用户名: 密码: 验证码:
真空蒸馏加剂除铅制备五九高纯铋新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,对高纯金属铋的需求越来越大,高纯金属铋的研制也倍受关注。然而由四九精铋提纯到五九高纯铋的传统真空蒸馏法,还存在一些问题,主要是在真空炉内除铅达不到要求。在真空炉内加剂,将铅转化为化合物铅除去而获得五九高纯铋,是本论文研究的重要内容。
     首先,通过大量的文献对国内外高纯金属的研究现状、真空蒸馏制备高纯金属的研究进展和金属铋的性质、用途、生产情况等进行了详细地综述。
     其次,从理论上分析了用真空蒸馏分离各杂质和通过加剂(加硫或加氯)除铅的可行性。热力学研究表明:通过加硫或加氯的方法,可以将金属铋中的铅有效地转化为硫化铅或氯化铅而除去,对于加硫除铅,蒸馏温度越高越有利于铋与硫化物的分离,而氯化除铅的蒸馏温度越低越有利于铋与氯化物的分离:金属铋中的其它杂质可以通过真空蒸馏直接将其含量降到“5N”高纯铋的水平。动力学研究表明:精铋真空蒸馏除杂时,需选用适宜的温度、合理的真空度,以提高设备的生产率,降低成本,提高经济效率。
     在真空炉内进行了小型加剂除铅的实验研究。考察了加剂量、蒸馏温度、残压和蒸馏时间等四个因素对除铅的影响,得到了最佳工艺条件:对于加硫除铅,加硫量每克铋控制在0.02克左右、蒸馏温度约为1073K、残压控制在16Pa左右,蒸馏时间不超过15min;而对于氯化除铅,每克铋加氯化铜宜控制在0.04~0.06克之间、蒸馏温度约为983K、残压控制在16Pa左右,蒸馏时间在15~20min之间。在此条件下,可以将金属铋中的杂质铅含量由30ppm降到了0.21ppm(加硫)或0.24ppm(加氯),达到了“5N”高纯铋的要求。
     采用小型的实验研究了真空蒸馏对金属铋中其它杂质的影响。结果表明:将金属铋在温度1223K~1273K、残压为16Pa左右,蒸馏60min左右,铋挥发80%以上,则冷凝物中杂质除铜、铅、铁外均达到“5N”高纯铋的水平,所得冷凝物中铋的含量达到了99.9994%;在此基础之上进行了加剂除铅实验,金属铋中的铅含量达到了“5N”高纯铋的要求,铋的含量达到99.9997%。
     最后,在以上研究的基础之上,提出了符合此研究的多级冷凝内热式真空炉。
With the development of science and technology, the demand for high-purity bismuth is more and more, and the studies on high-purity bismuth have drawn great attention of researchers. However, there are some problems which are needed to be resolved when the traditional vacuum distillation is used to obtain "5N" high-purity bismuth from "4N" rich bismuth, one of them is that to remove lead in vacuum furnace is very difficult. The primary aim of this paper is to obtain "5 N" high-purity bismuth through converting lead to lead compound to be removed by reagent addition in a vacuum furnace.
    Firstly, the present situation on the study of high-purity metals and the recent development on preparation of high-purity metals with vacuum distillation at home and abroad were reviewed in detail. The properties, uses and production situation of bismuth were also reviewed.
    Secondly, the feasibility of separation of impurities in rich bismuth and reagent (sulphur or chlorine) deleading with vacuum distillation was studied in theory. Thermodynamics studies show that by adding sulphur or chlorine, the lead can be converted to lead sulfide or lead chloride to be removed effectively. For sulphuring deleadization, it is favorable for the separation of bismuth sulfide and lead sulfide from bismuth in higher temperature. However, for the chlorinate dedeleadization, it is easier to separate bismuth chloride and lead chloride from bismuth. The content of other impurities in rich bismuth can be decreased to the level of "5N"high-purity bismuth by vacuum distillation. Dynamics studies show that in order to increase the productivity of equipments and obtain low cost and achieve more economic benefit, a suitable temperature and reasonable vacuum degree are needed when vacuum distillation is adopted to purify rich bismuth.
    And then, minitype experiment studies on reagent deleadization were carried out in the vacuum furnace. The influence of amount of reagent, distillation temperature, vacuum degree and distillation time on the effect of deleadization were investigated and an optimal technical condition was achieved as following (see Table 1): Table 1 The optimal technical condition of reagent deleadization
    
    
    On this condition, the content of lead in rich bismuth can be decreased from 30ppm to 0.21ppm (sulphuring deleadization) or 0.24ppm (chlorinate deleadization), which has reached the level of "5N" high purity bismuth.
    Studies on the influence of vacuum distillation on other impurities in metal bismuth by minitype experiment show that if temperature is between 1223K~1273K, remnant pressure is about 16 Pa, bismuth volatilization rate is more than 80%, the content of impurity in the condensate can reach the level of the "5 N" high purity bismuth except for copper, lead and iron and the bismuth content in the condensate is 99.9994%. According to this result, experiments on reagent deleadization were carried out. Results show that the content of lead reaches the level of the "5 N" high purity bismuth and the content of bismuth achieves to 99.9997%.
    Finally, a multilevel internal-heat type vacuum furnace that meets our study were proposed on the basis of above studies.
引文
[1]郭青蔚,高纯金属研究的现状及展望,世界有色金属,1996,(4),17-18
    [2]易昌桂,功能材料.1991,22(4):216-221
    [3]易昌桂,高超纯金属材料的现状与应用,功能材料,1991,22(4),216-221
    [4]戴永年,杨斌,有色金属材料的真空冶金,北京:冶金工业出版社,2000
    [5]黄占超,昆明理工大学硕士学位论文,2003.2
    [6]杨斌,戴永年,真空冶炼法提取金属锂的的研究,云南;云南科技出版社,1995,5
    [7]胡华业,高纯金属钪的制备,稀土,1999,(4):70-72
    [8]汪立果.铋冶金.北京:冶金工业出版社.1986.
    [9]李章棱,工程设计与研究,1990;(3):1-4.
    [10]《有色金属提取冶金手册》编辑委员会编,有色金属提取冶金手册,锌镉铅铋,冶金工业出版社,1992,10.
    [11]彭友乾,有色金属(冶炼部分),1992;(5):47-48.
    [12]中国铋学会,中国铋信息,(1990.1992),7-13.
    [13]国际铋学会统计年报(1986-1991),1992.3
    [14]刘鹏吉,国内外市场前景与对策,中国铋学会第三界年会论文,1992-06
    [15]李章楞,铋市场前景与我国铋资源优势及对策,中国铋学会第三界年论文,1992-06
    [16]钟启愚等.铋资源利用综述,中国铋学会第三界年论文,1992-06
    [17]邓亲贤,株冶科技,Vol.20,No.4,Nov.1992,258-265.
    [18]Y.Palmeri(Bismuth Institute),Bismuth,A Metal with Various,Users,Metal,Oct,1991,45, (10), 1047-1049, (in German).
    [19]L.F. Kozin,A.G.Moraehevski,Mothods of Producing High-purity Metals Using Liquid Amalgam Electrods,LKr.Khim.Zh. 1989,55,(5).(in Russian)
    [20]H.Ohwa.M.Yukinobu, High-purity Metals Production of Sumitomo Mining Co.,Lid.(SMM),Extraction Metallurgy,885-898.
    [21]C.Evans,Fusible Alloys,Engineering(London),Nov.1981,Technical File No.95 (suppl.) ⅰ-ⅳ.
    [22]C.E.T.White,J,M.Ferriter, Indium Corp of America,How to Use Fusible
    
    Alloys,Mach,Dec, 1990,62,(25), 124-131
    [23] F.DENG, Low-Melting-Point Alloy Dies and Zinc Alloy Dies and their Applications,Metalforming Mach,(China), 1991,26,(1), 13-17,(in Chinese)
    [24] F.K.Ojebuoboh(Asarco),Bismuth-Production,Proparties,and Applications.JOM.Apr. 1994,44,(4),46-49
    [25] H.P.Wilson,A method,Bath and Cell for the Electrodeposition of Tin-Bismuth Alloys ,Ausz.Eur.Patentanmeld. 1.22 Nov, 1990,6.(47),5776-5777,Patent No.EP039663
    [26] Y.Fukuoka,M.Ishizuka,Toshiba,New Package Cooling Technology Using Low Melting Point ,Jpn,J,Appl,Phys, 1 ,July 1990,29,(7), 1377-1384
    [27] S.M.Jasinski (U.S Bureau of Mines),Bismuth-Uses,Supply and Technology, U.S Bur.Mines Inf.Circ.IC-9312,1992
    [28] Y.Takeuchi and R.T.Takagi,T.Shinoda,Effect of Bismuth on Weld.J. Aug, 1992, 71(8),283S-289S
    [29] G..Jha,S.Sharma,Tata Ironand Steels ,Development of Free Machining Steel,Tool Alloy Steel,Jan. 1990,24,(1),5-12
    [30] X.Guo,X.Chen,Z.Altounion and J,O.Stroin-Olsen,Magnetic Preperties of MnBi Prepared by Rapid Solidification, Phys.,Rev.B,Condens, Matter, Ⅰ,Dec. 1992, 46(22), 14578-14582
    [31] 张永健等,粗铋熔盐电解精炼新工艺研究.有色金属.1994,46,(2):56-61.
    [32] 任宏岩,张永健,粗铋二段阳极熔盐电解精炼第二段工艺.有色金属.1996,48,(2):80-85。
    [33] 北京有色冶金设计研究所总院等编.重有色金属冶炼设计手册 铅锌铋卷,北京:冶金工业出版社,1995.
    [34] 东北工学院有色重金属教研室,锌冶金,北京:冶金工业出版社.1987
    [35] Volsky A. and E.Sergievskaya. Theory of Metallurgical Process: Pyrometallurgical Process(Second Edition), Moscow: MIR Publisher, 1978
    [36] R.比利特著.黄宇梁等译,蒸馏工程,北京:烃加工出版社,1988
    [37] Olette M., Physical Chemistry of Process Metallurgy, 1961,8(2):1065-1087
    [38] Harris R., Metall. Trans., 1984,15B:251-257
    [39] 戴永年,赵忠编著,真空冶金,北京:冶金工业出版社,1988:2-5
    [40] 虞觉奇等编译.二元合金状态图集.上海:上海科学技术出版社,1987
    [41] O.库巴谢夫斯基,C,B.奧尔考克著,邱竹贤.梁英教,李席孟等译,冶金热
    
    化学,北京:冶金工业出版社,1985,3
    [42]科技查新报告,编号:(2003)53b200611
    [43]邓智明,粗铋真空蒸馏脱银新工艺研究,昆明工学院博士学位论文,昆明:1994,49-50,62
    [44]陈雯,戴永年,唐文榕.金属铋真空蒸馏规律的研究。真空科学与技术,1994,14(4):254-259
    [45]王常珍.冶金物理化学研究方法.北京:冶金工业出版社.1982:24-28,56
    [46]W.J.KrOLL. The Vacuum Distillation of Metals.Metal Industry. 1935, (47): 155
    [47]陈雯,胡翠.金属铋在真空蒸发过程中临界压强的研究.有色矿冶,2000,16(5):25-29
    [48]O.库巴谢夫斯基,C.B.奥尔考克编,邱竹贤,梁英教,李席孟等译,冶金热力学,北京:冶金工业出版社,1985,3
    [49]苏联标准汇编(有色部分),TOCT,10928-75
    [50]程介克.刘锦春,江祖成编,痕量分析,北京:化学工业出版社,1993,6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700