用户名: 密码: 验证码:
西藏原始林芝云杉林群落结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西藏亚高山暗针叶林是我国森林资源中保存较为完好的天然林之一,对西藏原始林芝云杉林生态系统结构、生物量与生产力、水文效益及养分循环的系统研究,可为揭示西藏亚高山暗针叶林高蓄积量的规律提供科学依据,也进一步丰富我国高海拔地区森林生态系统研究。
     西藏原始林芝云杉林群落中有53科116属144种植物,其中蔷薇科和菊科为优势科,单种科属植物所占比例较大,温带属占总属的76.14%。群落物种丰富度和多样性指数较低,而均匀度和优势度指数较大,说明该群落处于演替顶级。林分中以中大径级的乔木个体为主,种群处于稳定至衰退型阶段。空间点格局分析表明,在小尺度范围内小径级的云杉个体趋于集群分布,随着树木的生长,乔木个体呈随机分布。林内林窗以大于100 m2的大林窗为主,其形成木以中径级的干折为主。林分更新主要在中林窗中发生,其更新数量是相邻林冠的3.45倍,并且幼树高度增长了1.5倍。
     西藏原始林芝云杉标准木近80%的生物量集中在树体中下部,86%的根生物量集中在0~0.60 cm的土层中。在水平分布上,枝和叶在开阔空间生物量较高,而根在各方向上无差异。林分的总生物量为367.49 t.hm-2,其中乔木层的比例最大(75.28%),其次为凋落层、下木层、死亡木、灌木层、层间植物(藤本+苔藓)、草本层。在乔木层中生物量分布是干材>树根>树皮>树枝>树叶,并且随着树木的生长,干材和树皮的比例递增,而枝、叶所占比例递减,地上与地下部分比值也在逐渐减小
     西藏原始林芝云杉林年净初级生产力为10.65 t·hm-2·a-1,其中乔木层生产力最高(46.96%),其次为凋落物、下木层、灌木层、苔鲜层、草本层和层间植物。在乔木层中生产力分布规律为干材>树枝>树叶>树根>树皮。林芝云杉直径与树高生长速度不同步,整个生长过程可分为幼龄期、速生期和速生稳定期,其中速生期可长达100年,加之无病虫毒的发现,导致林芝云杉蓄积量极高。
     西藏原始林芝云杉林的年降水量为716.4 mm,主要集中在4-9月份。在生长季节中,林冠截留量为338.6 mm,林内穿透水量为316.3 mm,而树干茎流量仅为0.9mm。林下凋落厚度5.0 cm,最大持水率323.13%,有效持水量为92.26 t.hm-2,凋落层由上到下,持水量呈下降趋势。林下土壤随深度增加,容量逐渐增大,而最大持水量、毛管持水量和最小持水量都在逐渐下降,同样土壤毛管孔隙度和总孔隙度也在下降,表明土壤的持水能力随深度的增加而逐渐减弱。大气降水中各养分元素较低,经过林冠之后,SO42-、Zn和Cl-的浓度有所下降,而其它元素增加。经过土壤之后,SO42-、Zn和Fe浓度下降,其它元素的浓度升高。
     西藏原始林芝云杉林年凋落量为3.40t·hm-2·a-1,其中云杉枝和叶凋落量各占24.3%、26.1%。1年内呈现两个凋落高峰期,分别在生长初期和末期。分解样品袋置于苔藓下方分解速率最快,初始分解速率与环境温度呈正线性相关。凋落叶的分解速率比小枝快,1年后前者失重率比后者高3倍,半衰期分别为1.75年和8.08年。随分解时间的推移,凋落物中K元素含量下降最快,1年后其养分元素含量下降了近1/2,而Ca元素在分解中途含量还相对升高。各养分元素在分解过程中释放量存在明显差异,1年后K元素释放76.36%,而Ca元素仅释放24.01%。
     西藏原始林芝云杉标准木中干材养分元素含量最低,N、P、K元素在当年叶含量较高。林内土壤层积累的养分最多,但有效利用率仅1-3%。乔木层养分积累主要在干材中,而叶中最少。5种养分元素的积累速率为104.81 kg·hm-2·a-1,排序为Ca>N>K>P>Mg,但在乔木层各器官中各元素积累速率不相同。林分年归还总量达到169.288 kg·hm-2·a-1,其中地上凋落物年归还量最高,其次是地下凋落物,各归还元素的排序为Ca>N>K>Mg>P。
     西藏原始林芝云杉林中各器官的碳元素含量差异不大。生态系统中碳储量高达305.6 t.hm-2,其中乔木层储量最多,占总量的48.29%,其次是土壤层,占总量的38.31%。林分年固碳速率为3.58 t·hm-2.a-1,其中以乔木层固碳速率最大,占总量的70.57%。
Subalpine dark coniferous forest in Tibet is one of the relatively intact natural forests in China. Structure, biomass, productivity, hydrology and nutrient cycling were investigated in a P. likiangensis var. linzhiensis forest ecosystem in order to examine the mechanism of forming a high stock volume in the forest and provide the basic data of structure and functions of forest ecosystems in the high elevation area.
     There were 116 generas,53 families and 144 species of plants in the primary P. likiangensis var. linzhiensis forest in Tibet, in which Rosaceae and Asteraceae were dominant families. The community was composed mainly of temperate generas (76.14%), and generas and families with single species had a large proportion too. Species richness and diversity index were low, while the evenness and dominance index were high, indicating that the community was at the climax succession stage. The forest, with pitch and large diameter trees to be predominant, had a descending population growth. Analysis of the spatial point pattern showed that small diameter picea tended to have an aggregated distributed pattern in small area, and arbor was close to a random distribution pattern as growth. The gap makers of the forest based on large canopy gap with area of more than 100 m2 were mainly pitch diameter stem break. The main regeneration of the stands was middle gap, as regeneration amount and height growth of saplings of middle gap were 3.45 and 1.5 times that of the adjacent canopy respectively.
     Appropriately 80% of the biomass was accumulaited in the lower part of tree,86% of root biomass was concentrated in the 0~0.60 cm in the soil of standard wood of the primary P. likiangensis var. linzhiensis in Tibet. On the horizontal pattern, branch and leaf biomass in the open space was higher, but no difference in root in all directions. The total forest biomass was 367.49 t·hm-2, of which the tree layer consisted of the largest proportion (75.28%), followed by litter layer, the understory layer, dead wood, the shrub layer, interlayer plants (vines+moss), herb layer. The distribution of biomass in tree layer was ranked in the order of stem> root> bark> branches> leaves, and with the growth of trees, the proportion of stem and bark increased, while the branches and leaves the proportion decreased and the ratio of leaves and roots gradually reduced.
     The net primary productivity of the primary P. likiangensis var. linzhiensis forest in Tibet was 10.65 t·hm-2·a-1, in which tree layer had the most productive (46.96%), followed by understory layer, shrub layer, moss layer, herbaceous layer and the layer of plant. The law of productivity distribution of tree layer was ranked in the order of stem> branches> leaves> roots> bark. The diameter and height growth rate of the primary P. likiangensis var. linzhiensis forest was not synchronized. The whole growth process could be divided into the young, fast growing and fast-growing stable. The fast-growing period could be up to 100 years, coupled with the interference of non-toxic pest, and the accumulation of the P. likiangensis var. linzhiensis is very high.
     The annual precipitation in the primary P. likiangensis var. linzhiensis forest in Tibet was 716.4 mm, mainly occuring in the period from April to September. During the growing season, canopy interception was 338.6 mm, forest penetration of water was 316.3 mm, stem flow was only 0.9 mm. Litter average ply was 5.0 cm, maximum water holding capacity was 323.13%, the effective holding capacity is up to 92.26 t·hm-2, litter layer from top to bottom, water holding capacity decreased. Forest soil increased with depth, capacity increased, but the maximum water holding capacity, capillary water holding capacity and the minimum water holding capacity are gradually decreased, the same as soil capillary porosity and total porosity, it indicated that the water holding capacity of soil with depth increased gradually weakened. The nutrients in precipitation were lower. After passing through the canopy, SO42-, Zn, and Cl- concentrations in the throughfall decreased, while the other elements in the throughfall increased. After infiltration through the soil, SO42-, Zn and Fe concentrations decreased, while the other elements increased.
     Litter production in the P. likiangensis var. linzhiensis forest in Tibet was 3.40 t·hm-2·a-1, of which the amount of spruce branches and leaf litter consisted of 24.3%, 26.1%. Highest litter production occurred in the early and late growth of a year. When the sample bags was placed below moss, the decomposition rate was high. The initial decomposition rate and environmental temperature was linearly correlated. The leaf litter decomposed rate faster than twigs, and weight loss rate was 3 times higher after one year. The half-life of litter leaf decomposition was 1.75 years, while litter sticks were up to 8.08 years. With the decomposition time, K concentration in litter decreased fastest, after one year other nutrient elements decreased by nearly 1/2, but Ca concentration relatively increased in the middle process of decomposition. The nutrient release in the decomposition process differed significantly. For example, the release of K was 76.36%, while the release of Ca was only 24.01% one year later.
     The nutrient content was the lowest in stem of standard wood of the primary P. likiangensis var. linzhiensis forest in Tibet. While N, P, K elements in leaves were higher in the year. Accumulation of forest soil nutrient level was highest, but the effective utilization rate was only 1~3%. Nutrient was mainly accumulated in tree layer, in particular in dry wood, while the least was in leaves. Five nutrient element accumulation rate was 104.81 kg·hm-2·a-1, and the order was ranked as Ca> N> K> P> Mg, but the accumulation rate of each element vared in different organs of the tree layer. The total return amount of forest was up to 169.288 kg·hm-2·a-1, in which the return amount of litter was highest, followed by ground litter. The order of the return elements was ranked in the order of Ca> N> K> Mg> P.
     Carbon content were similar in different organs of the primary P. likiangensis var. linzhiensis. Carbon storage of ecosystem was up to 305.6 t·hm-2, which mainly came from the tree layer, accounting for 48.29% of the total, followed by the soil layer, accounting for 38.31%.Forest carbon sequestration rate was 3.58 t·hm-2·a-1,which the tree layer of the carbon sequestration rate was highest, accounting for 70.57% of the total carbon fixation rate.
引文
[1]李俊清.森林生态学[M].北京:高等教育出版社,2006:510.
    [2]童丽丽,汤庚国,许晓岗.中国城市森林群落结构研究[J].安徽农业科学.2006(18):4586-4589.
    [3]李博.生态学[M].北京:高等教育出版社,2000:416.
    [4]黄礼梅,王娟,孙鸿雁,等.德钦天然侧柏群落结构与植物区系的研究[J].西部林业科学.2007(01):22-29.
    [5]王得祥,刘建军,李登武,等.秦岭山地华山松林群落学特征研究[J].应用生态学报.2004(03):357-362.
    [6]蔡年辉,李根前,朱存福,等.云南松人工林与天然林群落结构的比较研究[J].西北林学院学报.2007(02):31-33.
    [7]刘建泉,戴君虎,刘兴明,等.祁连山林区青海云杉群落种子植物区系分析[J].地理科学.2009(02):244-249.
    [8]张震,刘萍,丁易,等.天山云杉林群落结构及物种组成[J].河北农业科学.2009(12):147.
    [9]刘庆,尹华军,吴彦.川西米亚罗亚高山地区云杉林群落结构分析[J].山地学报.2003(06):695-701.
    [10]于雪梅,曲建升,李延梅,等.生物多样性国际研究态势分析[J].生态学报.2010,30(04):1066-1073.
    [11]李智琦,欧阳志云,曾慧卿.基于物种的大尺度生物多样性热点研究方法[J].生态学报.2010(06):1586-1593.
    [12]马克平.试论生物多样性的概念[J].生物多样性.1993,1(1):20-22.
    [13]汪永华,陈北光,苏志尧.物种多样性研究的进展[J].生态科学.2000(03):50-54.
    [14]李帅英,吴增志,李保会.物种多样性研究进展[J].河北林果研究.2002(01):72-79.
    [15]张璐,苏志尧,陈北光.山地森林群落物种多样性垂直格局研究进展[J].山地学报.2005(06):6736-6743.
    [16]马克平,黄建辉,于顺利,等.北京东灵山地区植物群落多样性的研究Ⅱ丰富度、均匀度和物种多样性指数[J].生态学报.1995,15(3):268-277.
    [17]曲仲湘,文振旺,朱克贵,等.南京灵谷寺森林现况的分析[J].植物学报.1952,1(1):1849.
    [18]HANSORG D. Plant invasion patches-reconstructing pattern and process by means of herb-chronology[J]. Biological Invasions.2002(4):211-222.
    [19]史小华,刘毅,彭佳龙,等.秦岭冷杉和巴山冷杉种群年龄结构及动态的比较分析[J].东北林业大学学报.2009(01):10-14.
    [20]宋坤,达良俊,杨同辉,等.栲树种群的年龄结构及其生长特征[J].应用生态学报.2007(02):254-260.
    [21]梁士楚,李久林,程仕泽.贵州青岩油杉种群年龄结构和动态的研究[J].应用生态学报.2002(01):21-26.
    [22]杨龙,孙学刚,张伟,等.青藏高原东北边缘亚高山桦木林种群年龄结构[J].甘肃农业大学学报.2006(03):70-75.
    [23]汤孟平.森林空间结构研究现状与发展趋势[J].林业科学.2010(01):117-122.
    [24]张会儒,李春明,武纪成.金沟岭天然和半天然混交林林分空间结构比较[J].科技导报.2009(19):79-84.
    [25]张忠义,闫东锋,段绍光,等.宝天曼自然保护区栎类天然次生林群落结构分析[J].河南科学.2005(03):367-370.
    [26]方精云,李意德,朱彪,等.海南岛尖峰岭山地雨林的群落结构、物种多样性以及在世界雨林中的地位[J].生物多样性.2004(01):29-43.
    [27]雷相东,唐守正.林分结构多样性指标研究综述[J].林业科学.2002(03):140-146.
    [28]张金屯.植物种群空间分布的点格局分析[J].植物生态学报.1998(04):57-62.
    [29]徐化成,范兆飞,王胜.兴安落叶松原始林林木空间格局的研究[J].生态学报.1994(02):155-160.
    [30]李建贵,潘存德,梁瀛.天山云杉天然成熟林种群分布格局[J].福建林学院学报.2001(01):53-56.
    [31]李明辉,何风华,刘云,等.林分空间格局的研究方法[J].生态科学.2003(01):77-81.
    [32]RUNKLE J. R. Gap regeneration in some old-growth forests of the eastern United Statse[J]. Ecology.1981,62(4):1041-1051.
    [33]费世民,何亚平,何飞,等.关于森林林窗中几个问题的综述和展望[J].四川林业科技.2009(04):28-37.
    [34]王家华,李建东.林窗研究进展[J].世界林业研究.2006(01):27-30.
    [35]DAI X. B. Influence of light conditions in canopy gaps on forest regeneration:a new gap light index and its application in a boreal forest in east-central Sweden[J]. Forest Ecology and Management.1996(84):187-197.
    [36]国庆喜,葛剑平,马承慧,等.长白山红松混交林林隙状况与更新研究[J].东北林业大学学报.1998(01):5-8.
    [37]谢宗强.银杉(Cathaya argyrophylla)林林窗更新的研究[J].生态学报.1999(06):775-779.
    [38]刘庆,吴彦.滇西北亚高山针叶林林窗大小与更新的初步分析[J].应用与环境生物学报.2002(05):453-459.
    [39]GAGNON J. L, JOKELAB E. J, MOSERC W. K, et al. Characteristics of gaps and natural regeneration in mature longleaf pine flat woods ecosystems[J]. Forest Ecology and Management. 2004(187):373-380.
    [40]HOUGHTON R. A, HACKLER J. L, LAWRENCE K. T. The U.S. Carbon Budget: Contributions from land-use change[J]. Science.1999,285:574-577.
    [41]方精云,陈安平,赵淑清,等.中国森林生物量的估算:对Fang等Science文(Science,2001,291:2320-2322)的若干说明[J].植物生态学报.2002(02):243-249.
    [42]DIXON R. K, BROWN S, HOUGHTON R. A. Carbon pools and flux of global forest ecosystems[J]. Science.1994,263:185-190.
    [43]H Lieth, H Whittaker R著,王业蘧译.生物圈第一性生产力[M].北京:科学出版社,1985:350-354.
    [44]李俊清.森林生态学[M].北京:高等教育出版社,2006:510.
    [45]舒清态,唐守正.国际森林资源监测的现状与发展趋势[J].世界林业研究.2005(03):33-37.
    [46]丁宝永,孙继华.红松人工林生态系统生物生产力及养分循环研究[J].东北林业大学学报.1989,17(5):1-98.
    [47]项文化,田大伦,闫文德.森林生物量与生产力研究综述[J].中南林业调查规划.2003(03):57-60.
    [48]李文华.森林生物生产量的概念及其研究的基本途径[J].自然资源.1978(01):71-92.
    [49]冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999.
    [50]潘维俦,李利村,高正衡,等.杉木人工林生态系统中的生物产量及其生产力的研究[J].湖南林业科技.1978(05):1-12.
    [51]潘维俦,李利村,高正衡.两个不同地域类型杉木林的生物产量和营养元素分布[J].中南林业科技.1979(4):1-14.
    [52]冯宗炜,陈楚莹,张家武,等.湖南会同地区马尾松林生物量的测定[J].林业科学.1982(02):127-134.
    [53]李文华,邓坤枚,李飞.长白山主要生态系统生物量生产量的研究[J].森林生态系统研究.1981,2:34-50.
    [54]刘世荣,徐德应,王兵.气候变化对中国森林生产力的影响,Ⅰ中国森林现实生产力的特征及地理分布格局[J].林业科学研究.1993(6):633-640.
    [55]刘世荣,徐德应,王兵.气候变化对中国森林生产力的影响Ⅱ.中国森林第一性生产力的摸拟[J].林业科学研究.1994(04):425-430.
    [56]陈灵芝,任继凯,鲍显诚,等.北京西山(卧佛寺附近)人工油松林群落学特性及生物量的研究[J].植物生态学与地植物学丛刊.1984(03):173-181.
    [57]李意德,曾庆波,吴仲民,等.尖峰岭热带山地雨林生物量的初步研究[J].植物生态学与地植物学学报.1992(04):293-300.
    [58]刘志刚,马钦彦,潘向丽.兴安落叶松天然林生物量及生产力的研究[J].植物生态学报.1994(04):328-337.
    [59]谢寿昌,刘文耀,李寿昌,等.云南哀牢山中山湿性常绿阔叶林生物量的初步研究[J].植物生态学报.1996(02):167-176.
    [60]邹春静,卜军,徐文铎.长白松人工林群落生物量和生产力的研究[J].应用生态学报.1995(02):123-127.
    [61]何东进,洪伟,吴承祯,等.武夷山毛竹天然林生物量与能量分配规律及其与人工林的比较研究[J].西北植物学报.2003(02):291-296.
    [62]郑征,刘宏茂,冯志立.西双版纳热带山地雨林生物量研究[J].生态学杂志.2006(04):347-353.
    [63]方江平,项文化.西藏色季拉山原始冷杉林生物量及其分布规律[J].林业科学.2008(05):17-23.
    [64]FANG J. Y, CHEN A. P, PENG C. H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science.2001(292):2320-2322.
    [65]郭志华,彭少麟,王伯荪.利用TM数据提取粤西地区的森林生物量[J].生态学报.2002(11):1832-1839.
    [66]陈利军,刘高焕,冯险峰.运用遥感估算中国陆地植被净第一性生产力(英文)[J].植物学报.2001(11):1191-1198.
    [67]李娜,黄从德.川西亚高山针叶林生物量遥感估算模型研究[J].林业资源管理.2008(03):100-104.
    [68]邢艳秋.基于RS和GIS东北天然林区域森林生物量及碳贮量估测研究[D].东北林业大学,2005.
    [69]马泽清,刘琪璟,徐雯佳,等.基于TM遥感影像的湿地松林生物量研究[J].白然资源学报.2008(03):467-478.
    [70]薛立,杨鹏.森林生物量研究综述[J].福建林学院学报.2004(03):283-288.
    [71]李意德.海南岛热带山地雨林林分生物量估测方法比较分析[J].生态学报.1993(04):313-320.
    [72]BASKERVILLE G. L. Estimation of dry weight of tree components and total standing crop in conifer stands[J]. Ecology.1965(46):567-569.
    [73]赵敏,周广胜.基于森林资源清查资料的生物量估算模式及其发展趋势[J].应用生态学报.2004(08):1468-1472.
    [74]张家武,冯宗炜.桃源县丘陵地区杉木造林密度与生物产量的关系[M].中国科学院林业土壤研究所:杉木人工林生态学研究论文集,1980,201-208.
    [75]穆丽蔷,刘祥君,徐辉,等.影响红皮云杉人工林生物量主导因子的分析[J].东北林业大学学报.1995(06):95-102.
    [76]许俊利,何学凯.林木生物量模型研究概述[J].河北林果研究.2009(02):141-144.
    [77]RUARD G. A. Comparison of Constant and Variable Allometric Ratios for Estimating Populus tremuloides Biomass[J]. Forest Science.1987(33):294-300.
    [78]GERON C. D. Comparison of Constant and Variable Allometvic Ratios for Predicting Foliar Biomass of Various Tree Genera[J]. CAN. J. For. Res.1988(18):1298-1304.
    [79]刘志刚.华北落叶松人工林生物量及生产力的研究[J].北京林业大学学报.1992,14(增刊):114-123.
    [80]胥辉.两种生物量模型的比较[J].西南林学院学报.2003(02):36-39.
    [81]王维枫,雷渊才,王雪峰,等.森林生物量模型综述[J].西北林学院学报.2008(02):58-63.
    [82]CUNIA T, BRIGGS R. D. Forcing additivity of biomass tables:some empirical results[J]. Can. J. For. Res.1984,14(3):376-384.
    [83]CUNIA T, BRIGGS R. D. Forcing additivity of biomass tables:use of the generalized least squares method[J]. Can. J. For. Res.1985,15(1):23-28.
    [84]唐守正,张会儒,胥辉.相容性生物量模型的建立及其估计方法研究[J].林业科学.2000,36(1):19-27.
    [85]OGAWA H, KIRA T. Method of estimating forest biomass[M]. primary productivity of Japanese Forest-productivity of terrestrial communities, SHIDEI T, KIRA T, Tokyo:Univ. of Tokyo press,1997.
    [86]ZEIDE B. Analysis of the-3/2 power law of self-thinning[J]. Forest Science.1987,33(2): 517-537.
    [87]SHINOZAKI K. YODA, OGANA H. Estimation of the total amount of respiration in woody organs of trees and forest communities [J]. Journal of Biology Osaka City University.1965, 16(1):5-26.
    [88]胥辉.林木生物量模型研究评述[J].林业资源管理.1997(05):34-37.
    [89]LOOMIS R. M, PHARES R. E, CROSBY J. S. Estimating folisge and branchwood quantities in shortleaf pine[J]. For. Sci.1966,12(1):30-39.
    [90]朱丽梅,胥辉.思茅松单木生物量模型研究[J].林业科技.2009(03):19-23.
    [91]WHITTAKER R. H, LIKENS G. E. Methods of Assessing Terrestrial Productivity [M]. New York:Springer-Verlag,1975.
    [92]FANG J. Y, WANG G. G, LIU G. H, et al. Forest biomass of China:an estimate based on t he biomass-volumerelationship[J].Ecol. Appl.1998(8):1984-1991.
    [93]BROWN S, LUGO A. E. Biomass of tropical forests:A new estimate based on forest volumes[J]. Science.1984(223):1290-1293.
    [94]BROWN S. J, GILLESPIE R, LUGO A. E. Biomass estimation methods for tropical forests with application to forest inventory data[J]. Forest Science.1989,35(4):881-902.
    [95]ISAEV A, KOROVIN G, ZAMOLOD D, et al. Carbon stock and deposition in phytomass of the Russian forests[J]. Water Ai r Soil Poll.1995(82):247-256.
    [96]MURILLO J. C. The carbon budget of the Spanish forests[J]. Bio-geochemistry.1994(25): 197-217.
    [97]BROWN S. L, SCHROEDER P, KERN J. S. Spatial distribution of biomass in forests of the eastern USA[J]. Fr Ecol Man.1999(123):81-90.
    [98]SCHROEDER P, BROWN S, MO J, et al. Biomass estimation for temperate broadleaf forests of the US using inventory data[J]. For Sci.1997(43):424-434.
    [99]方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报.1996(05):497-508.
    [100]ZHOU G. S, WANG Y. H, JANG Y. L, et al. Estimating biomass and net primary production from forest inventory data:A case study of China's Larix forests[J]. For. Ecol. Manage.2002, 169(2):149-157.
    [101]SMITH J. E, HEATH L. S, JENKINS J. S. Forest volume-to-biomass models and estimates of mass for live and standing dead trees of U. S. forests[Z].2003.
    [102]PAN Y. D, LUO T. X, BIRDSEY R, et al. New estimates of carbon storage and sequestration in China's forests:effects of age-class and method on inventory-based carbon estimation[J]. Climatic Change.2004(67):211-236.
    [103]冯仲科,王仲锋,罗旭.小陇山10个树种生物学特征系数的研究[J].北京林业大学学报.2005(增刊2):21-23.
    [104]王仲锋,冯仲科.森林蓄积量与生物量转换的CVD模型研究[J].北华大学学报(自然科学版).2006(03):265-268.
    [105]冯仲科,罗旭,石丽萍.森林生物量研究的若干问题及完善途径[J].世界林业研究.2005(03):25-28.
    [106]戴小华,余世孝.遥感技术支持下的植被生产力与生物量研究进展[J].生态学杂志.2004(04):92-98.
    [107]何艺玲,傅懋毅.人工林林下植被的研究现状[J].林业科学研究.2002(06):727-733.
    [108]CHASTAIN J. R, CURRIE W. A, TOWNSEND P. S. Carben sequestration and nutrient cycling implications of the evergreen understory layer in Appalachian forests[J]. Forest Ecology and Management.2006(231):63-77.
    [109]太立坤,余雪标,杨曾奖,等.三种类型森林林下植物多样性及生物量比较[J].生态环境学报.2009(01):229-234.
    [110]吴鹏飞,朱波.桤柏混交林林下植被结构及生物量动态[J].水土保持通报.2008(03):4448.
    [111]林开敏,洪伟,俞新妥,等.杉木人工林林下植物生物量的动态特征和预测模型[J].林业科学.2001:889-896.
    [112]潘攀,牟长城,孙志虎.长白落叶松人工林灌丛生物量的调查与分析[J].东北林业大学学报.2007(04):1-2.
    [113]袁春明,刘文耀,李小双,等.哀牢山湿性常绿阔叶林木质藤本植物地上部分生物量及其对人为干扰的响应[J].植物生态学报.2009(05):852-859.
    [114]潘刚,任毅华,边巴多吉,等.西藏色季拉山急尖长苞冷杉林枯枝落叶及苔藓层的生物量与持水性能[J].水土保持研究.2008(05):81-83.
    [115]刘俊华,包维楷.冷杉天然林下地表主要苔藓斑块生物量及其影响因素[J].植物学通报.2006(06):684-690.
    [116]邹碧,李志安,丁永祯,等.南亚热带4种人工林凋落物动态特征[J].生态学报.2006(03):715-721.
    [117]张东来,毛子军,朱胜英,等.黑龙江省帽儿山林区6种主要林分类型凋落物研究[J].植物研究.2008(01):104-108.
    [118]卢立华,贾宏炎,何日明,等.南亚热带6种人工林凋落物的初步研究[J].林业科学研究.2008(03):346-352.
    [119]郭伟,张健,黄玉梅,等.森林凋落物影响因子研究进展[J].安徽农业科学.2009(04):1544-1546.
    [120]DRAY J. R, GORHAM E. Litter production in forest of the world[J]. Adv Ecol Res.1964(2): 101-157.
    [121]王凤友.森林凋落量研究综述[J].生态学进展.1989,6(2):82-98.
    [122]张新平,王襄平,朱彪,等.我国东北主要森林类型的凋落物产量及其影响因素[J].植物生态学报.2008(05):1031-1040.
    [123]宁晓波,项文化,王光军,等.湖南会同连作杉木林凋落物量20年动态特征[J].生态学报.2009(09):5122-5129.
    [124]廖军,王新根.森林凋落量研究概述[J].江西林业科技.2000(01):31-34.
    [125]段艳芳,杨蕾,郭连乐,等.太行山浅山丘陵区栓皮栎人工林凋落物季节动态[J].河南科学.2008(07):792-794.
    [126]田大伦.杉木人工林生态系统凋落物的研究Ⅰ.凋落物的数量、组成及其动态变化[J].中南林学院学报.1989(9):38-44.
    [127]姚瑞玲,丁贵杰,王胤.不同密度马尾松人工林凋落物及养分归还量的年变化特征[J].南京林业大学学报(自然科学版).2006(05):83-86.
    [128]陈华,E Harmon M.温带森林生态系统粗死木质物动态研究[J].应用生态学报.1992,3(4):99-104.
    [129]魏平,温达志,黄忠良,等.鼎湖山季风常绿阔叶林死木生物量及其特征[J].生态学报.1997(05):55-60.
    [130]郭剑芬,杨玉盛,陈光水,等.格氏栲天然林与人工林枯枝落叶层和粗木质残体有机化学组成研究[J].亚热带资源与环境学报.2008(03):40-45.
    [131]侯平,潘存德.森林生态系统中的粗死木质残体及其功能[J].应用生态学报.2001(02):309-314.
    [132]罗大庆,郭泉水,黄界,等.西藏色季拉原始冷杉林死亡木特征研究[J].生态学报.2004,24(3):635-639.
    [133]高甲荣,王敏,毕利东,等.贡嘎山不同年龄结构峨眉冷杉林粗木质残体的贮存量及其特征[J].中国水土保持科学.2003(02):47-51.
    [134]刘志华,常禹,胡远满,等.呼中林区与呼中自然保护区森林粗木质残体储量的比较[J].植物生态学报.2009(06):1075-1083.
    [135]黄建辉,韩兴国,陈灵芝.森林生态系统根系生物量研究进展[J].生态学报.1999(02):128-135.
    [136]张小全,吴可红.森林细根生产和周转研究[J].林业科学.2001(03):126-138.
    [137]刘兴良,马钦彦,杨冬生,等.川西山地主要人工林种群根系生物量与生产力[J].生态学报.2006(02):542-551.
    [138]张惠良,李兴鹏,顾彩荣,等.地理气候因子对落叶松根系生物量分布的影响[J].内蒙古林业调查设计.2004(04):37-41.
    [139]邓坤枚,罗天祥,张林,等.云南松林的根系生物量及其分布规律的研究[J].应用生态学报.2005(01):21-24.
    [140]吴晓成,张秋良,雷庆哲,等.新疆额尔齐斯河天然杨树林根系生物量及分布特征[J].安徽农业科学.2009(12):5720-5722.
    [141]马雪华.森林水文学[M].北京:中国林业出版社,1993:398.
    [142]刘世荣.中国森林生态系统水文生态功能[M].北京:中国林业出版社,1996:346.
    [143]谭芳林.森林水文学的研究进展与展望[J].福建林业科技.2002(04):47-51.
    [144]刘家冈,万国良,张学培,等.林冠对降雨截留的半理论模型[J].林业科学.2000(02):2-5.
    [145]王礼先,张志强.森林植被变化的水文生态效应研究进展[J].世界林业研究.1998(06):15-24.
    [146]程根伟,余新晓,赵玉涛.山地森林生态系统水文循环与数学模拟[M].北京:科学出版 社,2004:298.
    [147]车克钧,傅辉恩,贺红元.祁连山水源涵养林效益的研究[J].林业科学.1992(06):544-548.
    [148]王彦辉.几个树种的林冠降雨特征[J].林业科学.2001(04):2-9.
    [149]温远光,刘世荣.我国主要森林生态系统类型降水截留规律的数量分析[J].林业科学.1995(04):56-61.
    [150]田大伦,杨晚华,方海波.第二代杉木幼林中降雨对养分的淋溶作用[J].湖北民族学院学报(自然科学版).1999(01):1-5.
    [151]赵鸿雁,吴钦孝,刘国彬.山杨林的水文生态效应研究[J].植物生态学报.2002(04):497-500.
    [152]杨茂瑞.亚热带杉木、马尾松人工林的林内降雨、林冠截留和树干茎流[J].林业科学研究.1992(02):158-162.
    [153]高甲荣,张东升,肖斌,等.黄土区油松人工林生态系统营养元素分配格局和积累的研究[J].北京林业大学学报.2002(01):22-28.
    [154]陈祥伟,王庆成,刘强.红松人工林水文效应的初步研究[J].东北林业大学学报.1994(01):24-30.
    [155]周国逸.几种常用造林树种冠层对降水动能分配及其生态效应分析[J].植物生态学报.1997(03):55-64.
    [156]刘文耀,刘伦辉,郑征,等.滇中常绿阔叶林及云南松林水文作用的初步研究[J].植物生态学与地植物学学报.1991(02):6-7.
    [157]胡淑萍,余新晓,岳永杰.北京百花山森林枯落物层和土壤层水文效应研究[J].水土保持学报.2008(01):146-150.
    [158]徐德应.森林调节水的能力[J].世界林业研究.1998(06):25-29.
    [159]祝志勇,季永华.我国森林水文研究现状及发展趋势概述[J].江苏林业科技.2001(02):42-45.
    [160]高人.辽宁东部山区几种主要森林植被类型水量平衡研究[J].水土保持通报.2002(02):5-8.
    [161]刘煊章.森林生态系统定位研究[M].北京:中国林业出版社,1993:312.
    [162]张志强,王礼先,余新晓,等.森林植被影响径流形成机制研究进展[J].自然资源学报.2001(01):79-84.
    [163]施立新,余新晓,马钦彦.国内外森林与水质研究综述[J].生态学杂志.2000,19(3):52-56.
    [164]SWITZER G. L, NELSON D. Nutrient accumulation and cycling in loblolly pine plantation ecosystems:the first twenties[J]. Soil Science Society America Proceedings.1972(36): 143-147.
    [165]KIMMINS J. P. Forest Ecology[M]. New York:Macmillan Publishing Company,1987.
    [166]EBERMAYER E. Die Qesamte Lehre der Woldstreu mit Ruck-sicht auf die Chemische Static des Woldbaues[M]. Berlin:Julius Spriuger,1876.
    [167]P Duvigeaud.温带落叶松矿质元素的生物循环.植物生态学译丛(第一集)[M].北京:科学出版社,1974.
    [168]COLE D. W, GESSEL S. P, DICE S. F. Distribution and cycling of nitrogen, phosphorus, potassium and Calcium in a second-growth Douglas-fir ecosystem[M]. Symposium on Primary Productivity and Mineral Cycling in Natural Ecosystem, YOUNG H. E, New York:University of Marne Press,1967,197-232.
    [169]BORMANN F. H, LIKENS G. E. Pattern and Process in a Forested Ecosystem[M]. New York: Springer-Verlas,1981.
    [170]覃世赢.厚荚相思人工幼林生物量与生产力和养分循环的研究[D].广西大学,2006.
    [171]周光益,陈步峰.海南岛热带山地雨林短期水量平衡及主要养分的地球化学循环研究[J].生态学报.1996,16(1):28-32.
    [172]刘世荣.兴安落叶松人工林生态系统营养元素生物地球化学循环特征[J].生态学杂志.1992(05):3-8.
    [173]陈仁华.武夷山甜槠林群落养分循环的研究[J].江西农业大学学报.2005(02):195-198.
    [174]辛学兵,翟明普.西藏色季拉山冷杉林生态系统的养分循环[J].林业科学研究.2003(06):668-676.
    [175]BROWN S. A comparison of the structure, primary productivity, and transpiration of cypress ecosystems in Florida[J]. Ecol. Monogr.1981(51):403-427.
    [176]REYNOLDS J. A, JUDSON J. A, LEEKS G. Field methods for estimating sediment losses in small upland streams[M]. Nutrient Cycling in Terrestrial Ecosystems:Field Methods, Application and Interpreetation, HARRISON A. F, INESON P, HEAL O. W, London and New York:Elsvier Applied Science,1990.
    [177]李凌浩,林鹏,何建源,等.森林降水化学研究综述[J].水土保持学报.1994(01):84-96.
    [178]YAWNEY H. W, LEAF E. J. The contribution of throughfall and stemflow to nutrient element cycling in red pine plantations[J]. Agron. Abstr.1970:164.
    [179]李文影,满秀玲,张阳武.不同林龄白桦次生林降雨水化学特征研究[J].水土保持学报.2009(05):123-127.
    [180]武秀娟,蔡体久,李华,等.凉水国家级自然保护区原始红松林和人工落叶松林降雨的水化学特征[J].中国水土保持科学.2008(06):37-42.
    [181]甘健民,薛敬意,谢寿昌.云南哀牢山中山湿性常绿阔叶林的降水化学[J].东北林业大学学报.1997(01):9-12.
    [182]周梅,余新晓.兴安落叶松原始林区降水化学输入的特征研究[J].中国生态农业学报.2003(02):125-127.
    [183]田大伦,杨晚华,方海波.第二代杉木幼林中降雨对养分的淋溶作用[J].湖北民族学院学报(自然科学版).1999(01):1-5.
    [184]刘世海,余新晓,于志民.北京密云水库集水区板栗林水化学元素性质研究[J].北京林业大学学报.2001(02):12-15.
    [185]廖观荣,钟继洪,李淑仪,等.桉树人工林生态系统养分循环和平衡研究Ⅲ.桉树人工林生态系统的养分平衡[J].生态环境.2003(03):359-362.
    [186]BRUIJNZEEL L. A, VENEKLASS E. L. Climate conditions and tropical montane forest productivity:the fog has not lifted yet[J]. Ecology.1998(79):3-9.
    [187]吴兑,邓雪娇,叶燕翔,等.南岭大瑶山浓雾雾水的化学成分研究[J].气象学报.2004(04):476-485.
    [188]迪丽努尔·塔力甫,阿不力克木·阿布力孜.南山雾水的采集方法及其离子浓度特征的研究[J].干旱环境监测.2007(02):83-86.
    [189]聂道平,沈国舫,董世仁.油松人工林养分循环的研究——Ⅲ.养分元素生物循环和林分养分的平衡[J].北京林业大学学报.1986(02):8-19.
    [190]BINKLEY D. Interaction of site fertility and red alder on ecosystem production in Douglas-fir plantation[J]. Forest Ecology and Management.1983,5(1):215-227.
    [191]ROSKOSKIJ. Nitrogen-fixation in hardwood forests of the northeastern united states[J]. Plant and Soil.1980,54(33-44).
    [192]黄建辉,韩兴国.森林生态系统的生物地球化学循环:理论和方法[J].植物学通报.1995(12):195-223.
    [193]BOYLE J. R, VOIGT G. K. Biological weathering of silicate minerals:Implications for tree nutrition and soil genesis[J]. Plant Soil.1973(38):191-201.
    [194]CROMACK K, SOLLINS P, GRAUSTEIN W. C. Calcium oxalate accumulation and soil weathering in mats of the hypogeous fungus hysterangium crassum[J]. Soil Biology and Biochemistry.1979(5):463-468.
    [195]ASCASO C, GALVAN J, RODRIQUEZ-OASCUAL C. The weathering of calcareous rocks by lichens[J]. Pedobiologia.1982(24):219-229.
    [196]谢锦忠,傅懋毅,肖基浒,等.丛生竹林生态系统的水文效应研究Ⅰ.麻竹人工林地表径流规律的初探[J].竹子研究汇刊.2000(04):18-25.
    [197]廖观荣,钟继洪,李淑仪,等.桉树人工林生态系统养分循环和平衡研究Ⅱ.桉树人工林生态系统的养分循环[J].生态环境.2003(03):300-302.
    [198]甘建民,薛敬意.哀牢山木果石栎林降雨过程中的养分循环[J].林业科技通讯.1996(07):30-31.
    [199]解伏菊,肖笃宁,李秀珍,等.大兴安岭火烧迹地湿地与森林水文功能变化[J].辽宁工程技术大学学报.2006(05):765-768.
    [200]刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报.1997(05):19-26.
    [201]项文化,田大伦.不同年龄阶段马尾松人工林养分循环的研究[J].植物生态学报.2002(01):89-95.
    [202]赵勇,王鹏飞,樊巍,等.太行山丘陵区不同龄级栓皮栎人工林养分循环特征[J].中国水土保持科学.2009(04):66-71.
    [203]卢琦,罗天祥,庄嘉,等.桂东北栲树林营养元素的空间格局[J].生态学报.1995(02):155-162.
    [204]杨玉盛,陈光水,谢锦升,等.杉木-观光木混交林群落N、P养分循环的研究[J].植物生态学报.2002(04):473480.
    [205]朱建林,郭景唐,欧国菁.油松树冠营养元素浓度空间变异的研究[M].中国森林生态系统定位研究,周晓峰,哈尔滨:东北林业大学出版社,1994,98-103.
    [206]冯林,王立明.落叶松天然林林木有机质和营养元素的积累分布[M].中国森林生态系统定位研究,周晓峰,哈尔滨:东北林业大学出版社,1994,73-79.
    [207]聂道平.不同立地条件的杉木人工林生产力和养分循环[J].林业科学研究.1993(06):643-649.
    [208]李志辉,李跃林,谢耀坚.巨尾桉人工林营养元素积累、分布和循环的研究[J].中南林学院学报.2000,20(3):11-19.
    [209]CHAPIN F. S. Nutrogen and phosphorus nutrition and nutrition cycling by evergreen and deciduous understory shrubs in an Alaskan black spruce forests[J]. Can J For Res.1983,13(5): 773-781.
    [210]方海波,田大伦,康文星.杉木人工林间伐后林下植被养分动态的研究Ⅰ.林下植被营养元素含量特点与积累动态[J].中南林学院学报.1998,18(2):1-5.
    [211]NADKARNI N. M. Epiphyte biomass and nutrient capital of aneotropical elfin forest[J]. Biotropica.1984(16):249-256.
    [212]徐海清,刘文耀.云南哀牢山山地湿性常绿阔叶林附生植物的多样性和分布[J].生物多样性.2005(2).
    [213]郭水良,曹同.长白山森林生态系统树附生苔藓植物分布与环境关系研究[J].生态学报.2000,20(6):922-931.
    [214]杨玉盛,林鹏,郭剑芬,等.格氏栲天然林与人工林凋落物数量、养分归还及凋落叶分解[J].生态学报.2003,23(7):1278-1289.
    [215]田大伦,朱小年,蔡宝玉,等.杉木人工林生态系统凋落物的研究Ⅱ:凋落物的养分含量及分解速率[J].中南林学院学报.1989,9(增):45-55.
    [216]VITOUSEK P. M, TURNER D. R, PATTON W. J, et al. Litter decomposition on the Mauna Loa environment matrix, Hawaii I:Patterns, mechanisms, and models[J]. Ecology.1994,75(2): 418-429.
    [217]TAYLOR B. R, PARKNSON D, PARSONSW F. J. Nitrogen and lignin content as predictor of litter decay rates:A microcosm test[J]. Ecology.1989(70):97-104.
    [218]郭剑芬,杨玉盛,陈光水,等.森林凋落物分解研究进展[J].林业科学.2006,42(4):93-100.
    [219]王其兵,李凌浩,白永飞,等.模拟气候变化对3种草原植物群落混合凋落物分解的影响[J].植物生态学报.2000,24(6):674-679.
    [220]陈印平,赵丽华,吴越华,等.森林凋落物与土壤质量的互作效应研究[J].世界科技研究与发展.2005,27(4):88-94.
    [221]ARTHURM A, FAHEY T. J. Biomass and nutrients in an Engelmann spruce subalp inefir forest in north central Colorado:pool, annual production and internal cycling[J]. Can. J. For. Res.1992(22):315-325.
    [222]张小全,吴可红.森林细根生产和周转研究[J].林业科学.2001,37(3):126-138.
    [223]刘翠玲,潘存德,梁瀛.鳞毛蕨天山云杉林粗死木质残体贮量及其分解动态[J].干旱区地理.2009(02):175-182.
    [224]谷会岩,代力民,王顺忠,等.人为干扰对长白山红松针阔叶混交林粗木质残体的影响[J].林业科学.2006(10):1-5.
    [225]宋泽伟,唐建维.西双版纳热带季节雨林的粗死木质残体及其养分元素[J].生态学杂志.2008(12):2033-2041.
    [226]罗大庆,郭泉水,黄界,等.西藏色季拉原始冷杉林死亡木特征研究[J].生态学报.2004(03):635-639.
    [227]方江平.西藏色季拉山土壤的性状与垂直分布[J].山地研究.1997(04):228-233.
    [228]路永宪,王国英,姜帆,等.研究植物体内矿质养分循环的方法[J].植物生理学通讯.2003(04):359-362.
    [229]MILLER H. G. Dynamics of nutrient cycling in plantation ecosystems[M]. London:London Academic Press,1984.
    [230]费世民.火炬松人工林养分体内转移与内循环研究[J].林业科学.2001(03):14-19.
    [231]刘增文,李雅素,吕月玲,等.刺槐主要养分元素内循环及外循环研究[J].南京林业大学学报.1997(04):8-12.
    [232]刘增文,李雅素,吕月玲.树木养分内循环研究初报[J].林业科技.1997(03):1-4.
    [233]ANKILA J, JOHN J. HIREMATH, EWEL. Ecosystem Nutrient Use Efficiency, Productivity, and Nutrient Accrual in Model Tropical Communities [J]. Ecosystems.2001(4):669-682.
    [234]VITOUSEK PETER. Nutrient cycling and nutrient use efficiency[J]. The American Naturalist. 1982,119(4):553-572.
    [235]曹建华,李小波,赵春梅,等.森林生态系统养分循环研究进展[J].热带农业科学.2007(06):68-79.
    [236]刘增文,李雅素.刺槐人工林养分利用效率[J].生态学报.2003(03):444-449.
    [237]王希华,黄建军,闫恩荣.天童国家森林公园若干树种叶水平上养分利用效率的研究[J].生态学杂志.2004(04):13-16.
    [238]苏波,韩兴国,黄建辉,等.植物的养分利用效率(NUE)及植物对养分胁迫环境的适应策略[J].生态学报.2000(02):335-343.
    [239]吴征镒.西藏植物志2[M].北京:科学出版社,1985:956.
    [240]诚静容,郑万均,傅立国..中国裸子植物[J].植物分类学报.1975,13(4):56-90.
    [241]李文华.西藏森林[M].北京:科学出版社,1985:59-60.
    [242]李文华.西藏暗针叶林概论[J].资源科学.1982.
    [243]徐凤翔.西藏亚高山暗针叶林的分布与生长[J].南京林产工业学院学报.1981(1):70-80.
    [244]王义弘.森林生态学实验实习方法[M].哈尔滨:东北林业大学出版社,1990:203.
    [245]RUNKLE J. R. Gap regeneration in some old2growth forests of the eastern United State[J]. Ecology.1981(62):1041-1051.
    [246]马克平.生物群落多样性的测度方法[M].生物多样性研究的原理与方法,钱迎倩,马克平,北京:中国农业科技出版社,1994,141-165.
    [247]马克平,黄建辉,于顺利,等.北京东灵山地区植物群落多样性的研究Ⅱ丰富度、均匀度和物种多样性指数[J].生态学报.1995(03):268-277.
    [248]张连翔,梅秀艳,姜镇荣.小叶杨生长规律的研究[J].防护林科技.2001(02):10-12.
    [249]张连翔,刘学增.逻辑斯谛曲线上两个重要特征点的分析及其应用[J].河北林学院学报.1992(02):154-158.
    [250]张连翔,李思文,魏忠勋.有序聚类法在小叶杨生长阶段分析中有序聚类法在小叶杨生长阶段分析中的应用[J].内蒙古林学院学报.1990,12(2):55-60.
    [251]王景升.西藏冷杉原始森林水文效应研究[D].东北林业大学,2002.
    [252]谢贤群,王立军.水环境要素观测与分析[M].北京:中国标准出版社,1998.
    [253]郭忠玲,马元丹,郑金萍,等.长白山落叶阔叶混交林的物种多样性、种群空间分布格局及种间关联性研究[J].应用生态学报.2004(11):2013-2018.
    [254]邵彬,邓坤枚.长白山北坡亚高山云冷杉林的植物种类组成及重要值[J].自然资源学报.2000(01):66-73.
    [255]何汉杏,何秀春.湖南舜皇山常绿阔叶林种类组成数量综合特征Ⅲ群落结构图解[J].中南林学院学报.2004(05):5-10.
    [256]薛建辉.森林生态学[M].北京:中国林业出版社,2009:369.
    [257]苏志尧,张宏达.广西植物区系属的地理成分分析[J].广西植物.1994,14(1):3-10.
    [258]吴征镒.中国种子植物属的分布区类型[J].云南植物研究.1991(增刊Ⅳ):1-139.
    [259]SIMPSON E. H. Measurement of diversity [J]. Nature.1949(163):688.
    [260]何兴东,高玉葆,刘惠芬.重要值的改进及其在羊草群落分类中的应用[J].植物研究.2004(04):466-472.
    [261]张福生,王宏,金继华,等.利用重要值评价森林生态系统稳定性[J].吉林林业科技.2003(03):15-17.
    [262]陈北光,张木明,苏志尧,等.广东大东山常绿阔叶林物种多样性分析[J].华南农业大学学报.1997(04):62-66.
    [263]胡云云,亢新刚,赵俊卉.长白山地区天然林林木年龄与胸径的变动关系[J].东北林业大学学报.2009(11):38-42.
    [264]沈泽吴,方精云,刘增力,等.贡嘎山海螺沟林线附近峨眉冷杉种群的结构与动态[J].植物学报.2001,43(12):1288-1293.
    [265]梁士楚.贵阳喀斯特山地云贵鹅耳枥种群结构和动态初探[J].植物生态学报.1992,16(2):108-117.
    [266]金则新.浙江仙居俞坑森林群落优势种群结构与分布格局研究[J].武汉植物学研究.2000(05):383-389.
    [267]RUNKLE J. R. Gap pegeneration in some old-growth forests of the eastern united states[J]. Ecology.1981,62(4):1041-1051.
    [268]罗大庆,郭泉水,薛会英,等.西藏色季拉山冷杉原始林林隙更新研究[J].林业科学研究.2002(05):564-569.
    [269]刘庆.林窗大小和位置对丽江云杉自然更新幼苗存活和生长的影响(英文)[J].应用与环境生物学报.2004(03):281-285.
    [270]刘庆,吴彦,吴宁.玉龙雪山自然保护区丽江云杉林林窗特征研究[J].应用生态学报.2003(06):13-17.
    [271]石培礼.亚高山林线生态交错带的植被生态学研究[D].中国科学院(自然资源综合考察委员会),1999.
    [272]李金良,郑小贤,陆元昌,等.祁连山青海云杉天然林林隙更新研究[J].北京林业大学学报.2008(03):124-127.
    [273]张新时,张瑛山.乌苏林区天山云杉天然更新的初步研究[J].新疆农业科学.1963(01):29-35.
    [274]罗侠,潘存德,黄闽敏,等.天山云杉凋落物提取液对种子萌发和幼苗生长的自毒作用[J].新疆农业科学.2006(01):1-5.
    [275]REICHLE D. E. Dynamic properties of forest ecosystems[M]. London:Cambridge University Press,1982.
    [276]SOMOGYI Z, CIENCIALA E, MAKIPAA R, et al. Indirect methods of large-scale forest biomass estimation[J]. European Journal of Forest Research.2007(126):197-207.
    [277]GARKOTI S. S. Estimates of biomass and primary productivity in a high-altitude maple forest of the west central Himalayas[J]. Ecological Research.2008,23(1):41-49.
    [278]VANN D. R, PALMIOTTO P. A, STRIMBECK G. R. Allometric equations for two South American conifers:Test of a non-destructive method[J]. Forest Ecology and Management. 1998(106):55-71.
    [279]周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报.2000(05):518-522.
    [280]王光军,田大伦,闫文德,等.湖南马尾松人工林群落细根生物量及时空动态研究[J].中国水土保持.2009(05):38-40.
    [281]宿以明,刘兴良,向成华.峨眉冷杉人工林分生物量和生产力研究[J].四川林业科技.2000(02):31-35.
    [282]周晓峰主编.中国森林生态系统定位研究[M].哈尔滨:东北林业大学出版社,1994:451-578.
    [283]李叙勇,孙继坤,常直海,等.天山森林凋落物和枯枝落时层的研究[J].土壤学报.1997(04):406-417.
    [284]林波,刘庆,吴彦,等.亚高山针叶林人工恢复过程中凋落物动态分析[J].应用生态学报.2004(09):1491-1496.
    [285]杨丽韫,代力民.长白山北坡苔藓红松暗针叶林倒木分解及其养分含量[J].生态学报.2002(02):185-189.
    [286]李凌浩,党高弟,汪铁军,等.秦岭巴山冷杉林粗死木质残体研究[J].植物生态学报.1998(05):51-57.
    [287]王燕,赵士洞.天山云杉林生物量和生产力的研究[J].应用生态学报.1999(04):6-8.
    [288]穆天民.贺兰山区青海云杉森林群落的生物量[J].内蒙古林业科技.1982(01):34-45.
    [289]吴兆录,党承林,和兆荣,等.滇西北油麦吊云杉林生物量的初步研究[J].云南大学学报(自然科学版).1994(03):230-234.
    [290]罗辑,杨忠,杨清伟.贡嘎山森林生物量和生产力的研究[J].植物生态学报.2000(02):191-196.
    [291]张祝平,彭少麟,孙谷畴,等.鼎湖山森林群落生物量和第一性生产力的研究[M].热带 亚热带森林生态系统研究,北京:科学出版社,1989,63-72.
    [292]林益明,林鹏,李振基,等.武夷山甜槠群落的生物量和生产力[J].厦门大学学报(自然科学版).1996(02):269-275.
    [293]于明坚,陈启瑺,李铭红,等.浙江建德青冈常绿阔叶林凋落量研究[J].植物生态学报.1996(02):144-150.
    [294]温远光,黄承标.里骆杉木人工林的凋落物产量[J].林业科技通讯.1986(07):12-16.
    [295]程伯容,丁桂芳,许广山,等.长白山红松阔叶林的生物养分循环[J].土壤学报.1987(02):160-169.
    [296]翁轰,李志安,屠梦照,等.鼎湖山森林凋落物量及营养元素含量研究[J].植物生态学与地植物学学报.1993(04):299-304.
    [297]冯宗炜,陈楚莹,王开平,等.亚热带杉木纯林生态系统中营养元素的积累、分配和循环的研究[J].植物生态学与地植物学丛刊.1985(04):245-256.
    [298]周世强,黄金燕.四川红杉人工林分生物量和生产力的研究[J].植物生态学与地植物学学报.1991(01):9-16.
    [299]宿以明.日本落叶松人工林生物量和生产力的研究[J].四川林业科技.1995(03):36-42.
    [300]贺庆棠.用生物量法对植物群体太阳能利用率的初步估算[J].北京林业大学学报.1986(03):52-59.
    [301]鄢武先,宿以明,刘兴良,等.云杉人工林生物量和生产力的研究[J].四川林业科技.1991(04):17-22.
    [302]江洪,朱家骏.云杉天然林分生物量和生产力的研究[J].四川林业科技.1986(02):5-13.
    [303]江洪,林鸿荣.飞播云南松林分生物量和生产力的系统研究[J].四川林业科技.1985(04):1-10.
    [304]刘广路.天山云杉生长规律与天山植物群落生产力研究[D].河北农业大学,2006.
    [305]牛云杨,秋香.天山云杉生长规律与天山植物群落生产力研究[J].河西学院学报.2003(5):83-86.
    [306]周光益,曾庆波,黄全,等.热带山地雨林林冠对降雨的影响分析[J].植物生态学报.1995(03):201-207.
    [307]LEONARD R. E. Net precipitation in a northern hardwood forest[J]. Geophys Research. 1961(66):2417-2421.
    [308]HORTON R. E. Rainfall interception[J]. Month Weather Review.1919,47(9):603-623.
    [309]BRYAN R. B. NAVAR J. Fitting the analytical model of rainfall interception of Gash to individual shrubs of semi-arid vegetation in northeastern Mexico[J]. Agricultural and Forest Meteorology.1994(68):133-143.
    [310]RUTTER A. J, KERSHAW K. A, ROBINS. A predictive model of rainfall interception in forests,1. Derivation of the model from observations in a plantation of Corsican pine[J]. Agricultural Meteorology.1971(9):367-384.
    [311]DEGUCHI A, HATTORI S, PARK H. T. The influence of seasonal changes in canopy structure on interception loss:Application of the revised Gash model [J]. Journal of Hydrology. 2006,318(1-4):80-102.
    [312]VALENTE F, DAVID J. S, GASH J. H. Modeling interception loss for two sparse eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models[J]. Journal of Hydrology.1997,190(1-2):141-162.
    [313]HASHINO M, YAO H, YOSHIDA H. Studies and evaluations on interception processes during rainfall based on a tank model[J]. Journal of Hydrology.2002,255(1-4):1-11.
    [314]王彦辉,于澎涛,徐德应,等.林冠截留降雨模型转化和参数规律的初步研究[J].北京林业大学学报.1998(06):29-34.
    [315]汪有科,吴钦孝,赵鸿雁,等.林地枯落物抗冲机理研究[J].水土保持学报.1993(01):75-80.
    [316]田大伦,项文化,杨晚华.第2代杉木幼林生态系统水化学特征[J].生态学报.2002(06):859-865.
    [317]王金丽,张泽明,石超.拉萨地体东部的多期深熔作用及动力学[J].岩石学报.2008,24(7):1539-1551.
    [318]陈书军,田大伦,闫文德,等.樟树人工林生态系统不同层次穿透水水化学特征[J].生态学杂志.2006,25(7):747-752.
    [319]陈军,孟小星,张卫东,等.重庆四面山森林冠层对降水化学组成的影响[J].安徽农业科学.2009,37(32):16098-16101.
    [320]武秀娟,蔡体久,李华,等.凉水国家级自然保护区原始红松林和人工落叶松林降雨的水化学特征[J].中国水土保持科学.2008,6(6):37-42.
    [321]魏虹,王建力,李旭光.重庆缙云山降水化学组成的季节变化特征分析[J].西南师范大学学报.2005,30(4):725-729.
    [322]肖劲松,彭晓渝,杨红,等.雷公山国家级自然保护区森林降水化学特征的初步分析[J].贵州科学.2007,25(5):502-509.
    [323]章典,师长兴,假拉.西藏降水化学分析[J].干旱区研究.2005,22(4):471-475.
    [324]周光益,田大伦,杨乐苏,等.广州流溪河降水化学成分及其海洋源分析[J].生态学报.2009,29(9):4833-4924.
    [325]王军,刘天仇,尹观.西藏雅鲁藏布江中、下游地区大气降水同位素分布特征[J].地质地球化学.2000,28(1):63-67.
    [326]卢俊培.海南岛尖峰岭热带林生态系统的水化学特征[J].林业科学研究.1991(03):231-237.
    [327]WEI X, LIU S, ZHOU G, et al. Hydrologicla processes in major types of Chinese forest[J]. Hydrological Processes.2005(19):63-75.
    [328]BARBIER S, BALANDIER P, GOSSELIN F. Influence of several tree traits on rainfall partitioning in temperate and boreal forests:a review[J]. Annals of Forest Science.2009(66): 1-11.
    [329]党宏忠,董铁狮,赵雨森.红松林冠对降水的截留特征[J].东北林业大学学报.2007,35(10):4-6.
    [330]鲍文,包维楷,何丙辉,等.岷江上游油松人工林对降水的截留分配效应[J].北京林业大学学报.2004,26(5):10-16.
    [331]张学龙,罗龙发,敬文茂,等.祁连山青海云杉林截留对降水的分配效应[J].山地学报.2009,25(6):678-683.
    [332]陈东立,余新晓,廖邦洪.中国森林生态系统水源涵养功能分析[J].世界林业研究.2005,18(1):49-54.
    [333]吕瑜良,刘世荣,孙鹏森,等.川西亚高山不同暗针叶林群落类型的冠层降水截留特征[J].应用生态学报.2007,18(11):2398-2405.
    [334]易立群,缪韧,林三益.贡嘎山森林小流域水文特性探索[J].四川大学学报.2000,32(1):87-92.
    [335]SWIFT M. J, HEALEY I. N, HIBBERD J. K, et al. The decomposition of branchwood in the canopy and floor of a mixed deciduous woodland[J]. Oecologia (Berl.).1976(26):139-149.
    [336]THOMSS S. M, WHITEHEAD D, ADANS J. A, et al. Seasonal root distribution and soil surface carbon fluxes for one year old Pinus radiata trees growing at ambient and elevated carbon dioxide concentration[J]. Tree Physiology.1996(16):1015-1021.
    [337]HENDRICKS J. J, NADELHOFFER K. J, ABER J. D. Assessing the role of fine roots carbon and nitrogen cycling[J]. Trees.1993(8):174-178.
    [338]SANFORD R. I. Apogeotropic roots in an Amazon rainforest[J]. Science.1987(235): 1062-1064.
    [339]李俊英,傅宝春,马迎春.树木细根生产与周转研究及方法评述[J].山西农业大学学报.2006,26(5):1-6.
    [340]杨玉盛,陈光水,何宗明,等.杉木观光木混交林和杉木纯林群落细根生产力、分布及养分归还(英文)[J].应用与环境生物学报.2002(03):223-233.
    [341]VOGT K. A, GRIER C. C, VOGT D. J. Production, turnover, and nutrient dynamics of above-and belowground detritus of world forests[J]. Advances in Ecological Research.1986(15): 303-377.
    [342]莫江明,Sandrabrown,孔国辉,等.鼎湖山马尾松林营养元素的分布和生物循环特征[J].生态学报.1999(05):47-52.
    [343]温肇穆,梁宏温,黎跃.杉木成熟林乔木层营养元素生物循环的研究[J].植物生态学与地植物学学报.1991(01):36-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700