用户名: 密码: 验证码:
基于新一代GPS框架的公差设计理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新一代GPS是面向数字化设计、制造与检验的标准与计量信息体系,基于新一代GPS框架进行公差设计理论与方法的研究是该体系建立亟待解决的重要技术问题。本文在全面总结国内外公差设计最新研究成果的基础上,系统研究了新一代GPS框架下公差设计的若干理论和关键技术,主要研究内容和创新点如下:
     建立了面向新一代GPS标准体系的公差数学表示模型。根据新一代GPS体系最新的几何要素分类和要素获取的操作方法,借助小位移旋量(Small displacement torsor,SDT)对几何要素的形状、位置、方向和尺寸偏差进行定量的描述,研究了基于SDT的公差数学模型,为进一步探讨一维到三维的公差设计技术奠定了理论基础。
     提出了面向三维尺寸公差和几何公差的综合设计方法。探讨了各种公差区域和各种连接的SDT的描述方法;基于新一代GPS表面模型的概念,提出用表面模型来实现对装配体的描述,并且借助于小位移旋量确定装配体任意表面之间的相对位置;为了计算任意两表面间的旋量,定义了两种操作规则:顺序运算和并行运算;基于各个功能要素对于整个装配功能要求的影响,创建三维公差设计尺寸链,实现三维尺寸公差和几何公差的综合设计;给出三维公差设计实例对所提出的方法加以验证。
     研究了基于矢量环模型的包括几何特征变动在内的三维公差分析技术。鉴于新一代GPS体系与CAD/CAPP/CAM/CAQ技术集成的需要,建立了基于矢量环的公差分析模型;研究了零件尺寸特征变动、几何特征变动和装配运动学调整对于整个装配公差累积的影响,并把这些影响集成于公差分析模型以实现包括几何特征变动在内的三维公差分析;分别给出了二维和三维装配工程实例验证所提出公差分析模型的有效性。
     基于新一代GPS并行设计的思想,提出了面向多重相关特征产品的并行公差设计方法。在对零件的加工工序规划进行深入分析的基础上,重点推导了多重相关特征产品的质量损失与有关零件工序公差的函数关系;建立了基于制造成本-质量损失的设计公差和工序公差的并行优化设计模型,实现基于提高产品质量和降低成本的并行优化公差设计;圆锥齿轮装配的并行公差设计实例验证了所提出的设计方法。
     提出了新一代GPS面向产品全生命周期的公差优化设计模型。考虑产品质量特征随着时间退化的影响,用多变量质量损失函数在连续复利条件下把产品特征的退化作为一个连续的现金流量函数进行建模,从而建立了相关特征产品的期望质量损失现值与其公差的函数关系;在此基础上把质量损失的现值和产品随时间退化的影响集成到总成本模型中,提出了新的相关特征产品公差优化设计模型;一个板簧公差设计的实例验证了推荐模型的有效性。
     开发了新一代GPS框架下公差设计原型系统。该系统是以AutoCAD2007为开发平台,采用开发工具是ObjectARX、Visual C++等,并用工程实例验证了该系统的有效性。
New generation GPS standards system is an information system of standard & metrology oriented the digitizing design, manufacturing and verification. The study on theory and methodology of tolernace design within the framework of the new generation GPS system has become the very important technology issue, which is in urgent need to settle during the course of establishing the system. On the basis of summarizing the latest research results in tolerancing both of at home and abroad, this dissertation aims to solve the key theories and technique problems on tolerance design currently unsolved in the GPS system. The main researches and creative points are as follows:
     A mathematical representation model of tolerance has been established oriented the new generation GPS system. According to the geometrical feature types and the operation methods extracting features newly defined in the GPS system, the SDT-based mathematical model of tolerance is studied by using the small displacement torsors (SDT) to characterize the deviations of shape, position, orientation and size of geometrical featrues. It also establishes theoretical basis for tolerance design from 1-D to 3-D assemblies, which is further studied in the following chapters.
     A comprehensive method of tolerance design for 3-D dimensional tolerances and geometrical tolerances is proposed. The description methods of various tolerance zones and kinematic links based on SDT are studied. Based on the surface model concept newly presented in new generation GPS system, we apply surface models to describe an assembly, and use the SDT to express the relative position between any two surfaces of an assembly. In order to determine the torsor between any two surfaces, two governing rules are defined: the union and the intersection. Based on the effect of each functional element on the whole functional requirements of products, the 3-D dimension-chain is created, and 3-D dimensional and geometrical tolerance design is realized. The engineering examples involving 3-D tolerance design are given to test the proposed method.
     Three-dimensional tolerance analysis technique based on the vector-loop tolerance model including the geometric feature variations is studied. In view of the needs for the new generation GPS system to integrate with CAD/CAPP/CAM/CAQ techniques, the tolerance analysis model based on the vector-loop is established at first. The discussions focus on the effects of dimensional variations and geometric feature variations of each individual component in the assembly, and variations due to small kinematic adjustments among components which occur at assembly time. And the effects of all variations are integrated in the tolerance analysis model so as to realize 3-D tolerance analysis including all geometric feature variations. The tolerance analysis examples of 2-D and 3-D assemblies are given to demonstrate the effectiveness of the proposed model, respectively.
     A concurrent tolerance design method for the products with correlated characteristics is presented based on the concept of concurrent engineering in the new generation GPS. On the basis of analyzing in detail manufacturing process plans of parts, the functional relationship between quality loss of products with correlated characteristics and process tolerances of correlated parts is derived. And a comprehensive model to concurrently allocate optimal design and process tolerances based on minimizing the combination of quality loss and manufacturing cost is established so that the concurrent tolerance design is realized, and product quality improvement and cost reduction are achieved. An example of the bevel gear assembly involving concurrent tolerance design is given to verify the presented method.
     An optimal tolerance design model for product life cycle is proposed within the frame of the new generation GPS system. Considering product degradation on quality characteristics over time, the multivariate quality loss function is used to model quality loss due to product degradation as a continuous cash flow function under continuous compounding. As a result, the functional relationship between the present worth of expected loss of product with correlated characteristics and its related tolerances is derived. The present worth of quality loss and product degradation over time is integrated into the total cost model, and a new optimization model for the tolerance design of products with correlated characteristics is presented. An example of the leaf spring involving optimal tolerance design is given to demonstrate the effectiveness of the proposed model.
     A prototype system for tolerance design within the framework of the new generation GPS system is developed. The software platform of the system is based on AutoCAD2007, development tools adopted involve ObjectARX, Visual C++ etc. The engineering examples are studied to demonstrate the effectiveness of this system.
引文
[1] Jiang Xiangqian. Review of the next generation GPS. 2~(nd) International Symposium on Instrumentation Science and Technology, Aug. 18-22, 2002, Jinan, China
    [2] 蒋向前.现代产品几何技术规范(GPS)国际标准体系.机械工程学报,2004,40(12):133-138
    [3] 李柱,徐振高,蒋向前.互换性与测量技术-几何产品技术规范与认证GPS.北京:高等教育出版社,2004
    [4] 蒋向前.新一代GPS标准理论与应用.北京:高等教育出版社,2007
    [5] Bials S, Partyka Z. From "joint harmonisation group" to the new technical committee ISO/TC213. Normalizacja, 1997, 151-162
    [6] ISO/TR 14638: 1995, Geometrical Product Specification (GPS)-Masterplan
    [7] Hillyard R C. Dimensions and tolerances in shape design, Ph.D Dissertation. England: Cambridge University, 1978
    [8] Bjorke O. Computer Aided Tolerancing (2~(nd) ed). New York, ASME Press, 1989
    [9] Requicha A A G. Toward a theory of geometric tolerancing. International Journal of Robotics Research, 1983, 2(4): 45-59
    [10] Karolin A. Computer aided tolerance analysis. AUTOFACT 6 Conference Proceedings, Anaheim Ca: Society of Manufacturing Engineers, October, 1984
    [11] Fainguelernt D, Weill R, Bourdet P. Computer aided toleraneing and dimensioning in process planning. Annals of the CIRP, 1986, 35(1): 381-386
    [12] Turner J U. Tolerances in computer-aided geometric design. Rensselaer Polytoohnic Institute: Ph.D Dissertation, 1987
    [13] Weill R, Cl(?)ment A, Hocken R, et al. Tolerancing for function. Annals of the CIRP, 1988, 37(2): 603-610
    [14] Cl(?)ment A, Rivi(?)re A. Tolerancing versus nominal modelling in next generation CAD/CAM system. Proceedings of 3~(th) CIRP Seminars on Computer Aided Tolerancing, 1993, 97-114
    [15] Cl(?)ment A, Rivi(?)re A, Serre P. A declarative information model for functional requirements. Porceedings of 4~(th) CIRP Seminars on Computer Aided Tolerancing, 1995, 1-15
    [16] Desrochers A, Maranzana R. Constrained dimensioning and tolerancing assistance for mechanisms. Porceedings of 4~(th) CIRP Seminars on Computer Aided Tolerancing, 1995,19-30
    [17] Ballu A, Mathieu L. Univocal expression of functional and geometrical tolerances for design, manufacturing and inspection. Proceedings of 4~(th) CIRP Seminars on Computer Aided Tolerancing, 1995, 31-46
    [18] ASME, Dimensioning and tolerancing. ASME Standard Y14.5M-1994, The American Society of Mechanical Engineers, New York, 1994
    [19] ASME-Math, Mathematical definition of dimensioning and tolerancing principles. ASME Y14.5.1M-1994, The American Society of Mechanical Engineers, New York,1994
    [20] Srinivasan V, O'Connor M A. Towards an ISO standard for statistical tolerancing.Proceedings of 4~(th) CIRP Seminars on Computer Aided Tolerancing, 1995, 159-172
    [21] Martinsen K. Statistical process control using vectorial tolerancing. Proceedings of 4~(th) CIRP Seminars on Computer Aided Tolerancing, 1995, 173-186
    [22] http://isotc213.ds.dk/
    [23] http://www.cat2007.de/
    [24] Peng Heping, Liu Xiaojun, Jiang Xiangqian, Wang Yan. Concurrent tolerance design based on a comprehensive model of manufacturing cost-quality loss. Proceedings of 10~(th) CIRP Seminar on Computer Aided Tolerancing, Erlangen, Germany, 2007
    [25] Wirtz A. Vectorial tolerancing: a basic element for quality control. Proceedings of 2~(nd) CIRP Seminars on Computer Aided Tolerancing, 1991, 115-127
    [26] Wirtz A, G(?)chter C, Wipf D. From unambiguously defined geometry to the perfect quality control loop. Annals of the CIRP, 1993, 42/1: 615-618
    [27] Martinsen K. Vectorial tolerancing in manufacturing systems, Dr. Ing. Thesis, Department for Production and Quality Engineering, Norwegian Institute of Technology, University of Trondheim, Norway, 1995
    [28] Varghese P, Zhang C, Wang H-P. Geometric tolerance analysis with vectorial tolerancing. Engineering Design and Automation, 1996, 2: 127-139
    [29] Yau H-T. Generalization and evaluation of vectorial tolerances. International Journal of Production Research, 1997,35(6): 1763-1783
    [30] Humienny Z. Vectorial dimensioning and tolerancing-integration with CAD systems, in: Proceedings of 6~(th) ISMQC IMEKO TC14 Symposium Metrology for Quality Control in Production, (Wien, 1998), Austria, 265-269
    [31] Britten W, Weber C. Transforming ISO 1101 tolerances into vectorial tolerance representations--a CAD-based approach. In: F. van Houten, and H. Kals (eds), Global Consistency of Tolerances, Kluwer Academic Publishers, 1999, 93-100
    [32] Krimmel O, Martinsen K. Industrial application of vectorial tolerancing to improve clamping of forged workpieces in machining. In: F. van Houten, and H. Kals (eds), Global Consistency of Tolerances, Kluwer Academic Publishers, 1999, 101-110
    [33] Humienny Z, Thome O, Weber C. Vectorial dimensioning and tolerancing in computer aided tolerancing. Proceedings of International Conference Mechatronics 2000. (Warsaw University of Technology, 21-23 September 2000), Poland, 447-450
    [34] 方红芳,吴昭同.一种设计和工序公差计算机辅助并行设计方法的研究.中国机械工程,1995,6(6):25-27
    [35] 方红芳,何勇,吴昭同.基于田口质量观的并行公差设计的研究.机械设计,1998,5(1):22-24
    [36] 方红芳,吴昭同.并行公差设计与工艺路线技术经济评价方法.机械工程学报,2000,36(4),74-77,85
    [37] Singh N. Integrated product and process design: a multi-objective modeling framework. Robotics and Computer Integrated Manufacturing, 2002, 18:157-168
    [38] Huang M F, Zhong Y R, Xu Z G. Concurrent process tolerance design based on minimum product manufacturing cost and quality loss. International Journal of Advanced Manufacturing Technology, 2005, 25:714-722
    [39] Peng Heping, Jiang Xiangqian, Liu Xiaojun. Concurrent optimal allocation of design and process tolerances for mechanical assemblies with interrelated dimension chains. International Journal of Production Research, 2008, 46 (24): 6963-6979
    [40] Zhang C, Wang H-P. Robust design of assembly and machining tolerance allocations. ⅡE Transactions, 1998, 30, 17-29
    [41] Jeang A, Leu E. Robust tolerance design by computer experiment. International Journal of Production Research, 1999, 37(9): 1949-1961
    [42] Jeang A. Robust tolerance design by response surface methodology. International Journal of Advanced Manufacturing Technology, 1999,15:399-403
    [43] Fraticelli B P, Lehtihet E A, Cavalier T M. Sequential tolerance control in discrete parts manufacturing. International Journal of Production Research, 1997, 35(5): 1305-1319
    [44] Fraticelli B M P, Lehtihet E A, Cavalier T M. Tool-wear effect compensation under sequential tolerance control. International Journal of Production Research, 1999, 37(3): 639-651
    [45] Cavalier T M, Lehtihet E A. A comparative evaluation of sequential set point adjustment procedures for tolerance control. International Journal of Production Research, 2000, 38(8): 1769-1777
    [46] McGarvey R G, Lehtihet E A, Castillo E D et al. On the frequency and location of set point adjustments in sequential tolerance control. International Journal of Production Research, 2001, 39(12): 2659-2674
    [47] Scott K M, Cavalier T M, Lehtihet E A. A probabilistic search method for sequential tolerance control. International Journal of Production Research, 2001, 39(17): 4033-4048
    [48] Cavalier T M, Lehtihet E A, Castillo E D, McGarvey R G. An adaptive sphere-fitting method for sequential tolerance control. International Journal of Production Research, 2002, 40 (12): 2757-2767
    [49] Chase K W, Gao J, Magleby S P, Sorensen C D. Including geometric feature variations in tolerance analysis of mechanical assemblies. ⅡE Transactions, 1996, 28:795-807
    [50] Dabling J G. Incorporating geometric feature variation with kinematic tolerance analysis of 3D assemblies, M.S. Thesis. Brigham Young University, 2001
    [51] Hu J, Xiong G. Concurrent design of a geometric parameter and tolerance for assembly and cost. International Journal of Production Research, 2005, 43(2): 267-293
    [52] 杨将新.基于装配成功率的公差优化设计系统研究[博士学位论文].杭州:浙江大学,1996
    [53] 方红芳.设计公差和工序公差并行设计的研究[博士学位论文].杭州:浙江大学,1997
    [54] 刘玉生.基于数学定义的平面尺寸和形位公差建模与表示技术的研究[博士学位论文].杭州:浙江大学,2000
    [55] 胡洁.基于变动几何约束网络的形位公差设计理论与方法的研究[博士学位论文].杭州:浙江大学,2001
    [56] 蔡敏.基于数学定义的圆柱要素公差数学建模与分析技术的研究[博士学位论文].杭州:浙江大学,2002
    [57] 吴昭同,杨将新等.计算机辅助公差优化设计.杭州:浙江大学出版社,1999
    [58] Zhang G, Porchet M. Some new developments in tolerance design in CAD. The ASME 1993 Design Automation Conference, Albuquerque, USA: ASME, 1993
    [59] Zhang G. Simultaneous tolerancing for design and manufacturing. International Journal of Production Research, 1996, 34 (12): 3361-3382
    [60] 熊峰.工程表面复合评定与统计公差研究[博士学位论文].武汉:华中科技大学,2002
    [61] 黄美发.面向设计和制造的并行公差设计方法研究[博士学位论文].武汉:华中科技大学,2004
    [62] 孙绍民.CAD环境中公差分析与综合的研究[博士学位论文].哈尔滨:哈尔滨工业大学,1997
    [63] 姬舒平.虚拟环境下公差并行设计方法的研究[博士学位论文].哈尔滨:哈尔滨工业大学,2000
    [64] 闫艳,宁汝新.并行工程中的公差设计研究与开发.计算机集成制造系统,2000,6(5):43-47
    [65] 闫艳,宁汝新,刘文丰.公差设计特征专家系统.全国首届计算机辅助公差设计专题学术会议论文集,杭州,2000:112-116
    [66] 范秀敏.装配系统的公差建模与优化[博士学位论文].上海:上海交通大学,1998
    [67] 周志革,黄文振,张利.数论方法在统计公差分析中的应用,机械工程学报2000,36(3):69-72
    [68] BS EN ISO 14660-1:2000 Geometrical product specifications (GPS)-Geometrical features-Part1: General terms and definitions
    [69] Srinivasan V. An integrated view of geometrical product specification and verification. Proceedings of 7~(th) CIRP Seminar on Computer-aided Tolerancing, France, 2001: 7-18
    [70] Bourdet P, Mathieu L, Lartigue C, Ballu A. The concept of the small displacement torsor in metrology. Advanced Mathematical Tools in Metrology Ⅱ, Series on Advances in Mathematics for Applied Sciences, 1996, 40:110-122
    [71] Villeneuve F, Legoff O, Landon Y. Tolerance for manufacturing: a three-dimensional model. International Journal of Production Research, 2001, 39 (8): 1625-1648
    [72] Hong Y S, Chang T C. Tolerancing algebra: a building block for handling tolerancing interactions in design and manufacturing. International Journal of Production Research, 2002, 40 (18): 4633-4649
    [73] Wang H, Pramanik N, Roy U. A scheme for transformation of tolerance specifications to generalized deviation space for use in tolerance synthesis and analysis. Proceedings of DETC 02. Montreal Canada, 2002:1-9
    [74] Vignat F, Villeneuve F. 3D transfer of tolerances using a SDT approach: application to turning process. Journal of Computing and Information Science in Engineering. 2003, (3): 45-53
    [75] Villeneuve F, Vignat F. Manufactuing process simulation for tolerance analysis and synthesis. Proceedings of IDMM. Bath, UK. April, 2004
    [76] Vignat F, Villeneuve F. Simulation of manufacturing process (1) generic resolution of the positioning problem. Proceedings of the 9th CIRP Computer Aided Tolerancing Seminar. Tempe, USA, April, 2005
    [77] Vignat F, Villeneuve F. Simulation of manufacturing process (2) analysis of its consequences on a functional tolerance. Proceedings of the 9th CIRP Computer Aided Tolerancing Seminar. Tempe, USA, April, 2005
    [78] Desrochers Alain, Ghie Walid, Laperri(?)re Luc. Application of a unified Jacobian-torsor model for tolerance analysis. Journal of Computing and Information Science in Engineering, 2003, 3 (1): 2-14
    [79] Lee K, Gossard D C. A hierarchical data structure for representing assemblies: part 1. Computer Aided Design, 1985, 17(1): 15-19
    [80] Teissandier D, Cou(?)tard Y, G(?)rard A. A computer aided tolerancing model: proportioned assembly clearance volume. Computer-Aided Design, 1999, 31: 805-817
    [81] Tsai L. The mechanics of serial and parallel manipulators. New York, N.Y.: J. Wiley and Sons, ISBN 0-471-32593-7, 1999
    [82] Chase K W, Gao J, Magleby S P. General 2-D tolerance analysis of mechanical assemblies with small kinematic adjustments. Journal of Design and Manufacturing, 1995, 5: 263-274
    [83] Gao J, Chase K W, Magleby S P. Generalized 3-D tolerance analysis of mechanical assemblies with small kinematic adjustments. IIE Transactions, 1998, 30(4): 367-377
    [84] 彭和平,刘晓军 .基于矢量环装配模型的二维公差分析.机械传动, 2007,31 (6): 84-86
    [85] Sandor G, Erdman A. Advanced mechanism design: analysis and synthesis. Vol. 2, New Jersey: Prentice Hall, 1984
    [86] Shigley J E. Kinematic analysis of mechanisms. New York: McGraw-Hill Book Company, 1969
    [87] Goodrich C G. Representation and modeling of geometric form variations for 3-D tolerance analysis, M.S. Thesis. Brigham Young University, Provo, Utah, 1991
    [88] Ward K. Integrating geometric form variations into tolerance analysis of 3-D assemblies, M.S. Thesis. Brigham Young University, Provo, Utah, 1992
    [89] Gao J. Nonlinear Tolerance analysis of mechanical assemblies, PhD Dissertation. Brigham Young University, Provo, Utah, 1993
    [90] Faerber P J. Tolerance analysis of assemblies using kinematically derived sensitivities, M.S. Thesis. Brigham Young University, 1999
    [91] Al-Ansary M D, Deiab I M. Concurrent optimization of design and machining tolerances using the genetic algorithms method. International Journal of Machine Tools and Manufacture, 1997, 37 (12): 1721-1731
    [92] Singh P K, Jain P K, Jain S C. Simultaneous optimal selection of design and manufacturing tolerances with different stack-up conditions using genetic algorithms. International Journal of Production Research, 2003, 41 (11): 2411-2429
    [93] Krishna A G, Rao K M Simultaneous optimal selection of design and manufacturing tolerances with different stack-up conditions using scatter search. International Journal of Advanced Manufacturing Technology, 2006, 30 (3-4): 328-333
    [94] Hsieh K-L. The study of cost-tolerance model by incorporating process capability index into product lifecycle cost. International Journal of Advanced Manufacturing Technology, 2006, 28 (5-6): 638-642
    [95] Taguchi G, Elsayed E A, Hsiang T C. Quality engineering in production system. New York: McGraw-Hill, 1989
    [96] Ye B, Salustri F A. Simultaneous tolerance synthesis for manufacturing and quality. Research in Engineering Design, 2003, 14:98-106
    [97] 吴文,张伟社.基于制造-质量损失成本的公差优化分配法,长安大学学报(自然科学版),2005,25(3):89-93
    [98] Cheng B W, Maghsoodloo S. Optimization of mechanical assembly tolerances by incorporating Taguchi's quality loss function. Journal of Manufacturing Systems, 1995, 14(4): 264-276
    [99] Moskowitz H, Plante R, Duffy J. The partial information case for multivariate tolerance design using scrap or rework costs. International Journal of Production Research, 1999, 37(1): 139-154
    [100] Moskowitz H, Plante R, Dufy J. Multivariate tolerance design using quality loss, ⅡE Transactions, 2001, 33(6): 437-448
    [101] Plante R. Multivariate tolerance design for a quadratic design parameter model, ⅡE Transactions, 2002,34 (6): 565-571
    [102] Jeang A. Combined parameter and tolerance design optimization with quality and cost. International Journal of Production Research, 2001, 39(5): 923-952
    [103] Jeang A, Chung C-P, Hsieh C-K. Simultaneous process mean and process tolerance determination with asymmetrical loss function. International Journal of Advanced Manufacturing Technology, 2007, 31,694-704
    [104] Wu C C, Tang G R. Tolerance design for products with asymmetric quality losses. International Journal of Production Research, 1998, 36(9): 2529-2541
    [105] Maghsoodloo S, Li M-H C. Optimal asymmetric tolerance design. ⅡE Transactions, 2000, 32(12): 1127-1137
    [106] Peters J. Tolerancing the components of an assembly for minimum cost. ASME Journal of Engineering for Industry, 1970, 677-682
    [107] Speckhart F H. Calculation of tolerance based on a minimum cost approach. ASME Journal of Engineering for Industry, 1972, 94 b (2): 447-453
    [108] Wilde D, Prentice E. Minimum exponential cost allocation of sure-fit tolerances. ASME Journal of Engineering for Industry, 1975, 97b (4): 1395-1398
    [109] Spotts M F. Allocation of tolerances to minimize cost of assembly. ASME Journal of Engineering for Industry, 1973, 95b (3): 762-764
    [110] Sutherland G H, Roth B. Mechanism design: accounting for manufacturing tolerances and costs in function generating problems. ASME Journal of Engineering for Industry, 1975, 98:283-286
    [111] Lee W, Woo T C. Tolerancing: it's distribution, analysis, and synthesis, Tech. Report No. 86-30, Dept. of Indust. and Operations Engineering, U. of Michigan, Ann Arbor, MI, Dec. 1986
    [112] Michael W, Siddall J N. The optimization problem with optimal tolernce assignment and full acceptance. ASME Journal of Mechanical Design, 1981, 103, 842-848
    [113] Dong Z, Hu W, Xue D. New production cost-tolerance models for tolerance synthesis. ASME Journal of Engineering for Industry, 1994, 116(5): 199-206
    [114] Michael W, Siddall J N. The optimal tolerance assignment with less than full acceptance. ASME Journal of Mechanical Design, 1982, 104, 855-860
    [115]Chase K W, Greenwood W H. Design issues in mechanical tolerance analysis. Manufacturing Review, ASME, 1988, 1(1): 50-59
    [116]Lee W J, Woo T C. Optimum selection of discrete tolerances. ASME Journal of Mechanisms, Transmissions, and Automation in Design, 1989, 111:243-251
    [117] Dong Z, Soom A. Automatic optimal tolerance design for related dimension chains. ASME Machining Review, 3 (4), pp. 262-271, December 1990
    [118] Dong Z, Hu W. Optimal process sequence identification and optimal process tolerance assignment in computer-aided process planning. Computers in Industry, 1991, 17: 19-32
    [119] 杨将新,顾大强,吴昭同.基于神经网络的机械加工成本公差模型.中国机械工程,1996,7(6):41-42
    [120] Pignatiello J J. Strategies for robust multiresponse quality engineering, ⅡE Transactions, 1993, 25 (3): 5-15
    [121] Lee C L, Tang G R. Tolerance design for products with correlated characteristics. Mechanism and Machine Theory, 2000, 35:1675-1687
    [122]Dantan J-Y, Ballu A, Mathieu L. Geometrical product specifications-model for product life cycle. Computer-Aided Design, 2008, 40:493-501
    [123] Jeang A. Optimal tolerance design for product life cycle. International Journal of Production Research, 1996, 34 (8): 2187-2209
    [124] Teeravaraprug J, Cho B R. Designing the optimal process target levels for multiple quality characteristics. International Journal of Production Research, 2002, 40 (1): 37-54
    [125]彭和平,蒋向前,徐振高,刘晓军.基于多重相关特征质量损失函数的公差优化设计.中国机械工程,2008,19(5):590-594
    [126] Teran A, Pratt D B, Case K E. Present worth of external quality losses for symmetric nominal-is-better quality characteristics. Eng Econ, 1996, 42(1): 39-52
    [127] Chou C-Y, Chang C-L. Minimum-Loss assembly tolerance allocation by considering product degradation and time value of money. International Journal of Advanced Manufacturing Technology, 2001, 17:139-146
    [128] Peng Heping, Jiang Xiangqian, Xu Zhengao, Liu Xiaojun. Optimal tolerance design for products with correlated characteristics by considering the present worth of quality loss. International Journal of Advanced Manufacturing Technology, 2008, 39:1-8
    [129] Tanchoco J M A, Buck J R, Leung L C. Modeling and discounting of continuous cash flows under risk. Engineering Costs and Production Economics, 1981, 5 (3-4): 205-216
    [130]孙江宏,丁立伟.AutoCAD ObjectARX开发工具及应用.北京:清华大学出版社,1999
    [131]宋延杭,王川,李永宜.ObjectARX实用指南--AutoCAD二次开发.北京:人民邮电出版社,1999
    [132]刘维编著.精通Matlab与C/C++混合程序设计(第1版).北京:北京航空航天大学出版社,2005,21-165
    [133]周峰,李德路,王征.Visual C#.NET 2005中文版基础与实践教程.北京:电子工业出版社,2007
    [134]王洋,王春河,高峰等.基于特征的装配尺寸链自动生成及分析的研究.计算机辅助设计与图形学学报,1998,10(2):138-144
    [135]柴国柱.面向装配的尺寸链及其链节模型的自动生成[博士学位论文].哈尔滨:哈 尔滨工业大学,2000
    [136]侯永涛,顾寄南,黄娟.Pro/Engineer平台下装配尺寸链生成的研究.中国制造业信息化,2003,32(7):127-129
    [137]王恒,宁汝新,唐承统.三维装配尺寸链的自动生成.机械工程学报,2005,41(6):181-187
    [138] Wang Heng, Ning Ruxin, Yan Yan. Simulated toleranced CAD geometrical model and automatic generation of 3D dimension chains. International Journal of Advanced Manufacturing Technology, 2006, 29:1019-1025

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700