用户名: 密码: 验证码:
慢性阻塞性肺疾病患者肺组织中Nrf2、Bach1、γ-GCS表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景及目的
     慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)是呼吸系统疾病中比较常见的慢性疾病。该病患病人数多,病死率高,且呈进行性发展,到疾病的终末期严重影响了患者的劳动力,生活质量亦明显下降。目前COPD的发病机制尚未完全明了,但研究证实氧化应激是COPD重要的发病机制之一。核因子相关因子-2(Nuclear factor erythroid2-related factor2,Nrf2)是氧化应激反应中位于核心地位的转录因子,能够上调多种抗氧化基因的表达,在COPD的发病过程中发挥了重要的作用。BTB-CNC异体同源体1(BTB and CNC homolog1, Bachl)是广泛存在于体内的一种亚铁血红素结合蛋白,它与Nrf2不同,可以阻遏抗氧化基因的转录。还原型谷胱甘肽(GSH)是肺组织内重要的抗氧化剂之一,在氧化剂对肺组织造成氧化损伤的过程中发挥了重要的保护作用。在GSH的合成反应过程中,调节GSH合成速度和数量的重要限速酶是γ-谷氨酸半胱氨酸合成酶(y-Glutamylcysteine Synthetase,y-GCS)。γ-GCS表达的调节主要集中在转录水平,因此,我们可以在转录水平对γ-GCS的表达进行调节,从而来增加GSH的合成,提升肺部的抗氧化能力。在对COPD大鼠的研究中表明Nrf2、Bachl在大鼠COPD的发病过程中可能对抗氧化基因γ-GCS的表达起到竞争调节的作用。国外有研究发现Bachl可以与Nrf2竞争抗氧化反应原件结合位点,从而下调抗氧化基因的表达。本实验旨在对COPD临床患者肺组织中Nrf2、Bachl、γ-GCS的表达水平的变化及相关性进行研究,探讨三者在COPD发病机制中的作用,并初步探索Nrf2、Bachl对γ-GCS表达的调控作用。
     对象和方法
     选取2011年3月至2012年5月因肺肿瘤于郑州大学第二附属医院胸外科行肺叶切除术的患者40例。术前均询问病史,完善常规体检、拍摄胸部X线或CT、测肺功能等资料。凡符合中华医学会呼吸病学分会制定的慢性阻塞性肺疾病诊治指南者,入选COPD组(20例),不符合者则入选对照组(20例)。所有患者均排除合并患有心、肝、肾、皮肤、乳腺、肾脏、消化道、卵巢、血液等方面的疾病,并排除支气管扩张症、肺结核和其它可以影响肺功能的疾病,且术前均未行放化疗治疗。凡是符合入选标准的患者都已告知本课题的目的及方法,签署知情同意书,并给予患者适当的经济补偿。
     距离肿瘤组织4cm以上取材,肉眼未观察到肺癌浸润的外周肺组织,于4%多聚甲醛(含1‰焦炭酸二乙酯)中固定,常规行石蜡包埋,切片。取肺组织切片行HE染色;原位杂交法检测肺组织标本中Nrf2、Bach1、γ-GCSmRNA的表达;免疫组化法检测肺组织标本中Nrf2、Bach1、γ-GCS蛋白的表达;用SPSS17.0统计软件对实验数据进行统计学分析。
     结果
     1、临床患者肺组织切片HE染色结果:在光镜下可见COPD组肺泡壁变薄,肺泡腔变大,有的肺泡壁出现不同程度的断裂,同时可见有的断裂的肺泡壁融合。而对照组患者肺泡结构正常。
     2、原位杂交结果:Nrf2、Bachl和γ-GCS mRNA主要表达于肺泡上皮细胞和炎症细胞;Nrf2和Bachl mRNA在COPD组患者肺组织中均呈强阳性表达,二者在对照组的相应部位呈弱阳性表达,两组比较差异有统计学意义(P<0.05)。而γ-GCS mRNA在COPD组患者肺组织中呈阳性表达,在对照组的相应部位呈弱阳性表达,两组比较差异亦有统计学意义(P<0.05)。
     3、免疫组化结果:Nrf2、Bach1、γ-GCS蛋白主要表达在肺泡上皮细胞和炎症细胞。Nrf2、Bachl、γ-GCS蛋白在COPD组患者肺组织中均呈强阳性表达,与对照组相比较差异有统计学意义(P<0.05)。
     4、COPD组指标间的相关性分析:Nrf2、γ-GCS蛋白与FEV1/FVC(%)、FEV1(%)均呈正相关(P<0.01),Bachl蛋白与FEV1/FVC(%)、FEV1(%)呈负相关(P<0.01)。Nrf2蛋白与γ-GCS mRNA及其蛋白的表达呈正相关(P<0.01),Bachl蛋白与γ-GCS mRNA及其蛋白的表达呈负相关(P<0.01)。
     结论
     1、COPD患者肺组织中Nrf2、Bach1、γ-GCS mRNA及蛋白的表达均较对照组增强,提示三者在COPD氧化/抗氧化系统中发挥了重要作用。
     2、Nrf2、Bachl、γ-GCS蛋白与诊断及评估COPD的关键指标FEV1/FVC(%).FEV1(%)的相关性分析结果进一步证实三者可能与COPD的发病有着密切的关系。
     3、在COPD的发病过程中,Nrf2蛋白对γ-GCS的基因表达可能起到正向调控的作用,Bachl蛋白对γ-GCS的基因表达可能起到负向调控的作用,为γ-GCS的调控机制提供了新的理论依据。
Background and Objective
     Chronic obstructive pulmonary disease (COPD) is a common and chronic disease of the respiratory system. Because of the high disease prevalence and mortality, the progressive development, this disease can seriously affect labor ability and the quality of life of patients at the end-stage. At present,the pathogenesis of COPD is unclear, but the studies have confirmed that oxidative stress is one of the important pathogenesis of COPD. Nuclear factor erythroid2-related factor2(Nrf2) is the nuclear transcription factor in oxidative stress reaction, which can positively regulate the expression of a variety of antioxidant genes,and plays an important role in the pathogenesis of COPD. BTB and CNC homologl Bachl (Bachl) is one of the heme binding proteins, which widely exists in the body.But it can inhibit the transcription of oxidation resistance genes,that is different from Nrf2.Reduced glutathione (GSH) is an important antioxidant,which plays an important role in the process of resisting the Oxidative damage of lung. y-Glutamylcysteine Synthetase (y-GCS) is an important enzymes,which can limit the speed of synthesis of GSH,also can decided the speed and quantity of the synthesis GSH.The expression of y-GCS is mainly regulated in the level of transcription, thus, we can increase the synthesis of GSH to enhance antioxidant capacity of lung through this way. The studies of COPD rats show that Nrf2can compete with Bachl to regulate the expression of the antioxidant gene of y-GCS in the process of the development of COPD.Some Overseas studies have found that Bachl can downgrade the expression of antioxidant gene through competing with Nrf2to bind the original oxidation reaction. This experiment aims to study the change of the expression level of Nrf2, Bachl, y-GCS in the lung tissue of COPD and the correlation between them, to explore their roles in the pathogenesis of COPD and how Nrf2and Bachl regulate the expression of γ-GCS.
     Subjects and methods
     40patients were selected from the thoracic surgery of the second affiliated hospital of zhengzhou university from March2011to May2012, who had done Lung resection surgery because of lung cancer. We asked the medical history of each person,done the regular check-up, chest X-ray or CT, lung function test and so on before the surgery.He would be included in the COPD group (20cases),who conformed to the diagnosis and treatment of COPD guideline set by the respiratory branch of Chinese Medical Association.If he didn't conform to the guideline,would be in the control group (20cases). The patient was excluded suffering from heart, liver, kidney, skin, breast, kidney, digestive tract, ovary, blood diseases, ect. The patient was also eliminated suffering from bronchiectasis disease, tuberculosis and other diseases which could affect the function of pulmonary, and had not done preoperative chemoradiation therapy.All patients who met the inclusion criteria, were told that the purpose of this study and methods, signed informed consent form, and would be given appropriate economic compensation.
     the samples were taken from the tumor tissue more than4cm, and were the peripheral lung tissue not infiltrated by Lung cancer through macroscopic observation. The samples were fixed in4%paraformaldehyde (including1%oDiethypyrocarbonat), and sectioned them after conventional paraffin embedding. Then we done the HE staining;In situ hybridization and immunohistochemistry were used to detect the mRNA and protein expressions of Nrf2,Bachl and y-GCSmRNA in the lung tissues of two groups of patients. SPSS17.0statistical software was used for statistical analysis of experimental data.
     Results
     1. Lung tissue pathological slices by HE staining under the optical microscope:In COPD group, alveolar walls become thinner, and appeared different degree of fracture, some parts of the fractured alveolar fused. The structure of alveolar was normal in the control group.
     2. In situ hybridization results:The expressions of Nrf2, Bachl and y-GCS mRNA were mainly in alveolar epithelial cells and inflammatory cells. In the lung tissue of patients in COPD group, Nrf2and Bachl mRNA were strong positively expressed, γ-GCSmRNA was positively expressed.Compared with the control group,the difference was statistically significant (P<0.05).
     3. Immunohistochemical results:The expressions of Nrf2, Bach1, γ-GCS proteins were mainly in alveolar epithelial cells and inflammatory cells.In the COPD group, Nrf2, Bach1, γ-GCS proteins were strong positively expressed.Compared with the control group, the difference was statistically significant (P<0.05).
     4. Correlation analysis in the COPD group:The expressions of Nrf2,y-GCS proteins and FEV1/FVC(%), FEV1(%) were positively correlated (P<0.01). The expression of Bachl protein and FEV1/FVC(%), FEV1(%) were negatively correlated (P<0.01). The expression of Nrf2protein and the expressions of y-GCS mRNA, γ-GCS protein were positively correlated (P<0.01), The expression of Bachl protein and the expressions of γ-GCS mRNA, γ-GCS protein were negatively correlated (P<0.01).
     Conclusions
     1.In the lung tissue of patients with COPD, the expressions of Nrf2, Bachl, y-GCS mRNA and its protein were enhanced.The result showed that all of them played an important role in the oxidation/antioxidation system of COPD.
     2. The correlation analysis results of Nrf2, Bachl, γ-GCS proteins and FEV1/FVC (%),FEV1(%),which were both the key indicators of diagnosis and evaluation of COPD, further confirmed that all of them may have a close relation to COPD.
     3.In the process of the development of COPD, Nrf2may positively regulate the expression of GCS gene, Bachl may negatively regulate the expression of GCS gene. The result provided a new theoretical basis of regulatory mechanism for γ-GCS.
引文
[1]中华医学会呼吸病学分会慢性阻塞性肺疾病学组.慢性阻塞性肺疾病诊治指南(2007年修订版)[J].中华结核和呼吸杂志,2007,30(1):8-17
    [2]Yoshida T, Tuder RM. Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease[J]. Physiol Rev,2007,87(3):1047-1082
    [3]MacNeeW. Oxidants/Antioxidants COPD. Chest,2000,117:303-317
    [4]Rahman I, MacNee W. Lung glutathione and oxidative stress:implications in cigarette smoke-induced airway disease[J]. Am J Physiol,1999,277(6 Pt 1):L1067-1088
    [5]Li XY, Donaldson K, Rahman I, et at. An investigation of the role of glutathione in increased epithelial permeability induced by cigarette smoke in vivo and in vitro[J]. Am J Respir Crit Care Med,1994,149(6):1518-1525
    [6]Jardine H, MacNee W, Donaldson K, et al.Molecular mechanism of transforming growth factor(TGF)-betal-induced glutathione depletion in alveolar epithelial cells Involvement of AP-1/ARE and Fra-1[J]. J Biol Chem,2002,277(24):21158-21166
    [7]Ray S, Watkins DN, Misso NL,et al. Oxidant stress induces gamma-glutamylcysteine synthetase and glutathione synthesis in human bronchial epithelial NCI-H292 cells[J]. Clin Exp Allergy,2002,32(4):571-577
    [8]Rahman I, Smith C A,Antonicelli F, et al. Characterisation of gamma-glutamylcysteine synthetase-heavy subunit promoter:a critical role for AP-1[J]. FEBS Lett,1998,427(1): 129-133
    [9]Janowiak B E, Hayward M A, Peterson F C, et al. Gamma-glutamylcysteine synthetase-glutathione synthetase:domain structure and identification of residues important in substrate and glutathione binding[J]. Biochemistry,2006,45(35):10461-10473
    [10]IizukaT, IshiiY, ItohK, et al.Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema[J]. Genes Cells,2005,10(12):1113-25
    [11]Tirumalai Rangasamy, Jia Guo et al. Disruption of Nrf2 enhances susceptibility to severe aieway inflammation and asthma in mice[J]. J Exp Med,2005,202:47-59
    [12]Motohashi H, O'Connor T, Katsuoka F, et al. Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors[J]. Gene,2002, 294(1-2):1-12
    [13]Jian Z, Li K, Liu L, et al. Heme Oxygenase-1 Protects Human Melanocytes from H(2)O(2)-Induced Oxidative Stress via the Nrf2-ARE Pathway[J]. J Invest Dermatol,2011 Mar 17.[Epub ahead of print]
    [14]Jung KA, Kwak MK. The Nrf2 system a potential target for the development of indirect antioxidants[J]. Molecules,2010,15(10):7266-7291
    [15]Jeyapaul J, Jaiswal A K. Nrf2 and c-Jun regulation of antioxidant response element(ARE)-mediated expression and induction of gamma-glutamylcysteine synthetase heavy subunit gene[J]. Biochem Pharmacol,2000,59(11):1433-1439
    [16]Dhakshinamoorthy S, JainAK, BloomDA, et al. Bachl competes with Nrf2 leading to negative regulation of the antioxidant response element (ARE)-mediated NAD(P)H:quinone oxidoreductase 1 gene expression and induction in response to antioxidants[J]. J Biol Chem, 2005,280(17):16891-16900
    [17]Sun J, Hoshino H, Takaku K, et al. Hemoprotein Bachl regulates enhancer availability of heme oxygenase-1 gene[J]. Embo J,2002,21(19):5216-5224
    [18]王梅芳,戴爱国,胡瑞成,等.转录因子Nrf2/Bachl及MAPK激酶调控γ-GCS在大鼠慢性阻塞性肺疾病中的作用[J].中国病理生理杂志,2009,25(5):959-964
    [19]Reichard JF, MotzGT, PugaA. Hemeoxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACHI[J].Nucleic Acids Res,2007,35(21):7074-7086
    [20]林书典,戴爱国,徐平.慢性阻塞性肺疾病患者γ谷氨酰半胱氨酸合成酶活性及表达的变化[J].中华结核和呼吸杂志,2005,28(2):97-101
    [21]陈林,戴爱国,胡瑞成.核因子相关因子2及其蛋白激酶与γ谷氨酰半胱氨酸合成酶在慢性阻塞性肺疾病大鼠肺组织中的表达[J].中华结核和呼吸杂志,2006,29:487-488
    [22]Rangasamy T, Misra V, Zhen L, et al. CigaretteSmoke-Induced Emphysema in A/J mice is Associated with Pulmonary Oxidative Stress,Apoptosis of Lung Cells, and Global Alterations in Gene Expression[J]. Am J Physiol Lung Cell MolPhysiol,2009, Apr 10
    [23]KASIELSKI M, NOWAK D. Long-term administration of N-acetylcysteine decreases hydrogen peroxide exhalation in subjects with chronic obstructive pulmonary disease[J]. Respir Med,2001,95:448-456
    [24]李斌晨,吴明营,等.还原型谷胱甘肽临床研究及应用进展[J].中国医疗前沿,2008,3(6):9-10
    [25]徐娟,韩浩,等.还原型谷胱甘肽对慢性阻塞性肺疾病急性加重期患者氧化应激的影响[J].国际检验医学杂志,2011,4(32):565-566
    [26]Biswas S, Chida AS, Rahmanl. Redox modifications of protein-thiols:emerging roles in cell signaling[J]. Biochem Pharmacol,2006,71(5):551-564
    [27]赵兵,李海明,张华茹.还原型谷胱甘肽对慢性阻塞性肺疾病炎性因子影响[J].中国医疗前沿,2010,05(23):60-61
    [28]MacNee W. Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease[J]. ProcAm ThoracSoc,2005,2(1):50-60
    [29]Rahman I, MacNee W. Lung glutathione and oxidative stress:implications in cigarette smoke-induced airway disease[J]. Am J Physiol,1999,277(6 Pt 1):L1067-1088
    [30]江刚.香烟烟雾对大鼠气道上皮细胞γ-谷氨酰半胱氨酸合成酶表达的调控作用[J].中华结核和呼吸杂志,2007,30(9):710-712
    [31]林书典,周巧玲,戴爱国.GSH在COPD大鼠肺内合成机制和作用的研究[J].中国热带医学,2007,7(7):1071-1120
    [32]Moi P, Chan K, Asunis I, et al. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region[J]. Proc Natl Acad Sci USA,1994,91(21):9926-30
    [33]Motohashi H, Yamamoto M. Nrf2-Keapl defines a physiologically important stress response mechanism[J]. Trends Mol Med,2004,10(11):549-557
    [34]Hiroshi Suzuki, et al. Heme regulates gene expression by triggering Crml-dependent nuclear export of Bach 1 [J]. The EMBO Journal,2004,23(5):2544-2553
    [35]Ogawa K, et al. Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bachl[J]. The EMBO Journal,2001,20(1):2835-2843
    [36]Suzuki H, et al.Cadmium induces nuclear export of Bachl.a transcriptional repressor of heme oxygenase-1 gene[J]. J Biol Chem,2003,278(49):49246-49253
    [37]Kanezaki R, et al. Transcription factor BACH1 is recruited to the nucleus by its novel alternative spliced isoform [J]. J Biol Chem,2001,276(10):7278-7284
    [38]Oyake T, et al.Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site[J]. Mol Cell Biol,1996,16(11):6083-6095
    [39]Suzuki H, et al. Heme regulates gene expression by triggering Crm1-dependent nuclear export of Bach1[J]. Embo J,2004,23(13):2544-2553
    [40]Malhotra D, et al. Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator DJ-1[J]. Am. J. Respir Crit Care Med.2008, 178(6):592-604
    [41]Singh, A. et al. NRF2-dependent sulfiredoxin-1 expression protects against cigarette smoke-induced oxidative stress in lungs[J]. Free Radic. Biol. Med.2009,46(3):376-386
    [42]Suzuki, M. et al. Down-regulated NF-E2-related factor 2 in pulmonary macrophages of aged smokers and patients with chronic obstructive pulmonary disease[J]. Am. J. Respir. Cell Mol. Biol.2008,39(6):673-682
    [43]Goven D, et al. Altered NRF2/Keapl-Bachl equilibrium in pulmonary emphysema[J]. Thorax,2008,63(10):916-924
    [44]申严,戴爱国γ-GCS的信号传导与慢性阻塞性肺疾病[J].国外医学内科学分册,2004,31(6):260-263
    [45]林书典,戴爱国γ-GCS和慢性阻塞性肺疾病[J].国外医学呼吸系统分册,2004,24(6):391-394
    [46]Wild A C, Gipp JJ, Mulcahy RT. Overlapping antioxidant response element and PMA response element sequences mediate basal and β-naphthoflavone-induced expression of the humany-glutamylcysteine synthetase catalytic subunit gene[J]. J Biochem,1998, 332:373-381
    [47]Adair-Kirk TL, Atkinson JJ, et al. Distal airways in mice exposed to cigarette smoke:Nrf2-regulated genes are increased in Clara cells [J]. Am J Respir Cell Mol Biol, 2008,39(4):400-411
    [48]张伟,张心月,等.中医药对各型慢性阻塞性肺疾病大鼠核因子κB和γ-谷氨酰半胱 氨酸合成酶表达的影响[J].中国中西药结合杂志,2007,27(5):426-430
    [49]Harju T, Kaarteenaho-Wiik R, et al. Diminsihed immunoreactivity of gamma-glutamylcysteine synthetase in the airways of smokers'lung [J]. Am J Respir Crit Care Med, 2002,166(5):754-759
    [50]胡瑞成,等.谷氨酰半胱氨酸合成酶调节基因多态性与慢性阻塞性肺疾病易感性的关系[J].中华结核和呼吸杂志,2006,29(2):100-103
    [51]He Z, et al. Suppression of oxidant-induced glutathione synthesis by erythromycin in human bronchial epithelial cells [J]. Respiration,2008,75(2):202-209
    [52]Reddy NM, Kleeberger SR, et al. Genetic dissection of the Nrf2 dependent redox signaling-regulated transcriptional programs of cell proliferation and cytoprotection[J]. Physiol Genomics,2007,32(1):74-81
    [53]Sykiotis, G.P. and Bohmann, D. Stress-activated cap'n'collar transcription factors in aging and human disease[J]. Sci. Signal.2010,3(112):1-45
    [54]高军丽,戴爱国.Bachl与Nrf2调控γ-谷氨酰半胱氨酸合成酶对大鼠慢性阻塞性肺疾病的作用[J].中国生物化学与分子生物学报,2008,4(7):649-655
    [55]王梅芳.Nrf2/Bachl及MAPK调节γ-谷氨酰半胱氨酸合成酶在慢性阻塞性肺疾病中的作用[D].南华大学,2009
    [1]中华医学会呼吸病学分会慢性阻塞性肺疾病学组.慢性阻塞性肺疾病诊治指南(2007年修订版)[J].中华结核和呼吸杂志,2007,30(1):8-17
    [2]Rabe KF, Hurd S, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease:GOLD executive summary[J]. Am J Respir Crit Care Med 2007,176:532-555
    [3]Rennard SI, et al. COPD:the dangerous underestimate of 15%[J].Lancet 2006, 367:1216-1219
    [4]Lopez AD, Shibuya K, et al. Chronic obstructive pulmonary disease:current burden and future projections[J]. Eur Respir,2006,27:397-412
    [5]Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030[J]. PLoS Med,2006,3:e442
    [6]Zhong N, Wang C, et al. Prevalence of chronic obstructive pulmonary disease in China:a large, population-based survey [J]. Am J Respir CritCare Med,2007,176(8):753-760
    [7]Fang XC, Wang XD, et al. COPD in China:The Burden and Importance of Proper Management[J]. Chest,2011,139:920-929
    [8]Yoshida T, Tuder RM. Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease[J]. Physiol Rev,2007,87(3):1047-1082
    [9]Sand ford A J, Chagani T, Weir TD, et a.l Susceptibility genes for rapid deline of lung function in the lung health study[J]. AM J Respir Cric Care Med,2001,163(2):469-473
    [10]Lomas DA, Mahadeva R. Alphal antitrypsin polymerisation and the serpinopathies: pathobiology and prospects for treatment[J]. J Clin Invest,2002,110:1585-1590
    [11]Lim S, Roche N, Oliver BG, et al. Balance of matrix metalloprotease-9 and tissue inhibitor of metalloprotease-1 from alveolar macrophages in cigarette smokers[J]. Regulation by interleukin-10. Am J Respir Crit Care Med.2000,162:1355-1360
    [12]Ohbayash iH. Matrix Metalloproteinases in Lung Diseases[J]. Curr Protein Pept Sci.2002, 3(4):409-421
    [13]Terttu, Vuokko L Kinnula. Glutathione-S-transferases in lung and sputum specimens, effects of smoking and COPD severity[J]. Respiratory Research,2008,9(13):80
    [14]曹登瑞,潘灵敏,丁翠敏.慢性阻塞性肺疾病患者诱导痰基质金属蛋白酶及其抑制剂与气道炎症及气道重塑[J].临床肺科杂志,2009,1(42):184-185
    [15]Demedts IK, Morel-Montero A, Lebecque S, et al. Elevated MMP-12 protein levels in induced sputum from patients with COPD[J]. Thorax,2006,61:196-201
    [16]Babusyte A, Stravinskaite K, Jeroch J, et al. Patterns of airway inflammation and MMP-12 expression in smokers and ex-smokers with COPD[J]. Respir Res,2007,8:81
    [17]Baraldo S, Bazzan E, Zanin ME, et al. Matrix metalloproteinase-2 protein in lung periphery is related to CODP progression[J]. Chest,2007,132:1733-1740
    [18]余国辉,陈敏.慢性阻塞性肺疾病发病机制的发展状况[J].临床肺科杂志,2010,15:72-74
    [19]Barnes PJ. Genetics and pulmonary medicine 9 Molecular genetics of chronic obstructive pulmonary disease[J]. Thorax,1999,54(3):245-252
    [20]揭志军,杨文兰,蔡映云.α1-抗胰蛋白酶临床应用的前景[J].国外医学呼吸系统分册,1999,19(4):192-225
    [21]Mulgrew AT, Taggart CC, McElvaney NG. Alpha-1-antitrypsin deficiency:current concepts[J]. Lung,2007,185:191-201
    [22]Koyama H, Geddes DM. Gene, oxidative stress and the risk of chronic obstructive pulmonary disease[J]. Thorax,1998,53(Suppl2)10-14
    [23]Corbel M, Langente V, Boichot E. Pulmonary inflammation and tissue remodeling:role of metalloproteinase,2003,234(3):456-233
    [24]Xin XF, Zhao M, Li ZL, et al. Metalloproteinase-9/tissue inhibitor of etalopro-teinase-1 in induced sputum in patients with asthma and chronicobstructive pulmonary disease and their relationship to airway inflammation and airflow limitation[J]. Zhonghua Jie He He Hu Xi Za Zhi,2007,30:192-196
    [25]刘忠,等.慢性阻塞性肺疾病发病机制的新认识.临床肺科杂志[J].2007,12(9):963-964
    [26]王翠茹,李玲,等.慢性阻塞性肺疾病发病机制的研究进展[J].当代医学,2011,17(32):19-20
    [27]Hogg JC, Chu F, Utokaparch S, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease[J]. N Engl J Med,2004,350(26):2645-2653
    [28]黄惠娟,钟小宁.慢性阻塞性肺疾病与免疫[J].细胞与分子免疫学杂志,2010,26(3):299-301
    [29]Rennard SI. Inflammation in COPD:a link to systemic comorbidities[J]. Eur Respir Rev, 2007,16(105):91-97
    [30]Tsoumakidou M, Demedts IK, Brusselle GG, et al. Dendritic Cells in Chronic Obstructive Pulmonary Disease.New Players in an Old Game[J]. Am J Respir Crit Care Med,2008,177: 1180-1186
    [31]Tsoumakidou M, Bouloukaki I, Koutala H, et al. Decreased sputum mature dendritic cells in healthy smokers and patients with chronic obstructive pulmonary disease[J]. Int Arch Allergy Immunol,2009,150(4):389-397
    [32]Matzinger P. The danger model:a renewed sense of self. Science,2002,29:301-305
    [33]Lams BE, Sousa AR, Rees PJ, et al. Immunopathology of the small-airway submucosa in smokers with and without chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med,1998,158 (5):1518-1523
    [34]Lams BE, Sousa AR, Rees PJ, et al. Subepithelial immunopathology of the large airways in smokers with and without chronic obstructive pulmonary disease[J]. Eur Respir J,2000, 15(3):512-516
    [35]Saetta M, Baraldo S, Corbino L, et al. CD8+ ve cells in the lungs of smokers with chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med,1999,160(2):711-717
    [36]Gadgil A, Zhu XH, Sciurba FC,et al. Altered T-cellphenotypes in chronic obstructive pulmonary disease[J]. Proceedings of the ATS,2006,3(6):487-488
    [37]Smyth L JC, Starkey C, Vestbo J, et al. CD4+ regulatory cells in COPD patients[J]. Chest, 2007,132(1):156-163
    [38]Gosman MM E, W illemse BWM, Jansen DF, et al. Increased number of B-cells in bronchial biopsies in COPD[J]. EurRespir J,2006,27(1):60-64
    [39]Van der Strate BW A, Postma DS, Brandsma C, et al. Cigarette smoke-induced emphysema: a role for the B cell? [J]. Am J Respir Crit Care Med,2006,173(7):751-758
    [40]Feghali-Bostwick CA, Gadgil AS, Otterbein LE, et al. Autoantibodies in patients with chronic obstructive pulmonary disease[J]. Am J Respir Crit CareMed,2008,177(2): 156-163
    [41]Pinto-Plata V M, Livnat G, Girish M, et al. Systemic cytokines, clinical and physiological changes in patients hospitalized for exacerbation of COPD[J]. Chest,2007,131(1):37-43
    [42]Walter R E, Wilk J B, Larson M G, et al. Systemic inflammation and copd:the framingham heart study[J]. Chest,2008,133(1):19-25
    [43]Bhowmik A, Seemungal TA, Sapsford RJ, et al. Relation of sputum inflammatory markers to symptoms and lung function changes in COPD exacerbations[J]. Thorax,2000,55(2): 114-120
    [44]Noguera A, Batle S, Miralles C, et al. Enhanced neutrophic response in chronic obstructive pulmonary disease[J].Thorax,2001,56(6):432-437
    [45]Profita M, Cliappara G, Alirabella F, et al. Effect of clomilast on TNF-a, IL-8 and GM-CSF release by airway cells of patients with COPD[J]. Thorax,2003,58(7):573-579
    [46]Higashimoto Y, Elliott WM,Behzad AR, et al. Inflammatory mediator RNA expression by adenovirus E1A-transfected bronchial epithelial cells[J]. Am J Respir Crit Care Med,2002, 166(2):200-207
    [47]Aaron SD, Angel JB,Lunau M,et al.Granulocyte inflammatory markers and Airway infection during acute exacerbation of chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med,2001,163(2):349-355
    [48]Crooks SW, Bayley DL, Hill SL, et al.Bronchial inflammaition in acute bacterial exacerbations of chronic bronchitis:the role of leukotriene B4[J]. Eur Respir J,2000, 15(3):274-280
    [49]Biernacki WA, kharitonov SA, Barnes PJ. Increased leukotriene B4 and-8isoprostane in exhaled breath condensate of patients with acute exacerbation of COPD[J]. Thorax,2003, 58(4):294-298
    [50]丁艳苓,姚婉贞.白三烯B4在慢性阻塞性肺疾病中的变化与氨茶碱对其的影响[J].北京大学学报(医学版),2005,37(4):393-397
    [51]叶关胜.血清超敏C反应蛋白在慢性阻塞性肺病急性加重期患者治疗中的价值探讨[J].中国危重症医学杂志,2010,3(1):29-32
    [52]史俊敏,吴晓勇.C反应蛋白在慢性阻塞性肺疾病患者中的应用[J].检验医学与临床,2005,2(4):176-177
    [53]牟小芬,田亚军.探讨IL-8、IL-6及C反应蛋白对慢性阻塞性肺疾病中气道炎症的影响[J].中华医院感染学杂志,2005,15(6):615-617
    [54]Nowak D, Kalucka S, Bialasiewicz P. Exhalation of H2O2 and thiobarbituric acid reactive substances (TBARs) by healthy subjects[J]. Free Radic Biol Med,2001,30(2):178-86
    [55]Roberts ES, Richards JH, Jaskot R, et al. Oxidativ estress mediates air Pollution partiele-induced acute lung injury and molecular pathology[J]. Inhal Toxicol,2003,15(13): 1327-1346
    [56]MacNee W. Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease[J]. Proc Am Thorac soc,2005,2:50-660
    [57]Thompson A B, Bohling T, Heires A, et al. Lower respiratory tract iron burden is increased in association with cigarette smoking[J]. Lab Clin Med,1991,117(6):494-499
    [58]李莉,阮英茆,张旭晨,等.一氧化氮合酶在吸烟导致慢性阻塞性肺疾病中作用机制的初步观察[J].中国老年学杂志,2001,21(3):184-186
    [59]Halliwell B. Antioxidants in human health and disease[J]. Ann Rev Nutr,1996,16:33-50
    [60]Assaad AH, Brallard ET, Sebastian KD, et al.Effect of super oxide dismutase on a rabbit model of chronic allergic asthma[J]. Ann Allergy Asthma Immuno,1998,80:215-224
    [61]Rahman I,Mulier B, Gilmour PS, et al. Oxidant-mediated lung epithe lial cell to lerance:the role of intracellular glutathinone and nuclear factor-kappa B[J]. Biochem Pharma,2001, 62(6):787-794
    [62]Hoshino S, Yoshida M, Inoue K, et al. Cigarette smoke extract induces endothelial cell injury via JNK pathway. Biochem [J]. Biophys Res Commun,2005,329(1):58-63
    [63]Macnee W. Oxidants/antioxidants and chronic obstructive pulmonary disease:pathogenesis to therapy[J].Novartis Found Symp,2001,234:169-185
    [64]刘慧.呼吸系统氧化与抗氧化作用机制的研究进展[J].中国现代医学杂志,2008,18(8):1075
    [65]Jimenez LA,Thompson J, Brown DA, et al. Activation ofNF-kappa B by PM(10)occurs via an iron-mediatedmechanism in the absence of IkappaB degradation[J].Toxicol ApplPharmacol,2000,166(2):101-110
    [66]马利军,吴纪珍,牛红丽,等.老年COPD患者急性发作期与缓解期细胞因子及SOD、MDA变化[J].中国老年学杂志,2003,23(3):191
    [67]Woodruff PG, Koth LL, Yang YH, et a.l A distinctive alveolar macrophage aetivation state induced by cigarette smoking[J]. Am J RespirCritCareMed,2005,172(11):1383-1392
    [68]李莉,阮英茆,张旭晨,等.一氧化氮合酶在吸烟导致慢性阻塞性肺疾病中作用机制的初步观察[J].中国老年学杂志,2001,21(3):184-186
    [69]Taggart C, Cervantes-Laurean D, Kim G, et al. Oxidation of either methionine 351 ormethionine 358 in alpha-antitypsin causes loss of anti-neutrophil elastase activity[J].J Biol Chem,2000,275(35):27258-27265
    [70]李俊岭,许西琳.氧化应激与慢性阻塞性肺疾病,8-差向前列腺素与IL-8测定在COPD发病机制相关性研究[J].国际呼吸杂志,2007,27(9):692-695
    [71]Koechlin C, Couillard A, Simar D, et al. Does oxidative stress alter quadriceps endurance in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med,2004,169(9): 1022-1027
    [72]井军虎,李立宇.氧化损伤在慢性阻塞性肺疾病中的作用机制研究进展[J].实用心脑肺血管杂志,2010,18(12):1912-1914
    [73]Sethi S. Bacterial Infection and the Pathogenesis of COPD[J]. Chest,2000,117:286-291
    [74]Ogawa E, Elliott WM, Hughes F, et al. Latent adenovirai infection induces production of growth factors relevant to airway remodeling in COPD[J]. Am J Physiol Lung Cell Mol Physiol,2004,286(1):189-197
    [75]Moi P, Chan K, Asunis I, et al. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zip-per transcriptional activator that binds to the tandem NF-E2/API repeat of the β-globin locus control region[J]. Proc Natl Acad Sci USA,1994,91(21):9926-9930
    [76]Zhang DD, Lo SC, Cross JV, et al. Keapl is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex[J]. Mol Cell Biol,2004,24(24):10941-10953
    [77]Nioi P, Nguyen T, Sherratt PJ, et al.The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation[J].Mol Cell Biol,2005,25(24):10895-10906
    [78]VenugoPal R, Jaiswal AK. Nrfl and Nrf2 Positively and c-Fos and Fral negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreduetase 1 gene[J]. Proc Natl Acad Sci USA,1996,93(25):14960-14965
    [79]Kobayashi M, Yamamoto M.Nrf2-Keapl regulation of cellular defense mechanisms against electrophiles and reactive oxygen species[J].Adv Enzyme Regul,2006,46:113-140
    [80]Igarashi K, Sun J. The heme-bachl pathway in the regulation of oxidative stress response and erythroid differentiation[J].Antioxid Redox Signal,2006,8(1-2):107-118
    [81]Dhakshinamoorthy S, JainAK, BloomDA, et al. Bachl competes with Nrf2 leading to negative regulation of the antioxidant response element (ARE)-mediated NAD(P)H: quinone oxidoreductase 1 gene expression and induction in response to antioxidants[J]. J Biol Chem,2005,280(17):16891-16900
    [82]Hiroshi Suzuki, et al. Heme regulates gene expression by triggering Crml-dependent nuclear export of Bach1 [J]. The EMBO Journal,004,23(5):2544-2553
    [83]Ogawa K, et al. Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1[J].The EMBO Journal,2001,20(1):2835-2843
    [84]Adair-Kirk TL, Atkinson JJ, et al.Distal airways in mice esposed to cigarette smoke:Nrf2-regulated genes are increased in Clara cells[J].American journal of respiratory cell and molecular biology,2008,39(4):400-411
    [85]Cho HY, Jedlicka AE, et al.Role of NRF2 in protection against hyperoxic lung injury in mice[J].American journal of respiratory cell and molecular biology,2002,26:175-182
    [86]Rajesh K, et al. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis[J].The Journal of Clinical Investigation,2006,116:984-995
    [87]Jin W, et al.Influence of Nrf2 genotype on pulmonary NF-kappa B activity and inflammatory response after traumatic brain injury[J]. Annals of clinical and laboratory science,2008,38(3):221-227
    [88]Li YJ, et al.Disruption of Nrf2 enhances susceptibility to airway in flammatory responses induced by low-dose diesel exhaust particles in mice[J].Clinical immunology,2008, 128(3):366-373
    [89]IizukaT, Ishii Y, Itoh K, et al.Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema[J].Genes Cells,2005 Dec,10(12):1113-25
    [90]Tirumalai Rangasamy, Jia Guo et al. Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice [J] J ExP Med,2005,202:47-59
    [91]Tirumalai Rangasamy, et al.Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice[J].J clin Invest 2004,114:1248-59
    [92]Yukiolshii, et al.Transcription Factor Nrf2 Plays a Pivotal Role in Protection against Elastase-Induced Pulmonary Inflammation and EmPhysema[J].The Journal of Immunology, 2005,175:6968-6975
    [93]Malhotra D, et al. Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator DJ-1[J]. Am. J. Respir. Crit. Care Med. 2008,178(6):592-604
    [94]Singh A, et al. NRF2-dependent sulfiredoxin-1 expression protects against cigarette smoke-induced oxidative stress in lungs[J].Free Radic. Biol. Med.2009,46(3):376-386
    [95]Suzuki, M. et al. Down-regulated NF-E2-related factor 2 in pulmonary macrophages of aged smokers and patients with chronic obstructive pulmonary disease[J]. Am. J. Respir. Cell Mol. Biol,2008,39(6):673-682
    [96]Goven D, et al. Altered NRF2/Keapl-Bachl equilibrium in pulmonary emphysema[J]. Thorax,2008,63(10):916-924
    [97]陈林,戴爱国,胡瑞成.核因子相关因子2及其蛋白激酶与γ谷氨酰半胱氨酸合成酶在慢性阻塞性肺疾病大鼠肺组织中的表达[J].中华结核和呼吸杂志,2006,29:487-488
    [98]Sykiotis G.P. and Bohmann D. Stress-activated cap'n'collar transcription factors in aging and human disease[J]. Sci. Signal,2010,3(112):1-45
    [99]Reichard JF, MotzGT, PugaA. Hemeoxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACHI[J]. Nucleic Acids Res,2007,35(21):7074-7086
    [100]Reddy NM, Kleeberger SR, et al. Genetic dissection of the Nrf2 dependent redox signaling-regulated transcriptional programs of cell proliferation and cytoprotection[J]. Physiol Genomics,2007,32(1):74-81
    [101]陈林,戴爱国,胡瑞成.核因子相关因子2及其蛋白激酶与γ谷氨酰半胱氨酸合成酶 在慢性阻塞性肺疾病大鼠肺组织中的表达[J].中华结核和呼吸杂志,2006,29:487-488
    [102]Suzuki H, et al.Cadmium induces nuclear export of Bach1,a transcriptional repressor of heme oxygenase-1 gene[J].J Biol Chem,2003,278(49):49246-49253
    [103]Kanezaki R, et al.Transcription factor BACH1 is recruited to the nucleus by its novel alternative spliced isoform [J].J Biol Chem,2001,276(10):7278-7284
    [104]Oyake T, et al. Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site[J].Mol Cell Bio,1996,16(11):6083-6095
    [105]Suzuki H, et al.Heme regulates gene expression by triggering Crml-dependent nuclear export of Bachl [J].Embo J,2004,23(13):2544-2553
    [106]Sun J, Hoshino H, Takaku K, et al. Hemoprotein Bachl regulates enhancer availability of heme oxygenase-1 gene[J]. Embo J,2002,21(19):5216-5224
    [107]王梅芳,戴爱国,胡瑞成,等.转录因子Nrf2/Bachl及MAPK激酶调控γ-GCS在大鼠慢性阻塞性肺疾病中的作用[J].中国病理生理杂志,2009,25(5):959-964

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700