IFToMM World Congress. Besancon, France.2007
    [76] Chen Yangzhi, Xiang Xiaoyong,Luo Liang. A corrected equation of space curvemeshing[J]. Mechanism and Machine Theory,2009,44(7):1348-1359
    [77] Chen Zhen, Chen YZ,Ding Jiang. A generalized space curve meshing equation forarbitrary intersecting gear[J]. Proceedings of the Institution of Mechanical Engineers,Part C: Journal of Mechanical Engineering Science,2013,227(7):1599-1607
    [78]陈扬枝,陈祯,丁江.一种斜交齿轮机构[P].中国: ZL201010105902.3,2010.7
    [79] Chen Y-Z, Chen Z,Zhang Y. Contact Ratio of Spatial Helix Gearing Mechanism[A].ASME2012International Mechanical Engineering Congress and Exposition [C].American Society of Mechanical Engineers:1529-1536
    [80] Chen Yang-zhi, Lv Yueling, Ding Jiang, et al. Fundamental design equations for spacecurve meshing skew gear mechanism[J]. Mechanism and Machine Theory,2013,70:175-188
    [81] Chen Yangzhi, Luo Liang,Hu Qiang. The Contact Ratio of a Space-CurveMeshing-Wheel Transmission Mechanism[J]. Journal of Mechanical Design,2009,131(7):074501-074505
    [82]罗亮.微小弹性啮合轮机构重合度及参数设计公式[D].广州:华南理工大学,2009
    [83] Chen Yangzhi, Chen Zhen,Fu Xiaoyan. Design parameters for spatial helix gearingmechanism[A].2nd International Conference on Frontiers of Manufacturing and DesignScience (ICFMD2011)[C]. December11-13,2011: Trans Tech Publications:3215-3219
    [84] Chen YangZhi, Hu Qiang,Sun Leihou. Design Criterion for the Space-Curve MeshingWheel Mechanism Based on Elastic Deformation of the Tines[J]. Journal of MechanicalDesign,2010,132(5):054502-054506
    [85]胡强.空间曲线啮合轮机构的弹性变形失效准则及强度设计公式[D].广州:华南理工大学,2010
    [86] Chen Yang Zhi,Liang Shun Ke. Research on the Maximum Bending Stress on DrivingTine of SCMW[J]. Applied Mechanics and Materials,2012,184:445-449
    [87]梁顺可.空间曲线啮合齿轮的强度研究[D].广州:华南理工大学,2013
    [88] Chen Yangzhi, Liang Shunke,Ding Jiang. The Equal Bending Strength Design of SpaceCurve Meshing Wheel[J]. Journal of Mechanical Design,2014, doi:10.1115/1.4027160
    [89]丁江.空间曲线啮合轮在微小机械中的应用研究[D].广州:华南理工大学,2009
    [90]孙磊厚.空间曲线啮合轮传动机构的制造工艺研究[D].广州:华南理工大学,2011
    [91] Chen Yang-zhi, He En-yi,Chen Zhen. Investigations on precision finishing of spacecurve meshing wheel by electrochemical brushing process[J]. The International Journalof Advanced Manufacturing Technology,2013,67(9-12):2387-2394
    [92]何恩义.空间曲线啮合轮精密传动技术的研究[D].广州:华南理工大学,2012
    [93]何恩义,陈扬枝,陈祯.装配误差对空间曲线啮合齿轮传动精度的影响[J].华南理工大学学报(自然科学版),2012,40(12):24-30
    [94]成大先.机械设计手册.单行本.减(变)速器电机与电气[M].北京:化学工业出版社,2004
    [95]张广斌.一种变速箱综合性能测试系统的研究与实现[D].合肥:中国科学技术大学,2012
    [96] Kapelevich Alexander. Geometry and design of involute spur gears with asymmetricteeth[J]. Mechanism and Machine Theory,2000,35(1):117-130
    [97] Lai Ta-Shi. Geometric design of roller drives with cylindrical meshing elements[J].Mechanism and Machine Theory,2005,40(1):55-67
    [98] Litvin F. L., Wang A. G.,Handschuh R. F. Computerized generation and simulation ofmeshing and contact of spiral bevel gears with improved geometry[J]. ComputerMethods in Applied Mechanics and Engineering,1998,158(1–2):35-64
    [99] Michel Frank, Ehrfeld Wolfgang, Berg Udo, et al. Electromagnetic driving units forcomplex microrobotic systems[J]. SPIE proceedings series,1998,3519:93-101
    [100] Ehrfeld Wolfgang, Lehr Heinz, Michel Frank, et al. Microelectro discharge machiningas a technology in micromachining[A]. Micromachining and Microfabrication'96[C].International Society for Optics and Photonics:332-337
    [101] Buiga Ovidiu,Tudose Lucian. Optimal mass minimization design of a two-stage coaxialhelical speed reducer with Genetic Algorithms[J]. Advances in Engineering Software,2014,68:25-32
    [102] Tudose Lucian, Buiga Ovidiu, tefanache Cornel, et al. Automated optimal design of atwo-stage helical gear reducer[J]. Structural and Multidisciplinary Optimization,2010,42(3):429-435
    [103] Yin RC, Bradley R, Al-Meshari A, et al. Premature failure of a spiral bevel pinion in aturbine condenser gear reducer[J]. Engineering Failure Analysis,2006,13(5):727-731
    [104] Su Jinzhan, Fang Zongde,Cai Xiangwei. Design and analysis of spiral bevel gears withseventh-order function of transmission error[J]. Chinese Journal of Aeronautics,2013,26(5):1310-1316
    [105]刘海涛.浅谈减速器的工作原理及构造[J].科技信息,2007,4:67-68
    [106] Wildhaber E. A New Look at Wormgear Hobbing [M]. American Gear ManufacturesAssociation Conferenc. Virginia; American Gear Manufactures Association.1954
    [107] Colbourne J.R. The use of oversize hobs to cut worm gears [M]. American GearManufactures Association Conference. Virginia.1989
    [108] Litvin Faydor L., Gonzalez-Perez Ignacio, Yukishima Kenji, et al. Design, simulationof meshing, and contact stresses for an improved worm gear drive[J]. Mechanism andMachine Theory,2007,42(8):940-959
    [109] Shi W, Qin D, Hu M, et al. Investigation on thin coating for generally steel wormwheel[J]. VDI BERICHTE,2005,1904(1):55
    [110] Polak James C. Planetary gearing arrangement for a transmission[P]. U.S. Patents:4,070,927,1978-1-31
    [111] Parker Robert G, Agashe Vinayak,Vijayakar Sandeep M. Dynamic response of aplanetary gear system using a finite element/contact mechanics model[J]. Journal ofMechanical Design,2000,122(3):304-310
    [112] Del Castillo Jose M. The analytical expression of the efficiency of planetary geartrains[J]. Mechanism and Machine Theory,2002,37(2):197-214
    [113] Thürigen C., Ehrfeld W., Hagemann B., et al. Development, Fabrication and Testing ofa Multi-Stage Micro Gear System [M]//B. Bhushan. Tribology Issues and Opportunitiesin MEMS. Springer Netherlands.1998:397-402
    [114] Ai X. L., Orkin C.,Kruse R. A High Ratio Power Dense Planetary Drive for RotorcraftApplications[J]. Journal of Mechanical Design,2014,136(2):021010
    [115] Mundo D. Geometric design of a planetary gear train with non-circular gears[J].Mechanism and Machine Theory,2006,41(4):456-472
    [116]陈文元,张卫平,范志荣.微3K-2型行星齿轮减速器中微齿轮啮合模型和参数计算[J].上海交通大学学报,2000,34(3):87-89
    [117]张卫平,陈文元,陈迪等.基于LIGA技术的3K-2型微行星齿轮减速器的设计和制造[J].中国机械工程,2003,14(5):374-376
    [118] Jeon Han Su,Oh Se Hoon. A study on stress and vibration analysis of a steel and hybridflexspline for harmonic drive[J]. Composite Structures,1999,47(1-4):827-833
    [119] Gao Wei, Furukawa Masaru, Kiyono Satoshi, et al. Cutting error measurement offlexspline gears of harmonic speed reducers using laser probes[J]. Precision Engineering,2004,28(3):358-363
    [120]王长明,阳培,张立勇.谐波齿轮传动概述[J].机械传动,2006,30(4):86-88
    [121]阳陪.谐波齿轮传动装置及其短筒柔轮分析研究[D].北京:机械科学研究总院,2006
    [122]周晖,孙京,温庆平等.谐波减速器空间润滑及性能研究[J].宇航学报,2009,30(1):378-381
    [123]李波.空间润滑谐波减速器传动性能正交试验分析[J].机械工程学报,2012,48(3):82-87
    [124]李波.基于交互正交试验的空间用谐波减速器传动性能影响因素研究[J].航空学报,2012,33(2):375-380
    [125] Konrad Braren Lorenz. Production of cycloidal curves[P]. U.S. Patent:1817405,1931-08-04
    [126] W. Sensinger Jonathon. Unified Approach to Cycloid Drive Profile, Stress, andEfficiency Optimization[J]. Journal of Mechanical Design,2010,132(2):024503
    [127] Sensinger Jonathon W. Efficiency of High-Sensitivity Gear Trains, Such as CycloidDrives[J]. Journal of Mechanical Design,2013,135(7):071006
    [128] Gorla Carlo, Chiozzi Franco, Samarani Alessandro, et al. Theoretical and ExperimentalAnalysis of a Cycloidal Speed Reducer[J]. Journal of Mechanical Design,2008,130(11):112604-112604
    [129] Shin Joong-Ho,Kwon Soon-Man. On the lobe profile design in a cycloid reducer usinginstant velocity center[J]. Mechanism and Machine Theory,2006,41(5):596-616
    [130]吕方.长幅外摆线针轮行星传动减速机的研究开发[D].杭州:浙江大学,2004
    [131]刘蓬勃.新型摆线针轮行星传动研究[D].长沙:国防科学技术大学,2006
    [132]于影,于波,陈建新等.摆线针轮行星减速器的优化设计[J].哈尔滨工业大学学报,2002,34(4):493-496
    [133]鲍君华.双电机驱动双曲柄四环板针摆行星传动的优化设计[D].大连:大连交通大学,2004
    [134]张光辉,韩杰林.三环减速器内齿环板应力分析[J].机械工程学报,1994,30(2):58-63
    [135]刘伟强,张启先,雷天觉. SH三环减速器载荷均衡的研究[J].机械工程学报,1995,31(4):1-5
    [136]杨建明,秦大同.三环减速机的弹性动力学分析[J].机械工程学报,2000,36(10):54-58
    [137]范佳.三环减速器有限元分析[D].唐山:河北理工大学,2006
    [138]朱才朝,秦大同.三环减速器表面噪声的实验[J].重庆大学学报(自然科学版),2000,23(4):18-21
    [139]张俊,宋轶民,张策等.基于ANSYS的三环减速器静力学分析[J].农业机械学报,2007,38(3)
    [140] Perez-Diaz Jose-Luis, Garcia-Prada JuanCarlos, Valiente-Blanco Ignacio, et al.Magnetic-Superconductor Cryogenic Non-contact Harmonic Drive: Performance andDynamical Behavior [M]//F. Viadero and M. Ceccarelli. New Trends in Mechanism andMachine Science. Springer Netherlands.2013:357-364
    [141] Atallah Kais,Howe David. A novel high-performance magnetic gear[J]. Magnetics,IEEE Transactions on,2001,37(4):2844-2846
    [142] Montague Ryan,Bingham Chris. Nonlinear control of magnetically-geareddrive-trains[J]. International Journal of Automation and Computing,2013,10(4):319-326
    [143] Chinchilla Monica, Arnaltes Santiago,Burgos Juan Carlos. Control ofpermanent-magnet generators applied to variable-speed wind-energy systems connectedto the grid[J]. Energy Conversion, IEEE Transactions on,2006,21(1):130-135
    [144]赵韩,陶骏.磁场积分法在稀土永磁齿轮传动机构场分析中的应用[J].机械工程学报,2000,36(8):29-32
    [145]梁锡昌,蒋建东,李润方等.特种螺旋传动机构的研究[J].机械工程学报,2003,39(10):106-110
    [146]陈扬枝,傅小燕,丁江.一种并行多输出微小变速器[P].中国: ZL201010511596.3,2011-01-18
    [147]傅小燕.同平面多轴输出微小减速器[D].广州:华南理工大学,2012
    [148]陈扬枝,傅小燕.基于空间曲线啮合轮的同平面多轴输出微小减速器研究进展[J].机械传动,2012,36(3):97-101
    [149] Chen Yangzhi, Fu Xiao-yan, Ding Jiang, et al. Geometric Design of Micro-ReducerWith Multi-Output Shafts Distributed in Regular Polygon Form[J]. Journal ofMechanical Design,2013,135(5):051004
    [150] Kahraman Ahmet. Planetary gear train dynamics[J]. Journal of Mechanical Design,1994,116(3):713-720
    [151] Litvin Faydor L, Nava Alessandro, Fan Qi, et al. New geometry of face worm geardrives with conical and cylindrical worms: generation, simulation of meshing, and stressanalysis[J]. Computer Methods in Applied Mechanics and Engineering,2002,191(27):3035-3054
    [152]李瑰贤.空间几何建模及工程应用[M].北京:高等教育出版社,2007
    [153]吴序堂.齿轮啮合原理(第2版)[M].西安:西安交通大学出版社,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700