用户名: 密码: 验证码:
基于多元统计方法的连续重整装置的性能监控和优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连续重整装置是重要的石油二次加工装置,它的运行过程是一个复杂的工业过程,具有不确定性(环境结构和参数的未知性、时变性、随机性、突变性)、非线性、变量间的关联性以及信息的不完全性和大纯滞后性等,这种变量之间相关关系的稳定性和生产过程平稳性以及产品质量的一致性有着密切的联系,用传统的方法分别对多个变量进行单变量监控和性能优化无法得到较好的效果,且存在着较大地困难。
     我国现有的连续重整装置均是采用了美国的UOP技术或法国的IFP技术,由于受核心技术保密的影响,没有正式公开的、适用面非常广泛的反应器机理模型可以参考,连续重整装置的控制性能的提高和完善还受制于人。根据连续重整装置的过程监测变量较多、其DCS系统能提供大量的实时数据的特点,本文以多变量统计方法为理论基础,建立了基于数据驱动的数学模型对连续重整装置的生产运行过程进行计算机监控和优化控制。本文的研究工作主要包括如下几个部分:
     1)根据多变量统计理论在分析了连续重整装置工艺过程和重整加热炉传热原理后,提出了需监控的参数,首次运用基本主元分析(PCA)建立了基于数据驱动的监控数学模型,根据平方预测误差(SPE)、T2图、主元得分图、贡献图等监测和诊断连续重整装置运行中的故障。针对各变量间可能存在的非线性及所采集数据中存在着多尺度的噪声污染,改进了基本主元分析法,多尺度线性主元分析、多尺度非主元分析的应用结果表明:非线性方法有效地对数据进行了压缩,小波变换在各个尺度上滤除了噪声污染,且克服了PCA不能监测出数据中小的偏差、并会延迟检测出大的偏差的缺点。
     2)针对观测数据并非均服从正态分布的事实和主元分析只能利用二阶统计信息的不足,首次提出了一种基于独立变量分析(ICA)的连续重整装置的监控方法,采用非高斯最大化判据从观测变量中分解出了相互独立的非高斯量,不仅满足了PCA所要求的不相关,更满足统计意义下的独立特性。在选定了独立变量和建立了相应的统计控制限后,对连续重整装置的运行进行了监控,结果表明比主元分析法具有更少的故障误报率和漏报率。
     3)讨论了影响积灰结垢的主要因素和分析、比较了国内外现有的积灰量测量方法,提出并推导了基于多变量统计过程理论的积灰量在线测量模型,为重整加热炉的优化控制提供了衡量指标。
     4)首次建立了基于主元控制器的优化控制系统,通过和原DCS系统的有效通讯,完善了原DCS系统的控制性能,在氧含量控制模块中,通过热效率反馈氧含量动态寻优和预测控制,根据氧含量的软测量值实时调节重整加热炉的烟道挡板的开度,实现加热炉的在线燃烧优化,提高了传热的效率。
CCR is a secondary oil processing unit. It is claimed as an indispensable fundamental production element in a modern refinery and/or petrochemical facilities. As a rather complicated process, it is characterized by uncertainties (i.e. unidentified environmental structure and parameters, time-varying, randomness, mutation), non-linearity, correlations among variates and incompletion or lag of information. Stability of variate correlations directly impacts constant operation process and product quality consistency, hence it is impossible to achieve satisfactory univariate monitoring, not to mention optimization, of various variates. Furthermore, when there is big noise around in operation, it would become even harder to pre-alarm any possible failure(s) through univariate monitoring.
     In All CCR units in China today are stereotyped with technologies of either UOP, USA or IFP, France. Due to patent /technology confidentiality and insufficient app- rehension of characteristics of specific elements like reactor, regenerator, etc. plus the unavailability of publicly disclosed multi-purpose reactor mechanism model for reference, so far upgrading and improvement of CCR’s controllability are still relying on out-sources. Taking into consideration that a CCR is of relatively more variates for process monitoring and its DCS is able to generate a large number of real data, this article builds up a data-driven mathematical model based on Multivariate Statistics and by means of data collection to realize the computer monitoring and optimization control of CCR operation. The content of this article covers mainly the following sections:
     1) Through analyzing the CCR process and heat transferring principle of CCR furnace based on the Multivariate Statistics Theory, we identified all parameters to be monitored and build up accordingly a data-driven monitoring mathematical model by means of Principle Component Analysis (PCA) for the first time, which can monitor and diagnose the failures in CCR operation with applications of Squared Prediction Error(SPE), Hotelling T2, Principle Component Scores charts, and variates contribution charts. The PCA is improved against the possible non-linearity among variates and the multiscale noise pollutions existing in collected datum. The application result of multiscale linear PCA and multiscale NPCA shows that non-linearity analysis constricts the data effectively, wavelet transform filters the noise pollution in all scales, and avoid the defects of impossible detection of minor deviation and delayed identification of major deviation in datum by PCA.
     2) Due to the fact that not all observed data obey normal distribution and the shortcoming that PCA can only make use of second order statistic, this article puts forward a kind of Independent Component Analysis (ICA) based monitoring measure for CCR unit. The independent non-gauss value is developed from observed variates by means of non-gauss maximization criteria, which meets not only the non-correlation required by PCA, but also the independence characteristic in the sense of statistics. After we selected independent variates and established relative statistic control limitation, we monitored the CCR operation and the result revealed that there was less faulty alarms and missed alarms than that produced by PCA.
     3) After the discussion of primary factors causing the dust aggradation and scale formation, and analysis and comparison of domestic and overseas dust amount measurement methods, we present and deduce an on line dust measurement model based on multivariate statistics, which provides a criteria for evaluating the optimized control of CCR furnace.
     4) An optimization control system based on PCA Controller is built up for the first time, and through effective communications with the original DCS, controlling performance of the original DCS is improved and heat transform of CCR furnace optimized. In the control loop of control oxygen content ,through feedback calculation of heat efficiency to obtain optimal oxygen content in fuel gas and to control oxygen content to reach optimal set point by self-adjust ladderly generalized predictive、control can raise heat efficiency of heating furnace.
引文
[1]赵向海.石化企业综合自动化信息集成平台及应用研究[D].浙江大学,2004
    [2]胡峰,孙国基.过程监控技术及其应用[M].北京:国防工业出版社,2001.
    [3]胡峰,孙国基.过程监控与容错处理的现状及展望[J].测控技术,1999,18(12):1-5
    [4]蒋浩天,E.L.拉塞尔,R.D.布拉茨,段建民.工业系统的故障检测与诊断[M].北京:机械工业出版社,2003.
    [5]何宁.基于ICA-PCA方法的流程工业过程监控与故障诊断研究[D] .浙江大学,2004
    [6]张杰,阳宪惠.多变量统计过程控制[M].北京:化学工业出版社,2000.
    [7] Montgomery, D. C. Introduction to Statistical Quality Control[M]. John Wiley and Sons Inc.(1996) .
    [8] Miller,P. R.E.Swanson, and C.F.Hecker. Contribution plots: the missing link in multivariate statistical control[C]. 37th Annual Fall Conference ASQC. 1993, Rochester, NY.
    [9] R.X.Liu,J. Kuang,Q.Gong,X.L.Hou. Principal component regression analysis with SPSS[J]. Computer Methods and Programs In Biomedicine,Vol.71,No.2,141-147,2003..
    [10] M.H.Zhang,Q.S.Xu,D.L.Massart. Robust Principal Components Regression Based onPrincipal Sensitivity Vectors[J]. Chemometrics and Intelligent Laboratory Systems,Vol. 67,175-185,2003.
    [11] H.O.Duda and P. E. Hart. Pattern Classification and Scene Analysis[M].John Wiley & Sons.New York,1973.
    [12] K.A.Kosanovich,M.J.Piovoso. Nonlinear Adaptive Control with Parameter Estimation of a CSTR[J]. Journal of Process Control,Vol.5,137-148,1995.
    [13] N.B.Gallagher,M.W.Berry. Application of Multi-way Principal Components Analysis to Nuclear Waste Storage Tank Monitoring[J]. Computers and Chemical Engineering,Vol.20,739-744,1996.
    [14] E.B.Martin,A.J.Morri,Kiparissides. Manufacturing Performance Enhancemant Through Multivariate Statistical Process Control[C]. Annual Reviews in Control,1999.
    [15] Sezai Dogdu, Dr. D. L. Santos. The Paradigm Shift in Statistical Process Control Due to The Latest Development in Computer Technology[J]. Computers and Engineering,1998,35(1):177-180.
    [16] West DA, Mangiameli PM, Chen SK. Control of Complex Manufacturing Processes: A Comparision of SPC Methods with A Radial Basis Function Neural Network[J]. Omega,1999,27(3):349-362.
    [17] Dongsoon Kim, In-Beum Lee. Process Monitoring Based on Probablistic PCA[J]. Chemometrics and Intelligent Labortory Systems,2003,67(2):109-123.
    [18]黄孝彬,刘吉臻,牛玉广.主元分析方法在火电厂锅炉过程故障检测中的应用.动力工程,2004,24(4):542-547.
    [19]何宁,王树青.自适应MPCA方法在链霉素过程监控中的应用.中国化学工程学报(英文版),2004,12(1):96-102.
    [20]杨秀丽,郭盼娜,王旭等.浅谈(X)-R控制图在过程监控中的应用.重型汽车,2002,3:17-18.
    [21]陈耀,王文海,孙优贤.基于动态主元分析的统计过程监视[J].化工学报,2000,51(5):666-671.
    [22]钱伯章.当代石油化工自动化的技术发展要点[J].化工自动化及仪表, 1997 ,24 (1): 3-9.
    [23]孙德敏等.推动先进控制与优化技术在过程工业中的应用[J].自动化博览, 2001, 18 (3):1-3.
    [24]王雪松.先进控制技术在炼油装置中的应用[J].石油化工自动化,2007, 4(1)∶42-45.
    [25] D.C. White, Online optimization: what have we learned?,. Hydrocarbon Processing 6 ,1998, 55~59
    [26] Darby M L, White D C. Online-optimization complex units[J]. Chemical EngineeringProcess.1988.10:51~59.
    [27]秦永胜.多元精馏过程非平衡级模型与优化控制的研究[D].北京:清华大学,1996.
    [28]雷琪,吴敏,刘建群,禹冬明.焦炉燃烧加热过程智能集成优化控制系统[J].计算技术与自动化,2006,25(l):14-17
    [29]臧瑜鑫,高磊.在线优化模型的建立及软件结构[J]炼油与化工,2005,16(1):38-41
    [30]王树青.工业过程控制工程[M] .北京:化学工业出版社.
    [31]王纯海,等.重整装置原料预处理部分的优化设计[J].山东化工,2006,3:23-26
    [32]侯卫锋.催化重整流程模拟与优化技术及其应用研究[D].杭州:浙江大学,2006,
    [33] Smith R B.Kinetic analysis of naphtha reforming with platinum.UOP[J]. 1996,5 catalyst. Chem. Eng. Prog.,1959, 55(4):76-80.
    [34] Wei J, et al. A lumping analysis in monomolecular reaction systems. Ind. eng. fundam.1969, 8 (I) .
    [35] Coxson P G, Bischoff K B. Lumping strategy 1. Introductory techniques and applications of cluster analysis[J]. Ind Eng Chem Res.1987,26(6):1239-1248.
    [36] J.A. Szczurek. Catalyst Sampling Procedure. UOP.1998, 5.
    [37]丁福臣等.十三集总催化重整反应动力学模型研究[J].炼油设计.2001,31(8):14-16
    [38]江洪波,翁惠新.催化重整动力学模型的研究[J].华东理工大学学报.1998,24(l): 42-53.
    [39]刘怀伟.催化重整软件的二次开发和应用[J].催化重整通讯.2000,1:54-60.
    [40]刘士荣,俞金寿.过程控制的若干问题研讨[J].石油化工自动化.1999,1:5-10.
    [41]朱印全,张永涛,许显文.先进过程控制技术在高密度聚乙烯装置上的应用[J].石油化工. 2006,35(5):469-475
    [42] Rengasamy,R.A framework for integrating process monitorinf,diagnosis and supervisory control[D].USA:Purdue University,1995.
    [43]施大鹏,彭世浩,刘太极.连续重整装置仿真系统的设计开发[J].炼油设计. 1998, 28(2):57-62.
    [44]胡永有,苏宏业,褚健.工业重整装置建模与仿真[J].高校化学工程学报2003,17(4):418-424.
    [45]丁兰蓉.计算机集成系统[J].石油化工自动化,2001(5):61-64.
    [1] Pearson. Principal Components Analysis. Edinburgh and Dublin Philosophical Magazine and Journal,Vol.6,Issue 2,1901.
    [2] R.A.Fisher and W.A.Mackenzie. The Distribution of the Partial Correlation Coefficient[J]. Metron,1923,3:329~332.
    [3] M.Hotelling. Analysis of a Complex of Statistical Variables into Principal Components[J]. Journal of Educational Psychology,Vol.24,498-520,1933.
    [4] E.R. Malinowski. Theory of error in factor analysis[J].Analytical Chemistry1977, 49 :606-612.
    [5] MA Kramer , RSH Mah. Model based monitoring[J] .in Proc. 2nd Int. Conf. Foundations of Computer Aided Process Operations, Austin, TX, 1994, 45-71.
    [6] Tong, H., and C. M. Crowe, Detection of Gross Errors in Data Reconciliation by Principal Component Analysis[J]. AIChE J., 1995,41(7):1712-1722.
    [7] Ku, W., R. H. Storer, and C. Georgakis, Disturbance Detection and Isolation by Dynamic Principal Component Analysis[J]. Chemo. Intell. Lab. Sys., 1995, 30:179-196.
    [8] Kresta, J., J. F. MacGregor, and T. E. Marlin, Multivariate Statistical Monitoring of Process Operating Performance[J]. Can. J. Chem. Eng., 1991,69:35-47.
    [9] Wise, BM, Ricker, NL, Veltkamp, DF, Kowalski, BR.A theoretical basis for the use of principal component models for monitoring multivariate processes[J].Process Control and Quality, 1990,1:41-51
    [10] MacGregor, J. F., C. Jaeckle, C. Kiparissides, and M. Koutoudi, Process Monitoring and Diagnosis by Multiblock PLS Methods[J], AIChE J., 1994,40(5): 826-838.
    [11] Dunia, R., S. J. Qin, T. F. Edgar, and T. J. McAvoy, Identification of Faulty Sensors Using Principal Component Analysis[J], AIChE J.,1996, 42(10): 2797-2812.
    [12]朱其刚,朱志强.基于自适应邻域灰度直方图均衡的超声内窥镜图像增强[J].山东科技大学学报,2004, 23(3):120-124
    [13]康葳,乔新勇,安钢.基于统计模拟的柴油机失火故障的诊断方法[J].内燃机工程,2004,25(5):66-70
    [14]潘承毅,何迎晖.数理统计的原理与方法[M] .上海:同济大学出版社, 1993.10
    [15]张杰,阳宪惠.多变量统计过程控制[M].北京:化学工业出版社,2000.
    [16] B.Lennox,G.A.Montague,H.G.Hiden. Case Study Investigating Multivariate StatisticalTechniques for Fermentation Supervision[J]. Computers and Chemical Engineering,Vol.22,827-830,1998.
    [17] Sang Wook Choi,Jin Hyun Park,In-Beum Lee. Process Monitoring using a Gaussian Mixture Model via Principal Component Analysis and Discriminant Analysis[J]. Computers and Chemical Engineering,Vol.28,1377-1387,2004.
    [18] Haiqing Wang,Li Ping,Zhongxue Yuan. Understanding PCA Fault Detection Results by Using Expectation Analysis Method[J]. Proceedings of the 41st IEEE Conference on Decision and Control,Las Vegas,USA,2002.
    [18] Bakshi B R. Multiscale PCA with application to multivariate statistical process moni- toring [J]. AIChE Journal, 1998 , 44(7): 1596-1610.
    [19]周小勇,叶银忠.小波分析在故障诊断中的应用[J].控制工程,2006,1(13): 70-73
    [20]卢恩泽,张超.在线监测系统中小波去噪方法及模型的建立[J].电气应用,2006, 25(5),93-95
    [21]李建平,唐远炎.小波分析方法的应用[M].重庆:重庆大学出版社,1999.
    [22]刘育明.动态过程数据的多变量统计监控方法研究[D] ,2006
    [23] Kramer M A, Autoassociative Neural Networks[J]. Comput. Chem. Engng., 1992, 16(4) :313-328
    [24] Kramer M A. Nonlinear principal component analysis using autoassociative neural networks[J]. AIChE Journal , 1991, 37(2):233-243
    [25] V.N.Reddy,P.M.Riley,M.L.Mavrovouniotis. Analysis of Plant Measurements Through Input-Training Neural Networks[J]. Compurters and Chemical Engineering,Vol.20,895-900,1996.
    [26] E.B.Martin,A.J.Morris. Non-parametric Confidence Bounds for Process Performance Monitoring Charts[J]. Journal of Process Control,No.6,349-358,1996
    [27] Fei Liu. Chemical Separation Process Monitoring Based on Nonlinear Principal Component Analysis[J]. International Symosium on Neural Networks,798-803,2004.
    [1] Aapo Hyv?rinen , Juha Karhunen, Erkki Oja. Independent Component Analysis[M]. NewYork : John Wiley & Sons, Inc.,2001
    [2] Hyvarinen,A. and Oja, E. Independent component analysis:algorithms and applications [J]. Neural Networks, 2000,13(425):411-430.
    [3] Li R F, Wang X Z. Dimension reduction of process dynamict rends using independent component analysis[J]. Computers & Chem.Engng.,2002, 26: 467-473
    [4] Manabu Kano, Shinji Hasebe, Iori Hashimoto. Evolution of multivariate statistical process control: application of independent component analysis and external analysis[C]. Proceedings of the Foundations of Computer Aided Proces Operations Conference (FOCAPO). 2003,385-388
    [5] Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem[J]. Computers & Chem.Engng. , 2002,26:161-174
    [6]何宁.基于ICA_PCA方法的流程工业过程监控与故障诊断研究[D],浙江大学,2004
    [7]吴小培,冯焕清,周荷琴,王涛.基于独立分量分析的图像分离技术及应用[J] .中国图像图形学报,2001,6(2):133-137
    [8]杨福生,洪波,唐庆玉.独立分量分析及其在生物医学工程中的应用[J] .国外医学生物医学工程,2000,23(3):
    [9] Lee Te-Won . Independent Component Analysis: Theory and Applications[M] .Boston: Kluwer Acadeic Publishers, 1998.
    [10] Jones, M., Sibson, R. What is projection pursuit[J]. Journal of the Royal Statistical Society, Series A, 1987,150, 1-36.
    [11] Hyvarinen, A. New approximations of differential entropy for independent component analysis and projection pursuit [C] .In Advances in Neural Information Processing Systems, 1998, 10, 273-279.
    [12] Pierre, C. Independent component analysis, A new concept[J]. Signal Processing, 1994, 36,287-314.
    [13] Pham D.-T, Garrat P, Tutten C. Separation of a nvxture of Independent sources through a maximum likelihood approach[C]. Proceeding of Europe Signal Processing Conf.,Elsevier Science Publisher, 1992, 771-774.
    [14]章照止,林须端.信息论与最优编码[M].上海:上海科学技术出版社.1993. [ 15] Lee T—W ,Oirolami M,Sejnowski T J.Independent component analysis using an extended infomax algorithm for mixed sub-gaussian and super-gaussian sources[J].Neural Computation,1999,11(2):409- 433
    [16] Bell A J, Sejnowski T J. An Informatiom-MAximisation Approach to Blind Separation anf Blind Deconvolution[J]. Neural Computation ,1995, 7(6): 1004-1034
    [17] Hyvarinen A,Oja E A Fast fixed-point algorithm for independent component analysis[J]. Neural Computation ,1997, 9(7): 1483-1492.
    [18] Amari S L, Cichocki A, Yang H.A New Learning Algorithm for Blind Source Separation[J].Advances in Neural Information Processing Systems,1996,8:757-763
    [19] Hyvarinen, A. Fast and robust fixed-point algorithms for independent component analysis[C]. IEEE Transaction on Neural Networks. 1999, 10(3), 626-634
    [20] A. Hyvarinen, E. Oja, One unit learning rules for independent component analysis[], Advances in Neural Information Processing System 9 (NIPS 96), Boston, MIT Press, 1997, 480-486.
    [21] Hyv a rinen A. The fixed-point algorithm and maximum likelihood estimation for independent component analysis. Neural Processing Letters, 1999, 10(1):1-5
    [22] Lee, J.-M., Yoo, C.K., Lee, I.-B. Statistical process monitoring with independent component analysis[J]. Journal of Process Control, 2004, 14, 467-485.
    [1] J.G.Leidenfrost,De Aguae Communis Nonnullis Quqlitatibus Tractatus, 1756.(see Int.J.Heat mass trasfer, vol9,PP:1153-1166, 1996)
    [2] E. N. Siede. Application of Fouling Factors in the Design of Heat Exchangers. Heat Transfer, pp. 82-86, ASME, New York, 1941
    [3] D. Q. Kern and R. E. Season. A Theoretical Analysis of Thermal Surface Fouling, Chem. Eng. Prog. Vol.4, pp. 258-262, 1959
    [4] D. Q. Kern and R. E. Season. Surface Fouling: How to Limit. Br. Chem. Eng. Vol.55, No.6,pp. 71-73,1959
    [5] N. Epstein, Thinking about Heat Transfer Fouling: A 5*5 Matrix, Heat Transfer Engineering,Vol.4, No.1, pp.43-56, 1983
    [6] J.D.Pinheiro, Fouling of Heat Transfer Surface, in“Heat Exchangers: Thermal-Hydraulic Fundamentals and Design”. 1013-1035, Eds., D. Kakac etal., Hemisphere, New York, 1981
    [7] N.F.Lansing,Workshop Proceedings,Application of Fireside Additive to Utility Boilers,EPRI Report WS-80-127,Electric Power Research Institute,1981
    [8] W.J.Maner,Workshop on an Assessment of Gasside Fouling in Fossil Fuel Exhaust Environment ,Publication 82-67,Jet Propulsion Laboratory, California Institute of Technology,1982
    [9] L.L.Fassbender,Proc.of the Fouling and Corrosion Workshop,Pacific Northwest Lab,1986
    [10] N.Epstein , Fouling in Heat Exchangers , Heat Transfer 1978-Proc.6TH IHTC , Vol.6,1979,pp:235-253
    [11]杨善让,徐志明.换热设备的污垢与对策.科学出版社.1995年第一版.
    [12]岑可法,樊建人等.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算.科学出版社.1994
    [13] L.F.Melo and J.de D.R.S.Pinheiro,Fouling Tests: Equipment and Methods.In‘Fouling in Heat Exchange Equipment’,43-49,Eds.,W.Suitor et al.,1984
    [14]J.H.Howarth ,N.F.Glan and A.M.Jenkins,The Use of Fouling Monitoring Techniques, Understanding Heat Exchanger Fouling and its Mitigation, Proceeding of an Internation Conference, Italy, 1997,pp:309-314
    [15]程伟良.管式换热器积灰监测模型的研究.现代电力.1999,16(3):52-57
    [16]吴双应,李友荣.一种监测换热器污垢的新方法.工业加热,2000,(1):14-15
    [17]王建国,徐志明等.空气预热器积灰在线监测模型.中国电机工程学报.2000,20(7):37-39
    [18]侯斌,吕子安等.电站锅炉对流受热面积灰状态的在线监测.中国电力.2002,35(3):20-23
    [19]马恩俭,陆继东等.电站锅炉积灰监测与控制系统研究.锅炉技术.2004,35(2):48-51
    [20]燃煤锅炉受热面沾污监控系统[J],杨志忠摘译.电站系统工程,1996,12(1).59-62
    [21]王斌忠,吴占松,许立冬,常宝成.煤粉炉水冷壁结渣故障特征提取[J].清华大学学报(自然科学版),1998,38(5):64—68.
    [22]周俊虎,靳彦涛,杨卫娟,周志军,曹欣玉,岑可法.电站锅炉吹灰优化的研究应用现状[J].热力发电,2003,32(4):24-27
    [23]王建国.锅炉受热面污垢在线监测理论及应用[D].华北电力大学2001
    [24]陈宝康.电站锅炉受热面污染监测及优化吹灰的理论与实验研究[D].华北电力大学2004
    [1]Piovoso M J, Kasanovich K A.Application of lMultivariate Statistical Methods to Process Monitoring and Controller Design[J].Int J Control, 1994, 59: 743- 765.
    [2]蒋国芳.过剩空气系数对加热炉的影响[J].石油化工设备技术,2002,23(5).29-31
    [3]胡真.原油蒸馏过程的建模与优化控制[D].浙江大学,2000
    [4]程远铭等.管式加热炉的改进措施及工艺优化[J].河南化工.2004,23(10):43-44
    [5] Ruckenstein E, Prieve D C. Rate of deposition of brownian particles under the action of london and double-layer forces [J].J. Chem. Soc., FaradayⅡ, 1973.69: 1522-1536.
    [6]陈宝康等.燃煤电站锅炉对流受热面灰污层增长预测模型的研究[J].华北电力大学学报.2004,31(2)32-35.
    [7]陈宝康,阎维平,高正阳,朱予东.300MW燃煤电站锅炉受热面优化吹灰模型的研究与实现[J] .动力工程. 2004,24(4):486-489
    [8] Syed M.Zubair,Anwar K.Sheikh,Muhammad Younas,Budair.M.0.A risk based heat exchanger analysis subjectto fouling:partⅠperformance evaluation [J] .Energy,2000.25:427-44
    [9]吴双应,曾丹苓,李友荣.恒壁温时污垢对管内对流换热过程热力学性能影响的分析[J].2002(53), 4:407-411
    [10]郭明.基于数据驱动的流程工业性能监控与故障诊断研究[D].浙江大学,2004
    [11]赖胜,孙德敏,吴刚,祁睿.常压加热炉的在线燃烧优化[J].石油化工自动化, 2003, 2:23-27 [12 ] HAYKIN S.神经网络原理[M ].北京:机械工业出版社,
    [13]包键,严义等.计算机优化控制系统集成软件平台的研究[J] .微计算机信息,2006,16(2):43-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700