用户名: 密码: 验证码:
播娘蒿(Descurainia sophia)对苯磺隆的抗药性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化学除草剂的大面积使用,农田杂草抗药性问题越来越严重。苯磺隆是ALS抑制剂类除草剂,目前是小麦田最经济、有效、安全的优秀除草剂品种之一,在我国1988年取得登记,到目前已使用20多年。在部分地区,小麦田以常规剂量喷施苯磺隆已经无法有效防除麦田主要杂草播娘蒿(Descurainia sophia)。明确播娘蒿对苯磺隆的抗药性水平及其抗药性机理,对指导抗药性播娘蒿的科学治理,延长苯磺隆的使用寿命具有重要的理论和现实意义。本研究以采自北京、天津、河北、河南、山东、山西、陕西、甘肃、青海、江苏及四川省(市)的播娘蒿为对象,研究其对苯磺隆的抗药性水平及其抗药性机理,主要结果如下。
     1.整株测定结果表明,在11省(市)91个播娘蒿种群中,有42个种群对苯磺隆表现敏感,GR50值在0.10-0.12g a.i./ha之间;19个种群对苯磺隆具有较低水平的抗药性,1<抗药性指数≤10;19个种群对苯磺隆具有中等抗药性,10<抗药性指数≤100;11个种群对苯磺隆具有较高水平的抗药性,其抗药性指数在100以上。HB-8、TJ-8和GS-5种群中有个别植株抗药性很强,平均抗药性百分率分别是2.38%、1.14%和3.64%。
     2. SSX-9、SSX-10、HB-8、TJ-8和GS-5种群二代对苯磺隆的抗药性检测结果表明,对苯磺隆的抗药性能够稳定遗传。
     3. HB-1、SSX-8、HB-2、HB-8、SSX-4、SSX-9、SSX-10、SSX-11、SSX-12、SSX-13、TJ-8和GS-5种群ALS离体活性测定结果表明,抗药性种群的ALS对苯磺隆的敏感性降低,抗药性指数在3.17-86.33之间。
     4. HB-1、HB-2、SSX-8和SSX-9种群ALS活体活性测定结果表明,抗药性种群ALS活性受到抑制后能恢复,而敏感种群则不能。
     5. 4个敏感生物型和10个抗药性生物型的ALS基因克隆测序结果表明,播娘蒿ALS全长2,004bp,编码667个氨基酸,无内含子,所检测的河北、陕西、甘肃和天津的4个敏感生物型的ALS序列完全相同。
     6.比较敏感和抗药性生物型的ALS序列发现,抗药性生物型在Pro197(脯氨酸)发生了突变,抗药性生物型HB-2和SSX-11 Pro197突变为Leu197(亮氨酸);SSX-9 Pro197突变为Thr197(苏氨酸);SSX-12和SSX-13 Pro197突变为Ala197(丙氨酸);TJ-8和GS-5 Pro197突变为Ser197(丝氨酸);敏感和抗药性生物型的ALS序列在GenBank上的登记号为EU520489、EU520490、EU520491和FJ715633。
     7.播娘蒿种群HB-1、HB-2、SSX-8、SSX-4、SSX-9和SSX-10对ALS抑制剂包括咪唑乙烟酸(IMI类)、嘧草硫醚(PTB类)、氯酯磺草胺(TP类)、甲氧磺草胺(TP类)、双氟磺草胺(TP类)的交互抗性的测定结果表明,HB-1和SSX-8对所有供试药剂均敏感;HB-2对各供试药剂均有较高的抗药性,抗药性指数在10倍以上;SSX-4除了对咪唑乙烟酸较敏感之外,对其他药剂的抗药性指数在10倍以上;SSX-9和SSX-10对咪唑乙烟酸有低水平的抗药性,对嘧草硫醚有高水平的抗药性,对供试的三种TP类药剂都有不同程度的抗药性。SSX-4种群里个别植株对上述几种药剂抗药性很高,对嘧草硫醚、咪唑乙烟酸和双氟磺草胺的平均抗药性百分率分别为4.51%、2.71%和2.21%。
     本研究首次明确了我国麦田播娘蒿种群对苯磺隆的抗药性水平与分布,及对其他5种ALS抑制剂类除草剂交互抗性水平;从酶和基因水平揭示了抗药性是由于靶标酶ALS基因突变所致。
Herbicide resistance is a worldwide phenomenon with the development of the chemical herbicides’application in agriculture, and it becomes more serious. Tribenuron-methyl is one of the most popular ALS inhibitor in wheat field with low price, high efficacy and good safety. After being applied over 20 years, some farmers complained that the flixweed (Descurainia sophia), one of the most important and widely infested broad leaved weeds in wheat fields was not sensitive to tribenuron-methyl any more which was registered in China in 1988. It is very important and necessary to confirm flixweed resistance and its mechanism to tribenuron-methyl in order to control flixweed effectively and use tribenuron-methyl in a scientific, rational way and to prolong the lifespan of tribenuron-methyl in practice. Flixweed seeds were collected from separate wheat fields that had been treated with tribenuron-methyl repeatedly over 3-15 years, and from road sides, remote hills that never received tribenuron-methyl treatment in Beijing and Tianjin Metropolitans, Hebei, Henan, Shandong, Shanxi, Shaanxi, Gansu, Qianghai, Jiangsu and Sichuan provinces with various herbicide application histories. Flixweed sensitivity to tribenuron-methyl was determined by whole plant experiments in the greenhouse, its resistant level and molecular mechanism were also conducted. The results showed as followings.
     1. Results of whole plant experiments showed that 42 of the 91 flixweed populations were susceptible to tribenuron-methyl with resistance indices ranging from 0.10 to 0.12g a.i./ha, 19 of the 91 populations expressed low level resistance to tribenuron-methyl with resistance indices ranging in 1     2. The seeds of resistant populations SSX-9, SSX-10, HB-8, TJ-8 and GS-5 were harvested and planted in potted moist loam soil. Tribenuron-methyl was applied at different doses at the four-leaf growth stage of these populations. The results revealed that these populations showed high level resistance, suggesting that the resistance of these populations could be inherited.
     3. The ALS activity of the populations HB-1, SSX-8, HB-2, HB-8, SSX-4, SSX-9, SSX-10, SSX-11, SSX-12, SSX-13, TJ-8 and GS-5 treated with tribenuron-methyl was detected and compared. The ALS activity of the susceptible populations SSX-8 and HB-1 was significantly inhibited. However, the activity of ALS of the resistant populations decreased slowly under tribenuron-methyl treatment, the relative I50 of the above populations ranged from 3.17 to 86.33.
     4. The ALS activity-time curves of flixweed populations HB-1, HB-2, SSX-8 and SSX-9 showed that the ALS activity of the resistant populations was decreased firstly, then turned to increase slowly; the ALS activity of the susceptible populations, however, was inhibited significantly, and was irreversible.
     5. The ALS genes of 4 susceptible biotypes and 10 resistant biotypes were cloned and sequenced, and the full length ALS gene being translated 667 amino acids which was approximately 2,004 nucleotides without any intron. The ALS genes of the 4 susceptible biotypes collected from Hebei, Shaanxi, Gansu and Tianjin were sequenced, and their sequences were identical. 6. Comparison of the ALS gene sequences from susceptible and resistant biotypes with Arabidopsis revealed that proline at position 197 of the ALS gene was substituted by leucine in resistant biotypes HB-2 and SSX-11, by threonine in resistant biotype SSX-9, by alanine in resistant biotypes SSX-12 and SSX-13, by serine in resistant biotypes TJ-8 and GS-5. The nucleotide sequences of susceptible and resistant biotypes were registered in the Genbank, with accession numbers EU520489, EU520490, EU520491 and FJ715633, respectively.
     7. The experiments were conducted with the ALS inhibitors, tribenuron-methyl (SU type), imazethapyr (IMI type), pyrithiobac-sodium (PTB type), cloransulam-methyl (TP type), pyroxsulam (TP type) and florasulam (TP type) to detect the cross-resistance of flixweed populations HB-1, HB-2, SSX-8, SSX-4, SSX-9 and SSX-10 to the ALS inhibitors. The results showed that populations HB-1 and SSX-8 were very susceptible to all tested herbicides. Population HB-2 was resistant to all of them, with resistant indices over 10. The population SSX-4 was resistant to the herbicides tested except imazethapyr, with resistant indices over 10. The populations SSX-9 and SSX-10 were resistant to tribenuron-methyl and three TP herbicides, but susceptible to imazethapyr. Some plants of the population SSX-4 were resistant to the aboved ALS inhibitors. The average resistant percentage of the population SSX-4 to pyrithiobac-sodium was 4.51%, 2.71% to imazethapyr, and 2.21% to florasulam, respectively.
     In general, the resistant levels and distributions of flixweed populations to tribenuron-methyl and its cross-resistance of these populations to five different chemical classes of ALS inhibitors were first confirmed in China. The resistant mechanism being confered to the point mutation in ALS gene were first revealed in enzyme and gene level.
引文
1. 2007年世界小麦主产国(地区)小麦收获面积、单产和总产排序.农业展望,2008,11.
    2.陈坤明,曹春田,张书铭,王喜正,万名锐,等.麦田恶性杂草播娘蒿的生物学特性及防治方法.河南农业,2008,5: 41.
    3.范志金,钱传范,于维强.氯磺隆和苯磺隆对玉米乙酰乳酸合成酶抑制作用的研究.中国农业科学,2003,36(2): 173~178.
    4.韩熹莱.农药学概论.北京:中国农业大学出版社. 1995,189~190.
    5.黄炳球,林韶湘.我国稻区稗草对禾草丹的抗药性研究.农药科学与管理, 1993, 14: 18~21.
    6.黄建中.农田杂草抗药性.北京:中国农业出版社. 1995.
    7.李扬汉.中国杂草志.北京:中国农业出版社.1998.
    8.李宜慰,邓渊玉,沈纪东,储西平,章稳宏,苏小东,董红.甲氧磺草胺防除小麦田菵草研究初报.杂草科学,2007,(1): 52~54.
    9.刘长令.世界农药大全—除草剂卷.北京:化学工业出版社. 2002,70~71.
    10.娄远来,邓渊钰,沈晋良,徐朗莱,沈文飚.甲磺隆和草甘膦对空心莲子草乙酰乳酸合酶活性和莽草酸含量的影响.植物保护学报. 2005,32: 185~188.
    11.卢宗志,傅俊范,李茂海,侯云龙.抗苄嘧磺隆雨久花的田间鉴定与替代药剂的筛选.杂草科学.2008(2):31~32.
    12.马晓渊.论可持续的农田杂草治理.杂草科学, 2000,(1): 11~12.
    13.马晓渊.农田杂草抗药性的发生为害、原因与治理.杂草科学, 2002,(1): 5~9.
    14.农业部农药检定所.新编农药手册.北京:中国农业出版社. 1989,576~578 .
    15.彭学刚,段敏,郇志博.杂草抗药性生物测定方法概述.农药科学与管理. 2008,29(6): 41~45.
    16.浦惠明,高建芹.十字花科杂草种子的破眠研究.杂草科学,2003,1: 9~11.
    17.萨姆布鲁克J,拉塞尔D W.分子克隆实验指南(第三版).北京:科学出版社. 2002.
    18.宋小玲,马波,皇甫超河,强胜.除草剂生物测定方法.杂草科学, 2004,(3): 1~6.
    19.苏少泉,宋顺祖.中国农田杂草化学防除.北京:中国农业出版社. 1996.
    20.苏少泉.除草剂概论.北京:科学出版社. 1989 , 279 ~298.
    21.苏少泉.除草剂作用把标与新品种创制.北京:化学工业出版社. 2001 , 96~98.
    22.隋标峰,王金信,彭学岗,丁君,刘迎.麦田不同杂草对苯磺隆敏感性差异的分子机制.植物保护学报,2007,34(2): 205~208.
    23.王庆亚,董立尧,娄远来,等.农田杂草抗药性及其检测鉴定方法.杂草科学,2002,2: 1~5.
    24.吴明根,刘亮,时丹,孙强.延边地区稻田抗药性杂草的研究.延边大学农学学报,2007,29(1): 6~9.
    25.张朝贤,李香菊,黄红娟,魏守辉.警惕麦田恶性杂草节节麦蔓延危害.植物保护学报,2007,34(1): 103~106.
    26.张朝贤,李香菊.杂草学学科发展. 2007-2008植物保护学学科发展报告.北京:中国科学技术出版社. 2008,2: 75~86.
    27.张朝贤,倪汉文,魏守辉,黄红娟,刘延,崔海兰,隋标峰等.杂草抗药性研究进展.中国农业科学,2009,42(4): 1274~1289.
    28.张朝贤,钱益新.中国农田化学除草现状与努力方向.植保技术与推广,2001,21(10): 35~37.
    29.张朝贤,张跃进,倪汉文.农田杂草防除手册.中国农业出版社. 2000.
    30.张朝贤.我国农田杂草治理的差距与亟待解决的问题. 2005年学会通讯第二期.
    31.张军林,慕小倩,徐敏,彭帆,张蓉,袁龙刚.麦田3种杂草种子的破眠.植物生理学通讯,2006,42(4): 665~667.
    32.张泽溥.我国农田杂草治理技术的发展.植物保护, 2004, 30(2): 28~33.
    33. Acocer Ruthling M, Thill D C, Shafii B. Seed biology of sulfonylurea-resistant and susceptible biotypes of prickly lettuce (Lactuca serriola). Weed Technology, 1992, 6 (4): 858~864.
    34. Akira U, Shigeru O, Hiroshi K, Shuichi Y, Toshihito Y, Hiroaki W. Molecular basis of diverse responses to acetolactat synthase-inhibiting herbicides in sulfonylurea-resistant biotypes of Schoenoplectus juncoides. Weed Biology and Management, 2007, 7: 89~96.
    35. Anderson M P, Gronwald J W. Atrazine resistance in a velvetleaf (Abutilon theophrasti) biotype due to enhanced glutathione-Stransferase activity. Plant Physiology, 1991, 96(1):104~109.
    36. Ashigh J, Rajcan I and Tardif F J. Genetics of resistance to acetohydroxyacid synthase inhibitors in populations of eastern black nightshade (Solanum ptychanthum) from ontario. Weed Science, 2008, 56(2): 210~215.
    37. Ashigh J, Tardif F J. An Ala205Val substitution in acetohydroxyacid synthase of eastern black nightshade (Solanum ptychanthum) reduces sensitivity to herbicides and feedback inhibition. Weed Science , 2007, 55 (6): 558~565.
    38. Aubert S, Richard B. Induction of altrrnatisu oxidase synthesis by herbicids inhibiting branched-chain amino acid synthesis. Plant Journal, 1997, 11: 649~657.
    39. Beckie H J, Hall L M, Tardif F J, Seguin-Swartz G. Acetolactate synthase inhibitor-resistant stinkweed (Thlaspi arvense L.) in Alberta. Can. J. Plant Science, 2007, 87: 965~972.
    40. Beckie H J, Heap I M, Smeda R J, Hall L M. Screening for herbicide resistance in weeds. Weed Technology, 2000, 14(2): 428~445.
    41. Bernasconi P, Woodworth A R, Rosen B A, Subramanian M V, Siehl D L. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. Journal of Biological Chemistry , 1995, 270 (29): 17381~1738.
    42. Boutsalis P, Karotam J, Powles S B. Molecular basis of resistance to acetolactate synthase-inhibiting herbicides in Sisymbrium orientale and Brassica tournefortii. Pesticide Science, 1999, 55: 507~516.
    43. Boutsalis P, Powles S B. Inheritance and mechanism of resistance to herbicides inhibiting acetolactate synthase in Sonchus oleraceus L. Theoretical and Applied Genetics, 1995, 91, (2): 242~247.
    44. Boutsalis P. Syngenta quick-test: a rapid whole-plant test for herbicide resistance. WeedTechnology, 2001, 15(2): 257~263.
    45. Caihong Yang, Liyao Dong, Jun Li, Stephen R Moss. Identification of Japanese Foxtail (Alopecurus japonicus) Resistant to Haloxyfop Using Three Different Assay Techniques. Weed Science, 2007, 55: 537~540.
    46. Christoffers M J, Berg M L, Messersmith C G. An isoleucine to leucine mutation in acetyl-CoA carboxylase confers herbicide resistance in wild oat. Genome, 2002, 45(6): 1049~1056.
    47. Christoffers M J, Nandula V K, Howatt K A, Wehking T R. Target-site resistance to acetolactate synthase inhibitors in wild mustard (Sinapis arvensis). Weed Science, 2006, 54(2): 191~197.
    48. Christoffers M J. Genetic aspects of herbicide-resistant weed management. Weed Technology, 1999, 13: 647~652.
    49. Christopher J T, Powles S B, Liljegren D R, Holtum J A M. Cross resistance to herbicides in annual ryegrass (Lolium rigidum)Ⅱ. Chlorsulfuron resistance involves a wheat-like detoxification system. Plant Physiology, 1991, 95(4): 1036~1043.
    50. Cocker K M, Moss S R, and Coleman J O D. Multiple mechanisms of resistance to fenoxaprop-P-ethyl in United Kingdom and other European populations of herbicide-resistant Alopecurus myosuroides (black-grass). Pesticide Biochemistry and Physiology, 1999, 65(3): 169~180.
    51. Corroll N M, Ross R P. Characterization of recombinant acetolactate synthase from Leuconostoc lactis NCW1. Enzyme and Microbial Technology, 1999, 25: 61~67.
    52. Coupland D, Lutman P J W, Heath C Uptake, translocation, and metabolism of mecoprop in a sensitive and a resistant biotype of Stellaria media. Pesticide Biochemistry and Physiology, 1990, 36(1): 61~67.
    53. Cummins I, Moss S, Cole D J, Edwards R. Glutathione transferases in herbicide-resistant and herbicide-susceptible black-grass (Alopecurus myosuroides). Pesticide Science, 1997, 51, (3): 244~250.
    54. Daniel C B, Antonio D, Charles L M . Intraspecific variation in seed characteristics of powell amaranth (Amaranthus powellii) from habitats with contrasting crop rotation histories. Weed Science, 2007, 55:218~226.
    55. De Prado R A, Franco A R. Cross-resistance and herbicide metabolism in grass weeds in Europe: biochemical and physiological aspects. Weed Science, 2004, 52(3): 441~447.
    56. Délye C, Boucansaud K. A molecular assay for the proactive detection of target site-based resistance to herbicides inhibiting acetolactate synthase in Alopecurus myosuroides. Weed Research , 2008, 48 (2) : 97~101.
    57. Délye C, Calmèsé, Matéjicek A. SNP markers for black-grass (Alopecurus myosuroides Huds.) genotypes resistant to acetyl CoA-carboxylase inhibiting herbicides. Theoretical and Applied Genetics, 2002, 104 (6-7): 1114~1120.
    58. Devine M D, Eberlein C V, Physiological, biochemical and molecular aspects of herbicide resistance based on altered target sites. In: Roe, R.M, Burton, J.D., Kuhr, R.J. (Eds.), HerbicideActivity: Toxicology, Biochemistry and Molecular Biology. 1997.159~185.
    59. Devine M D, Shukla A. Altered target sites as a mechanism of herbicide resistance. Crop Protection, 2000, 19:881~889.
    60. Diebold R S, McNaughton K E, Lee E A, Tardif F J. Multiple resistance to imazethapyr and atrazine in Powell amaranth (Amaranthus powellii) .Weed Science, 2003, 51 (3) :312~318.
    61. Doyle J J and Doyle J L. Isolation of plant DNA from fresh tissue. Focus, 1990,12:13~15.
    62. Duggleby R G, Pang S S. Acetohydroxyacid synthase. Joumal of Biochemical Molecular Biology, 2000, 33: 1~36.
    63. Durner J V, Gailus, Boger P. New aspects on inhibition of plant acetolactate synthase by chlorsulfuron and imazaquin. Plant Physiology, 1991, 95:1144~1149.
    64. Eberlein C V, Guttieri M J, Mallory Smith C A, Thill D C, Baerg R J. Altered acetolactate synthase activity in ALS-inhibitor resistant prickly lettuce (Lactuca serriola). Weed Science , 1997, 45 (2) : 212~217.
    65. Fischer A J, Bayer D E, Carriere M D, Ateh C M, Yim K O. Mechanisms of resistance to bispyribac-sodium in an Echinochloa phyllopogon accession. Pesticide Biochemistry and Physiology, 2000, 68 (3): 156~165.
    66. Fleischer G. Resource costs of pesticide use in Germany. The case of atrazine. Agrarwirtschaft, 2000.49(11): 379~387
    67. Foes M J, Liu L X, Tranel P J, Wax L M, Stoller E W. A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides. Weed Science, 1998, 46(5): 514~520.
    68. Foes M J, Liu L X, Vigue G, Stoller E W, Wax L M, Tranel P J. A kochia (Kochia scoparia) biotype resistant to triazine and ALS-inhibiting herbicides. Weed Science, 1999, 47(1): 21~27.
    69. Gerwick B C, Mireles L C, Eilers R J. Rapid diagnosis of ALS/AHAS-resistant weeds. Weed Technology, 1993, 7(4): 519~524.
    70. Gressel J. Synerging weed control.Copenhagen. Second International Weed Control Congress. 1996.
    71. Guttieri M J, Eberlein C V, Mallory Smith C A, Thill D C and Hoffman D L. DNA sequence variation in domain A of the acetolactate synthase genes of herbicide-resistant and -susceptible weed biotypes.Weed Science, 1992, 40 (4) : 670~676.
    72. Guttieri M J, Eberlein C V, Thill D C. Diverse mutations in the acetolactate synthase gene confer chlorsulfuron resistance in kochia (Kochia scoparia) biotypes. Weed Science, 1995, 43 (2) : 175~178.
    73. Hager A G, Wax L M, Tranel P J. Identification of a smooth pigweed biotype in Illinois resistant to various ALS-inhibiting herbicides. Proceedings of the North Central Weed Science Society, 1998, 53 : 81.
    74. Hanson B D, Park K W, Mallory-Smith C A, Thill D C. Resistance of Camelina microcarpa to acetolactate synthase inhibiting herbicides. Weed Research, 2004, 44 (3):187~194.
    75. Hashem A, Dhammu H S Cross-resistance to imidazolinone herbicides in chlorsulfuron-resistantRaphanus raphanistrum. Pest Management Science, 2002, 58(9): 917~919.
    76. Heap I M, Knight R. The occurrence of herbicide cross resistance in a population of annual ryegrass, Lolium rigidum, resistant to diclofop-methyl. Australian Journal of Agricultural Research, 1986, 37(2): 149~156.
    77. Heap I M, Knight R. Variation in herbicide cross-resistance among populations of annual ryegrass (Lolium rigidum) resistant to diclofop-methyl. Australian Journal of Agricultural Research, 1990, 41(1):121~128.
    78. Heap I. International survey of herbicide resistant weeds. Annual Report Internet http:/www.weedscience.org/, 2003
    79. Heap I. International survey of herbicide resistant weeds. Annual Report Internet http:/www.weedscience.org/, 2007.
    80. Heap I. International survey of herbicide resistant weeds. Annual Report Internet http:/www.weedscience.org/, 2009.
    81. Heap J and R Knight. A population of ryegrass tolerant to the herbicide diclofop-methyl. Journal of the Australian Institute of Agricultural Science, 1982, 48: 156~157.
    82. Huang BingQui, Gressel J. Barnyardgrass (Echinochloa crus-galli) resistance to both butachlor and thiobencarb in China. Resistant Pest Management, 1997, 9: 5~7.
    83. Kaundun D. Mechanisms of resistance to ACCase and ALS inhibitors in Lolium species. Resistance 2007. Rothamsted Research, Harpenden, UK, Abstracts, 2007, 19.
    84. Kolkman J M, Slabaugh M B, Bruniard J M, Berry S, Bushman B S, Olungu C, Maes N, Abratti G, Zambelli A, Miller J F, Leon A, Knapp S J. Acetohydroxyacid synthase mutations conferring resistance to imidazolinone or sulfonylurea herbicides in sunflower. Theoretical and Applied Genetics, 2004, 109 (6): 1147~1159.
    85. Kuk Y I, Burgos N R, Shivrain V K. Natural tolerance to imazethapyr in red rice (Oryza sativa). Weed Science, 2008, 56:1~11.
    86. Kuk Y I, Kim K H, Kwon O D, Lee D J, Burgos N R, Jung S, Guh J O. Cross-resistance pattern and alternative herbicides for Cyperus difformis resistant to sulfonylurea herbicides in Korea. Pest Management Science, 2004, 60 (1): 85~94.
    87. LetouzéA, Gasquez J. A pollen test to detect ACCase target-site resistance within Alopecurus myosuroides populations. Weed Research. 2000,40(2):151~162.
    88. LetouzéA, Gasquez J. A rapid reliable test for screening aryloxyphenoxypropionic acid resistance within Alopecurus myosuroides and Lolium spp. populations. Weed Research, 1999, 39(1): 37~48.
    89. Maertens K D, Sprague C L, Tranel P J, Hines R A. Amaranthus hybridus populations resistant to triazine and acetolactate synthase-inhibiting herbicides. Weed Research. 2004, 44 (1): 21~26.
    90. Mallory-smith C A, Thill D C, Dial M J. Identification of herbicide resistant prickly lettuce (Lactuca serriola). Weed Technology, 1990, 4: 163~168.
    91. Maxwell, Bruce D. and Mortiner A M. Selection for herbicide resistance. In: Herbicide Resistance in Plants: Biology and Biochemistry In: Powles S B. and Holtum (eds.) J A M., 1994.
    92. McCourt J A, Pang S S, Guddat L W. Elucidating the specificity of binding of sulfonylurea herbicides to acetohydroxyacid synthase. Biochemistry, 2005, 44: 2330~2338.
    93. McCourt J A, Pang S S, King-scott J. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proceedings of The National Academy of Sciences, 2006, 103: 569~573.
    94. McNaughton K E, Lee E A, Tardif F J. Mutations in the ALS gene confering resistance to group II herbicides in redroot pigweed (Amaranthus retroflexus) and green pigweed (A. powellii). Weed Science Society of America Abstracts, 2001, 41: 97.
    95. McNaughton K E, Letarte J, Lee E A, Tardif F. Mutations in ALS confer herbicide resistance in redroot pigweed (Amaranthus retroflexus) and Powell amaranth (Amaranthus powellii). Weed Science. 2005. 53(1):17~22.
    96. Milliman L D, Riechers D E, Simmons F W, Wax L M. Two biotypes of eastern black nightshade that are resistant to ALS-inhibiting herbicides. Proc. N. Cent. Weed Science Society, 2000, 55 :86.
    97. Milliman L D, Riechers D E, Wax L M, Simmons F W. Characterization of two biotypes of imidazolinone-resistant eastern black nightshade (Solanum ptycanthum). Weed Science, 2003, 51 (2): 139~144.
    98. Neve P, Sadler J, Powles S B. Multiple herbicide resistance in a glyphosate-resistant rigid ryegrass (Lolium rigidum) population. Weed Science, 2004, 52(6): 920~928.
    99. Pang S S, Duggleby R G, Guddat L W. Crystal structure of yeast acetohydroxyacid synthase: a target for herbicidal inhibitors, Molecular Biology, 2002, 317: 249~262.
    100. Pang S S, Guddat L W, Duggleby R G. Crystallization of Arabidopsis thaliana acetohydroxyacid synthase in complex with the sulfonylurea herbicide chlorimuron ethyl. Acta Crystallogr, 2004, D 60: 153~155.
    101. Pang S S, Guddat L W, Duggleby R G. Molecular basis of sulfonylurea herbicide inhibition of acetohydroxyacid synthase. Biological Chemistry, 2003, 278: 7639~7644.
    102. Park K W, Fandrich L, Mallory-Smith C A. Absorption, translocation, and metabolism of propoxycarbazone-sodium in ALS-inhibitor resistant Bromus tectorum biotypes. Pesticide Biochemistry and Physiology, 2004, 79(1): 18~24.
    103. Park K W, Mallory Smith C A. Physiological and molecular basis for ALS inhibitor resistance in Bromus tectorum biotypes. Weed Research, 2004, 44 (2): 71~77.
    104. Patzoldt W L, Tranel P J, Alexander A L, Schmitzer P R. A common ragweed population resistant to cloransulam-methyl. Weed Science, 2001, 49 (4) : 485~490.
    105. Patzoldt W L, Tranel P J, and Hager A G. A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Science, 2005, 53(1): 30~36.
    106. Patzoldt W L, Tranel P J. ALS mutations conferring herbicide resistance in waterhemp. Proceedings of the North Central Weed Science Society, 2001, 56 : 67.
    107. Patzoldt W L, Tranel P J. Molecular analysis of cloransulam resistance in a population of giant ragweed. Weed Science, 2002, 50 (3) : 299~305.
    108. Patzoldt W L, Tranel P J. Multiple ALS mutations confer herbicide resistance in waterhemp (Amaranthus tuberculatus). Weed Science, 2007, 55 : 421~428.
    109. Powles S B, Preston C, Bryan I. Herbicide resistance: impact and management advances in agronomy. Pesticide Biochemistry Physiology, 1997, 58: 57~93.
    110. Powles S B, Preston C. Evolved glyphosate resistance in plants: biochemical and genetic basis of resistance. Weed Technology, 2006, 20:282~289.
    111. Preston C, Stone L M, Rieger M A, Baker J. Multiple effects of a naturally occurring proline to threonine substitution within acetolactate synthase in two herbicide-resistant populations of Lactuca serriola Pesticide Biochemistry and Physiology, 2006, 84(3) : 227~235.
    112. Ray T B, Site of action of chlorsulfuron. Plant Physiology. 1984, 75:827~831.
    113. Reade J P H, Milner L J, Cobb A H. A role for glutathione S-transferases in resistance to herbicides in grasses. Weed Science, 2004, 52(3): 468~474.
    114. Richter J, Powles S B. Pollen expression of herbicide target site resistance genes in annual ryegrass (Lolium rigidum). Plant physiology. 1993 102(3): 1037~1041.
    115. Ryan G F. Resistance of common groudsel to simazine and atrazine. Weed Science, 1970. 18: 614~616
    116. Saari L L, Cotterman J C, Primiani M M. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed Kochia scoparia. Plant Physiology, 1990, 93 (1) : 55~61.
    117. Saari L L, Cotterman J C, Smith W F, Primiani M M. Sulfonylurea herbicide resistance in common chickweed, perennial ryegrass, and Russian thistle. Pesticide Biochemistry and Physiology, 1992, 42(2): 110~118.
    118. Saari L L, Cotterman J C, Thill D C. Resistance to acetolactate synthase inhibiting herbicides. Pages 83-140 in Powles S B and Holtum J.A.M, eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: Lewis Publishers. 1994.
    119. Satyendra N. Rajguru. Mutations in the red rice ALS gene associated with resistance to imazethapyr. Weed Science, 2005.53:567~577
    120. Scarabel L, Carraro N, Sattin M, Varotto S. Molecular basis and genetic characterisation of evolved resistance to ALS-inhibitors in Papaver rhoeas. Plant Science, 2004, 166: 703~709.
    121. Schloss J V, Ciskanik L M. Origin of the herbicide binding site of acetolactate synthase. Nature, 1988, 331:360~362.
    122. Schmenk R E, Barrett M, Witt W E. An investigation of smooth pigweed (Amaranthus hybridus L.) resistance to acetolactate synthase inhibiting herbicides. Weed Science Society of America Abstracts, 1997, 37: 117.
    123. Sibony M, Michel A, Haas H U, Rubin B, Hurle K. Sulfometuron-resistant Amaranthus retroexus: cross-resistance and molecular basis for resistance to acetolactate synthase (ALS) inhibiting herbicides. Weed Research, 2001, 41(6): 509~522.
    124. Sibony M, Rubin B. Molecular basis for multiple resistance to acetolactate synthase-inhibiting herbicides and atrazine in Amaranthus blitoides (prostrate pigweed). Planta, 2003, 216 (6):1022~1027.
    125. Singh S B, Stidham M A, Shaner D L. Assay of acetohydroxyacid synthase. Analytical Bicohemistry,1988,171(1):173~179.
    126. Stoltenberg D E, Wiederholt R J. Giant foxtail (Setaria faberi) resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides. Weed Science, 1995, 43: 527~535.
    127. Tal A, Rubin B. Occurrence of resistant Chrysanthemum coronarium to ALS inhibiting herbicides in Israel. Resistant Pest Management Newsletter, 2004, 13 (2): 31~33.
    128. Tan M K, Medd R W. Characterisation of the acetolactate synthase (ALS) gene of Raphanus raphanistrum L. and the molecular assay of mutations associated with herbicide resistance. Plant Science, 2002 , 163 (2): 195~205.
    129. Tan M K, Preston C, Wang G X. Molecular basis of multiple resistance to ACCase-inhibiting and ALS-inhibiting herbicides in Lolium rigidum. Weed Research, 2007, 47 (6) : 534~541.
    130. Tardif F J, Rajcan I, Costea M. Mutation in the herbicide target site acetohydroxyacid synthase produces morphological and structural alterations and reduces fitness in Amaranthus powellii New Phytologist, 2006, 169 (2) : 251~264.
    131. Thompson C R, Thill D C, and Shafii B. Growth and competiliveness of sulfonylurea-resistant and susceptible kochia (kochia scoparia) . Weed Science, 1994, 42 :172~179.
    132. Tranel P J, Wright T R. Resistance of weeds to ALS inhibiting herbicides: what have we learned? Weed Science, 2002, 50(6): 700~712.
    133. Travis R L, Kevin W B. Glyphosate and Multiple Herbicide Resistance in Common Waterhemp (Amaranthus rudis) Populations from Missouri. Weed Science, 2008 56:582~587.
    134. Trucco F, Hager A G, Tranel P J. Acetolactate synthase mutation conferring imidazolinone-specific herbicide resistance in Amaranthus hybridus. Journal of Plant Physiology, 2006,163(4): 475~479.
    135. Uchino A, Ogata S, Kohara H, Yoshida S, Yoshioka T, Watanabe H. Molecular basis of diverse responses to acetolactate synthase-inhibiting herbicides in sulfonylurea-resistant biotypes of Schoenoplectus juncoides. Weed Biology and Management, 2007, 7: 89~96.
    136. Uchino A, Watanabe H. Mutations in the acetolactate synthase genes of sulfonylurea-resistant biotypes of Lindernia spp. Weed Biology and Management, 2002, 2: 104~109.
    137. Van Eerd L L, McLean M D, Stephenson G R, Hall J C. Resistance to quinclorac and ALS-inhibitor herbicides in Galium spurium is conferred by two distinct genes. Weed Research, 2004, 44 (5): 355~365.
    138. Walsh M J, Powles S B, Beard B R, Parkin B T, Porter S A. Multiple-herbicide resistance across four modes of action in wild radish (Raphanus raphanistrum). Weed Science, 2004, 52(1): 8~13.
    139. Wang G, Lin Y, Li W, Ito M, Itoh K. A mutation confers Monochoria vaginalis resistance to sulfonylureas that target acetolactate synthase. Pesticide Biochemistry and Physiology, 2004, 80 (1): 43~46.
    140. Warwick S I, Sauder C, Beckie H J. Resistance in Canadian biotypes of wild mustard (Sinapis arvensis) to acetolactate synthase inhibiting herbicides. Weed Science, 2005, 53(5): 631~639.
    141. Warwick S I, Xu R, Sauder C, Beckie H J. Acetolactate synthase target-site mutations and single nucleotide polymorphism genotyping in ALS-resistant kochia (Kochia scoparia). Weed Science, 2008, 56(6): 797~806.
    142. Whaley C M, Wilson H P, Westwood J H. A new mutation in plant ALS confers resistance to five classes of ALS-inhibiting herbicides. Weed Science, 2007, 55(2): 83~90.
    143. Whaley C M, Wilson H P, Westwood J H. ALS resistance in several smooth pigweed (Amaranthus hybridus) biotypes. Weed Science, 2006, 54 (5): 828~832.
    144. Whaley C M, Wilson H P, Westwood J H. Characterization of a new ALS-inhibitor resistance mutation from the ALS gene of smooth pigweed (Amaranthus hybridus). Weed Science, 2004, 161.
    145. White A D, Graham M A, Owen M D K. Isolation of acetolactate synthase homologs in common sunflower. Weed Science, 2003, 51 (6): 845~853.
    146. White A D, Owen M D K, Hartzler R G, Cardina J. Common sunflower resistance to acetolactate synthase-inhibiting herbicides. Weed Science, 2002, 50: 432~437.
    147. Woodworth A P, Bernasconi, Subramanian M, Rosen B. A second naturally occurring point mutation confers broad-based tolerance to acetolactate synthase inhibitors. Plant Physiology, 1996, 111:S105.
    148. Yu Q, Cairns A, Powles S B. Paraquat resistance in a population of Lolium rigidum. Functional Plant Biology, 2004, 31(3): 247~254.
    149. Yu Q, Han H, Powles S B. Mutations of the ALS gene endowing resistance to ALS-inhibiting herbicides in Lolium rigidum populations. Pest Management Science, 2008, 64(12): 1229~1236.
    150. Yu Q, Nelson J K, Zheng M Q, Jackson M, Powles S B. Molecular characterisation of resistance to ALS-inhibiting herbicides in Hordeum leporinum biotypes. Pest Management Science, 2007, 63: 918~927.
    151. Yu Q, Zhang X Q, Hashem A, Walsh M J, Powles S B. ALS gene proline (197) mutations confer ALS herbicide resistance in eight separated wild radish (Raphanus raphanistrum) populations. Weed Science, 2003, 51 (6): 831~838.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700