用户名: 密码: 验证码:
副构架式径向转向架连接杆载荷谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
社会经济的发展对铁路货运的速度和运量都提出了越来越高的要求。在这种形势下,铁路货运向快速和重载方向发展。随着运量和轴重的增加,轮轨磨耗也随之加剧。因此,减小轮轨间的磨耗,改善货物列车曲线通过性能是亟待解决的课题。重载铁路货车采用径向转向架是降低轮轨磨耗的有效技术措施。鉴于此,我国在引进南非成熟的Scheffel转向架技术基础上,成功研制了转K7型副构架式自导向径向转向架,并在大秦线得到了小批量运用。
     随着列车的提速和车辆轴重的增加,车辆结构部件的受载情况变得更加恶劣,导致车辆结构部件的某些部位产生较大的动态变形。在随机应力的长期作用下,承载结构从应变或应力较高的局部开始形成损伤并逐渐积累,当损伤达到一定程度,就会导致疲劳破坏,严重危及行车安全。副构架作为转K7型转向架的核心组件,其疲劳可靠性问题应受到高度关注。其中,除轴箱载荷外,副构架还将承受来自连接杆传递的前后轮对间水平相互作用,连接杆载荷谱是副构架结构疲劳设计及强度分析的重要输入数据。编制载荷谱是进行疲劳试验,疲劳寿命估计,疲劳强度评定的先决条件。
     本文利用多体动力学软件SIMPACK建立了配备转K7型转向架的C80BF型敞车的动力学模型。对车辆模型进行了动力学性能分析,根据车辆系统动力学标准GB/T5599-1985,验证各项动力学性能指标符合标准。以动力学模型为基础,根据大秦铁路的线路特点,采用数值仿真的方法,编制了转K7型转向架连接杆的载荷谱,分析了曲线半径、欠超高和车辆轴重对连接杆的载荷均值和载荷幅值的影响。
     计算结果表明:对于全程往返的连接杆载荷谱,其载荷均值最大值约为18kN,等于重车单程下连接杆的载荷均值的最大值;最大载荷幅值约为45kN,与重车单程下连接杆的最大载荷幅值相同。连接杆载荷循环次数在零均值附近且幅值范围在3kN到6kN内最多,随着载荷均值和幅值的增大,循环数大幅减少。在分析各参数对连接杆载荷均值和载荷幅值的影响中发现,连接杆载荷的均值和幅值随曲线半径的增大而减小,在小半径区域范围内,重车的连接杆载荷均值随着曲线半径的增大迅速减小;连接杆载荷的均值和幅值随曲线欠超高的增高而增大,相比空车,重车连接杆的载荷均值和幅值增幅较大;连接杆载荷均值随轴重的增加而缓慢增大,连接杆载荷幅值随轴重增加而增大。
Socio-economic development makes ever-increasing demands on the speed and volume of railway freight. In this situation, Chinese railway freight develops towards high speed and heavy haul. With the increase in traffic and axle load, wheel-rail wear also will be intensified.
     Therefore, reducing wheel-rail wear and to improve curve-passing performance of freight trains are problems to be solved. Utilizing radial bogie for heavy haul railway truck is an effective technical measure to reduce wheel and rail wear. In view of this, basing on the introduction of South Africa's Scheffel Bogie on behalf of the mature bogie technology, China successfully developed the ZK7sub-framed self-steering radial bogie, which is applied in the Datong-Qinhuangdao railway line with small quantity.
     With the increase in the speed and the axle load of train, the overload situation of the structural member of rolling stock becomes worse, resulting in a larger dynamic deformation in certain parts of the structural member. In the long-term effects of the random stress, the load-bearing structure began to accumulate damage from the part with higher stress and strain.
     When the damage reaches a certain level, it will lead to fatigue failure, seriously endangering running safety of rolling stock. The fatigue reliability issues of sub-frame structure as core component of the ZK7bogie should be highly concerned. In addition to the axle box load, the sub-frame structure will withstand the horizontal-plane interaction passed by the link bars between the front and rear wheelset. The load spectrum of the link bar is important input data for fatigue design and strength analysis of the sub-frame structure. The preparation of the load spectrum is a prerequisite for fatigue tests, fatigue life estimation and fatigue strength assessment.
     In this paper, dynamics model of CsoBF type gondola equipped with the ZK7type bogie was established in the multi-body dynamics software SIMPACK. Then, we had a dynamic performance analysis on the wagon model to verify that the dynamics performance indicators of the wagon model in line with vehicle system dynamics standard according to GB/T5599-1985.On the base of the wagon model, the load spectrum of the link bar of ZK7bogie was prepared by the method of numerical simulation, according to the features of the Datong-Qinhuangdao railway line. At last, we had an Analysis of the effect of curve radius, off-Balance Super elevation and axle load on mean load and load amplitude of the link bar.
     The result is as follows. From the load spectrum of the link bar for round-trip, we can find that the maximum mean load is about18kN, which is equal to the maximum mean load of the load spectrum of the link bar for, one-way in condition of loaded wagon. The maximum load amplitude of the load spectrum for round-trip is about45kN, which is equal to the maximum load of the load spectrum for, one-way in condition of loaded wagon. The number of load cycles is up to the maximum in the vicinity of the zero-mean and amplitude range up to3kN to6kN.As the load mean value and the amplitude increases, the number of load cycles substantially reduced. In the analysis of various parameters on the mean load and load amplitude of the link bar, it indicates that the mean load and the load amplitude decrease with the increase of the radius of the curve. Within small radius of the curve, the mean load of the link bar in loaded wagon condition decreases rapidly with the increase of the radius of the curve. The mean load and the load amplitude increase with the increase of off-Balance Super elevation. Compared to results in empty car situation mean load and load amplitude of link bar increased considerably. The mean load increases slowly with the increase in axle load and the load amplitude increases with the increase in axle load.
引文
[1]李芾,傅茂海,黄运华.径向转向架机理及其动力学特性研究.中国铁道科学,2002,23(5):46-52
    [2]李亨利,李芾,傅茂海.货车径向转向架原理及其运用.铁道机车车辆,2005,25(4):13-17
    [3]李亨利.货车径向转向架动力学特性及轮轨磨耗研究.西南交通大学硕士学位论文,2006.
    [4]卜继玲,李芾.重载列车车辆轮轨作用研究.中国铁道科学,2005,9(5):52-56
    [5]傅茂海,严隽耄.低动力重载货车转向架选型原则及设计优化.西南交通大学学报,1995,30(1):25-30
    [6]王开文,傅茂海.我国重载货车转向架的述评和展望.铁道学报,1994,(16),(Suppl):112-119
    [7]王璞.径向转向架介绍.铁道车辆,2002,40(4):25-26
    [8]张显锋,王璞.米轨谢菲尔转向架的研制.机车车辆工艺,2004,(3):28-30
    [9]傅茂海,李芾.摆式客车径向转向架机构及其动力学性能研究.铁道车辆,2002,40(3):19-22
    [10]刘宏友,李莉.杠杆式迫导向转向架动力学性能研究.中国铁道科学.2002,(6):37-44
    [11]于慧娟.国外二轴货车径向转向架的发展.国外铁道车辆,1999,(3):9-13
    [12]J. R. Mitchell.对角斜撑转向架.吴光勇译.中国铁道科学,1982,(01):50-62
    [13]沈钢.铁道车辆径向转向架的径向能力评价准.同济大学学报,2004,32(12):1614-1617
    [14]R.Joly.常规转向架与径向转向架的比较.国外铁道车辆,1989,(3):31-37
    [15]H. seheffel.铁路传统转向架和具有轴间连接转向架的蛇行稳定性比较.肖颖译.国外铁道车辆,2003,40(2):18-22
    [16]Roy Smith.北美自导向转向架的运用考验.林雨春译.国外铁道车辆,1987,(6):27-31
    [17]须田义大.径向转向架的研究开发.李文勇译.国外铁道车辆,1997,(11):33-38
    [18]H. Seheffel.南非铁路径向转向架的设计..王渤洪译.电力牵引快报,1995,(8):8-13
    [19]A. H. Wickens. Static and Dynamic Stability of Unsymmetrie Tow-Axle Raiway Vehicle Possessing Perfect Steering. Vehicle System Dynamics.1982,11(1):89-106.
    [20]H. scheffel. Unconventional Bogie Design Their Practical Basis and Historical Background. Vehicle System Dynamics.1995,24(6/7):497-524.
    [21]A. H. Wickens. The Dynamic Stability of Railway Vehicle Wheel-sets and Bogies Having Profiled Wheels. International Journal of Solidsand Structures.1965,1 (3): 319-341.
    [22]H. Scheffel.Curving and Stability Analysis of Self-steering Bogies Having Avariable Yaw Constraint.Vehicle System Dynamics.1994,23(suppl):425-436.
    [23]Y. Michitsuji, Y. Suda. Running Performance of Power-steering Railway Bogie with Independently Rotating Wheels. Vehiele System Dynamics.2006,44(1):71-82.
    [24]Curt A. Swenson, R. Thomas Scott. The Effeet of Locomotive Radial Steering Bogies on Wheel and Rail Wear. ASME/IEEE Join tRailroad Conferenee,1996.
    [25]王福天.车辆系统动力学.中国铁道出版社.1997.
    [26]严隽耄,傅茂海.车辆工程.第三版.中国铁道出版社,2008.
    [27]王孔明,李芾,卜继玲.货车转向架悬挂参数与运行性能研究.铁道机车车辆,2005,25(5):4-8
    [28]中华人民共和国铁道部.铁道车辆动力学性能评定和试验鉴定规范.GB5599-85,1985.
    [29]李亨利,李芾,傅茂海,等.曲线凡何参数对货车转向架曲线通过性能的影响.中国铁道科学,2008,29(1):70-75
    [30]李亨利,黄运华.转K7型转向架动力学性能.铁道机车车辆,2009,29(4):26-29
    [31]李亨利,王爱民,王璞,等.副构架式径向转向架交叉连接杆受力分析.铁道车辆,2012,50(4):30-34
    [32]李貌.32.5t轴重货车径向转向架动力学性能研究.西南交通大学硕士学位论文,2011.
    [33]戚壮,李芾,丁君军.货车极限黏着制动优化方法.交通工程运输学报,2012,12(6):35-40.
    [34]李洪洋.转K7型转向架刚柔耦合动力学研究.西南交通大学硕士学位论文,2012.
    [35]刘凤伟,张良威.铁路货车动力学仿真分析与线路测试结果一致性研究.铁道机车车辆,2012,32(3):9-13
    [36]Katsuya Tanifuji, Tsukasa Sato, Roger Goodall. AetiveSteering of a Rail Vehicle with Two-Axle Bogies Based on Wheel-set Motion. Vehicle System Dynamics.2003,39 (4): 309-327.
    [37]S.A. Simson and C. Cole. Simulation of Traction and Curving for Passive Steering Hauling Locomotives. Proceedings Institution of Mechanical Engineers.2006,222 (F): 117-127.
    [38]M. Hecht. Wear and Energy-saving Freight Bogie Designs with Rubber Primary Springs:Principles and Experiences.Proceedings Institution of Mechanical Engineers. 2008,223(F):105-110.
    [39]J. F. Garcia, X. Olaizola, L. M. Martin, J. G. Gimenez. Theoretieal Comparison Between Different Configurations of Radial and Conventional Bogies. Vehiele System Dynamics. 2000,33(4):233-259.
    [40]J. C. O. Nielsen, A. Stensson. Enhancing Freight Railways for 30 tonne Axle Loads. Proeeedings Institution of Mechanical Engineers.1999,213:255-263.
    [41]Freight Car Trucks for the 21st Century. AAR Technology Transfer Forum, September 7-9,1994, ChanPaign, IL.
    [42]H. Scheffel. Wheel-set Suspension Designed to Eliminate the Detrimental Effects of Wheel Wear on the Hunting Stability of Railroad Vehiele. ASME Symposium on Railroad Equipment Dynamics, Chicego,1976.
    [43]A. H. Wickens. Steering and Stability of the Bogie Vehicle Dynamics and Suspension design. Proceedings Institution of Mechanical Engineers,1991,205:109-122.
    [44]H. Scheffel. The Reduction in Mechanical Wheel Rail Wear and Energy Consumption as well as Total Cost Benefits When Using the Scheffel Self-steering Truck. International. Center for Transportation Studies(ICTS) Conference, Amafid, Italy, June 1983.
    [45]H. Scheffel, Von Gericke R. E. The Development and Design of the Scheffel Self-steering Truck and In-service Experience Gained on the South African Transport Service. Freight Car Conferenee, Montreal, Canada,1983.
    [46]R. Illingworth, M. G. Pollard. The Use of Steering Axle Suspensions to Reduce Wheel and Rail Wear in Curves. Proeeedings Institution of Mechanical Engineers.1982,196: 379-385.
    [47]S. Marieh, W. Walker. The Evolution of Railway Research and Development at a Heavy Haul Railway. Proceedings Institution o fMechanical Engineers.1993,207:89-98.
    [48]米彩盈,李芾.基于谱载荷的高速列车疲劳强度.西南交通大学学报,2006,41(3):381-385
    [49]周张义,李亨利.货车径向转向架副构架结构刚度研究.铁道机车车辆,32(3):23-26
    [50]韩金刚,傅茂海,卜继玲,等.转K7型转向架副构架优化设计.铁道机车车辆,2009,26(9):10-12
    [51]阳光武.机车车辆零部件的疲劳寿命预测仿真.西南交通大学博士学位论文,2005.
    [52]繆炳荣.基于多体动力学和有限元法的机车车辆结构疲劳仿真.西南交通大学博士学位论文,2006.
    [53]黄健,卜继玲,傅茂海.ZK6型转向架摇枕疲劳寿命分析.内燃机车,2010,(1):14-17
    [54]王永冠,李心, 卜继铃.一种轨道机车车辆用橡胶关节疲劳试验载荷谱的编制方法.机车电传,2009,(4):54-55
    [55]马卫华,罗世辉,宋荣荣.高速动车轴箱转臂节点载荷谱研究.铁道机车辆,2009,29(4):12-14
    [56]文中章.C70铁路货车疲劳载荷谱研究.西南交通大学硕士学位论文,2011.
    [57]蒋芸,杨晓华.实时雨流技术法的“三变程”计算原则.航空计算技术,2008,38(5):5-7
    [58]刘岩,张喜逢.在载荷谱外推方法的对比.现代制造工程,2011,(11):8-11
    [59]王宏伟,邢波.雨流计数法及其在疲劳寿命估算中的应用.矿山机械,2006,(3):95-97
    [60]何秀然.航空发动机载荷谱雨流计数法的改进算法.航空发动机,2005,31(3):47-49
    [61]阎楚良,高镇同.飞机高置信度中值随机疲劳载荷谱的编制原理.航空学报,2000,21(2):118-122
    [62]赵方伟,王璞,李亨利,等.转K7型转向架副构架疲劳强度分析.北京交通大学学报,2012,36(1):132-134
    [63]周楠.航空发动机轮盘标准载荷谱编制方法研究.南京航空航天大学硕士学位论文,2010.
    [64]贾海波.轮式装载机传动系载荷谱测试与编制方法研究.吉林大学硕士学位论文,2009.
    [65]王振雨.载荷谱编制中极值载荷确定方法及应用.吉林大学硕士学位论文,2012.
    [66]杨大春.大秦线货车摇枕载荷谱编制及应用.北京交通大学硕士学位论文,2011.
    [67]毛贺.高速列车载荷谱编制方法的研究.北京交通大学硕士学位论文,2009.
    [68]李浩.C80B敞车扭转和侧滚载荷谱编制与应用.北京交通大学硕士学位论文,2010.
    [69]郑小艳.5000吨编组C70敞车载荷谱测试及车体疲劳强度评价.北京交通大学硕士学位论文,2007.
    [70]闰旭.大秦线20000吨重载列车纵向载荷谱的编制.北京交通大学硕士学位论文,2009.
    [71]李国顺,李岳恒,黄成荣.2万t组合列车中部机车载荷谱试验研究.铁道机车车辆,,20-30(5):1-3
    [72]白立国.70吨级通用敞车垂向、侧滚和扭转载荷谱的测试与研究.北京交通大学硕士学位论文,2005.
    [73]王丹丹.转K6转向架摇枕载荷谱测试与疲劳寿命评估.北京交通大学硕士学位论文,2005.
    [74]许晖.随机载荷谱下疲劳寿命估算方法探讨.2003,25(3):26-27
    [75]方军.5000吨编组通用敞车C70纵向载荷谱的编制.北京交通大学硕士学位论文,2007.
    [76]耿志修.大秦铁路重载运输技术.第一版.中国铁道出版社.2009.
    [77]Miner M A. Cumulative Damage in Fatigue.J Appl Mech. Vol12(3).1945:A159-164
    [78]R. K. Luo, B. L. Gabbitas, B. V. Brickle. Fatigue Design in Railway Vehiecle Bogies Based on Dynamics Similation. Vehiecle System Dynamics, Volume 25,Issue S1 1996: 438-449.
    [79]M. Gobb, G. Mastinu. Expected Fatigue Damage of Road Vehicles due to Road Excitation. Vehicle System Dynamics,1988,28(supplement):778-788.
    [80]Stefan Dietz, Helmuth Netter, Delf Sachau. Fatigue Life Prediction of a Railway Bogie under Dydamic Loads through Simulation. Vehicle System Dynamics, Volume 29, Issue 6 June 1998:385-402.
    [81]Sebastian Stichel, Klaus Knothe. Fatigue Life Predicton for an S-Train Bogie. Vehicle System Dynamics.1998,28(supplement):390-403.
    [82]Stefan D, Helmuth N. Fatigue life prediction of a railway bogie under dynamic loads through simulation.Vehicle System Dynamics,1998,(28):385-402.
    [83]Sridhar S, Shekar Y. Durability Design Process for Truck Body Strctures. International Journal of Vehicle Design,2000,23(1/2):95-108.
    [84]Fu-jie Xia, Colin Cole, Peter Wolfs. The Dydamics Wheel-rail Contact Stresses for Wagon on Various Tracks. Wear.2008,265:1549-1555.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700