用户名: 密码: 验证码:
精密注射成型若干关键问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,“精密化、高效化、轻薄化”作为未来注射成型技术发展的方向得到了广泛的研究。本文中研制了一套用于精密注射成型可视化研究的装置,建立了精密注射成型中一模多腔“H”型流道中不平衡充填现象的流动模型,利用可视化技术从熔体流动行为和温度参数分布两方面直观且全面的揭示了不平衡充填现象的产生机理。提出了一种采用超磁致伸缩材料制作前端控制式超高速注射成型的新方法,研制了高速精密注射机专用的磁致伸缩位移传感器。研究中开展的主要工作如下:
     1.注射充模可视化实验平台的研制及应用
     研制了一套注射充模可视化实验装置。利用该可视化装置研究了注射速度及重力作用对于熔体流动行为的影响。观察并记录了典型成型缺陷产生过程,包括喷射与蛇形流动、缩痕、气泡等,提出了解决这些成型缺陷的方法。
     2.建立一模多腔不平衡流动理论模型,运用可视化及CAE模拟技术揭示不平衡充填现象的产生机理
     建立了“H”型流道中由于熔体截面温度分布不匀而造成不平衡流动的熔体流动模型,指出剪切生热对于流道中熔体截面温度分布的影响明显,不均衡的温度分布结果是造成不平衡充填的最终原因。利用“H"型流道中熔体充填过程的静态和动态可视化实验结果以及熔体温度参数变化结果直观而全面揭示了充填不平衡现象的产生机理。提出了一种不修改模具流道结构就可明显改善不平衡充填结果的“两步注射法”。研究结果为完善一模多腔不平衡充填过程的CAE模拟提供了依据。
     3.提出一种基于超磁致伸缩材料的超高速注射成型新方法
     为解决传统超高速注射成型中螺杆作为执行元件在高应答性和控制精度上的局限,提出了一种通过在注射螺杆前端设置一个具有高响应速度、可灵敏控制的喷嘴,注射之前关闭喷嘴,预先对熔体进行压缩,通过控制喷嘴开关状态和开启量来释放熔体实现超高速注射的新方法。引入稀土超磁致伸缩材料来制作具有高响应速度、可灵敏控制的电磁阀,用于控制喷嘴的开关状态和开启量大小。这种基于超磁致伸缩材料的超高速注射新方法在国内外文献中没有报道。
     4.前端控制式超高速注射成型关键部件的研制及相关实验研究
     提出了可控喷嘴用超磁致伸缩微位移驱动器的设计理论和方法,通过理论分析计算优化了驱动线圈和控制电路的设计。发明了一种基于杠杆原理将多级杠杆叠加的位移传递和放大机构,制造了超磁致伸缩位移驱动器实验样机。
     采用不同材料对前端控制式超高速注射成型中喷嘴开启量、注射压力、注射速度之间的关系进行研究。实验结果表明,在压力恒定的条件下,可通过控制喷嘴开启量大小获得不同的注射充填速度。实验结果为探索超高速注射成型规律,建立相应的控制方法提供了基础。
     5.磁致伸缩位移传感器的研制及性能研究
     研制了精密注射机专用的高精度磁致伸缩位移传感器。在现行高速精密注射机上分别将磁尺和电子尺用于注射机螺杆位移测量,针对螺杆预塑化量、螺杆转速、注塑速度和熔体背压四个相关工艺参数设定不同参数值采用正交实验法进行实验。结果表明,磁尺相对于电子尺具有更高的计量精度,并能得到更高的制品重量重复精度。磁尺受外界参数变化的影响更小,工作过程更稳定。研究结果从高精度计量方面为提高精密注塑机重复精度提供了一种可行方案。
Precision, high efficiency, and thin-wall injection molding, as the development trend of conventional injection molding, were widely studied in recent years. In this paper, a set of visualization device was designed and manufactured. A model of imbalance filling of precision injection molding in multi-cavity mold with "H" pattern runner system was established. The imbalance filling mechanism was clarified thoroughly by the visualization experimental results of melt flow behavior and the measurement results of melt temperature. A new method of ultra high speed injection molding based on giant magnetostrictive materials was proposed. A specific magnetostrictive displacement transducer used for high speed precision injection molding machine was developed. The main research results are as followed.
     1. Development and application of visualization experimentaldevice for injection molding
     A set of visualization experimental device was developed. Theinfluence of injection molding speed and gravity on melt flow behaviorwere studied with the visualization device. The generation processes of several typical injection molding defects, such as jetting and snake flow, sink mark and bubble, were directly observed and recorded. The methods of improving these defects were proposed.
     2. Establishment and clarification of the model of imbalance filling mechanism in multi-cavity mold with "H" pattern runner system
     On the basis of the theory analyzing, the model of imbalance filling mechanism in multi-cavity mold with "H" pattern runner system was supposed. It is clarified that the mechanism of imbalance filling results from dissymmetrical temperature distribution on the cross-section of runner, which is strongly influenced by the shear heat and the cooling process in the runner. The imbalance filling mechanism was clarified thoroughly by the visualization experimental results of melt flow behavior and the measurement results of melt temperature. The method of improving imbalance filling named "two-step" process was proposed.
     3. A new method of ultra high speed injection molding
     The conventional injection molding machine to implement ultra high speed injection molding was restricted by the controlling response and precision of screw advance. Therefore, a new type of injection system with a quick response nozzle based on giant magnetostrictive materials (GMM) is proposed in this paper. The injection system is capable of implementing ultra high speed injection molding through controlling port width of nozzle, meanwhile, melts with sufficient pre-compress potential energy under under constant injection molding pressure with a hydraulic accumulator system. The method of implementing ultra high speed injection molding is never reported in the literatures.
     4. Development and experimental study of the key parts of foreside control ultra high speed injection molding
     The designing theories and methods of microdisplacement actuator for controllable nozzle based on GMM are proposed. The designing process of such components as microdisplacement transfer and amplifier mechanism, driving coil and control circuitry is presented particularly. Furthermore, a new type of multilevel lever mechanism was invented to transfer and magnify output microdisplacement. A sample of microdisplacement actuator based on GMM manufactured.
     The influence of nozzle port opening width parameter on injection speed under different injection pressures was investigated in this paper. As a result, it was found that injection speed could be increased through varying nozzle port opening width under keeping constant injection pressure. The results obtained from this study are valuable for establishment of control theory of foreside-control high speed injection molding.
     5. Development and experimental study of magnetostrictive displacement transducer
     A magnetostrictive displacement transducer special for precision injection molding was developed. Both potentiometer and magnetostrictive displacement sensor used to measure the displacement of screw. The influence of such parameters as preform and speed of screw, injection speed and back pressure was studied with orthogonal experiment method. The results showed that the higher measurement precision and higher repeatability of products can be obtained by adopting magnetostrictive displacement transducer. And magnetostrictive displacement transducer is less impacted by surrounding environment factors. The research results provide a solution method for improving precision injection molding repeatability.
引文
[1] Hyatt, I. S., Hyatt, J. W.,Improvement in Processes and Apparatus for Manufacturing Pyroxyline. U.S.Patent, No. 133229, 1872
    [2] Dubois,J.H., Plastics History U.S.A. Chaners Books(1972),Boston
    [3] Buchholz,H.,Process of Making Molded Articles,U.S.Patent NO.1810126, 1931
    [4] Beck, H., Kuststoffe, 1961, 51,62
    [5] 杨卫民,高世权.注射机使用与维护手册[M].机械工业出版社,2006
    [6] W.h. willert. Injection molding apparatus. US Patent, 2734226. 1956-2-14
    [7] 谢鹏程,丁玉梅,杨卫民.前端控制式新型超高速精密注射成型原理的研究[J].中国塑料,2005,(10):60-63
    [8] 金志明,朱复华,高福荣.注射成型塑化过程的可视化研究I(J).中国塑料,2003,17(4):86-90
    [9] 彭响方,瞿金平.可视化技术在聚合物研究中的应用[J].中国塑料,1998,12(3):74-81
    [10] 村上宗雄.金型设计-(13)成形品精度金型精度[J].技术,1982,120(7):112-114
    [11] 黄步明.精密注射成型的关键技术[J].塑料工业,2006,9(1):10-16
    [12] Yoshiya Taniguchi, Nobuyuki Hirayama, Yoshiaki Hara. Electrically-operated injection molding machine[P]. US Patent, US 6183235 Bl,2001-2-6
    [13] 李志平,严正,陈占春.注射成型的微型化-微注射成型技术[J].塑料工业,2004,32(5):23-25,55
    [14] 余宏,冯正进等.注塑机复式缸锁模机构的研究[J].液压与气动,2003,(1):11-12
    [15] 许忠斌,黄步明,吴舜英.光盘基片精密注射成型技术[J].中国塑料,2003,17(4):61-64
    [16] 王兴天.直压式锁模油缸合模机构[P].中国专利,00238617.8.2007-03-21
    [17] 王兴天.内动直锁双模板式合模机构[P].中国专利,00238617.8.2001-03-28
    [18] Higashi Y, Abe S, Togeyama H, et al. Development of laser sintering technology and application to mold production [J]. NEW Technical Report, 2002, 78(8):57-63
    [19] H. Yokoi, N. Masuda and H. Mitsuhata. Visualization analysis of flow front behavior during filling process of injection mold cavity by two-axis tracking system [J]. Journal of Materials Processing Technology, 2002,130-131 (12):328-333
    [20] D.G. Yao. Rapid Thermal Response Injection Molding for Microfeature Fabrication [D]. Amherst: University of Massachusetts, 2001
    [21] Donggang Yao, Thomas E. Kimerling, Byung Kim. High-frequency proximity heating for injection molding applications[J]. Polymer Engineering & Science, 2006, 46(7):938-945
    [22] CHANG Pei-Chi, HWANG Sheng-Jye. Experimental investigation of infrared rapid surface heating for injection molding[J].Journal of applied polymer science, 2006, 102(4): 3704-3713
    [23] B.S. Carpenter, Mold Deflection During In-Mold Coating Process-Simulation and Verification[D]. Columbus: The Ohio State University, 2004
    [24] Brian Carpenter, Sachin Patil, Rebecca Hoffman. Effect of machine compliance on mold deflection during injection and packing of thermoplastic parts[J].Polymer Engineering & Science, 2006, 46(7):844-852
    [25] Paul E. Allen. Process for injection molding with incremental initial ejection[P]. US Patent, No.5932164, 1999-8-3
    [26] Ji-Geun Nam, Hyo-Chol Sin, Sang-Sik Na. Improvement of optical quality and vibration characteristics of injection molded disk with processing condition control[J].Journal of Applied Polymer Science, 2006,101 (5):3275-3285
    [27] H. ZUIDEMA, G. W. M. PETERS, H. E. H. MEIJER. Influence of cooling rate on PVT-data of semi-crystalline polymers[J]. Journal of Applied Polymer Science, 2001,82(5): 1170-1186
    [28] Sekhar Chakravorty Test Method PVT testing of polymers under industrial processing Conditiosn[J]. Polymer Testing 21 (2002):313-317
    [29] Jung Gon Kim, Hyungsu Kim, Han Soo Kim and Jae Wook Lee.Investigation of pressure-volume-temperature relationship by ultrasonic technique and its application for the quality prediction of injection molded parts [J].Korea-Australia Rheology Journal, 2004,16(4):163-168
    [30] Chen S C,Liaw W I,Peng HS,et al.Characteristics of mould separation and its effects on qualities of thin wall injection moulded parts[J]. Plastics Rubber and Composites, 2002,31(1):12-19
    [31] Zhongbao Chen, Lih-Sheng Turng.Adaptive online quality control for injection-molding by monitoring and controlling mold separation [J]. Polymer Engineering & Science, 2006,46(5): 569-580
    [32] Yu Chuan Su, Jatan Shah and Liwei Lin. Implementation and analysis of polymetric microstructure replication by micro injection molding [J]. J. Micromech. Microeng, 2004(14):415-422
    [33] 彭响方,周惊萍.动态注射成型过程中的振动技术研究[J].工程塑料应用,1999,27(7):38-40
    [34] 瞿金平.振动力场下聚合物塑化挤出技术研究[J].工程塑料应用,2000,28(11):11
    [35] 申开智,胡文江.聚丙烯在单向拉伸力场中形成双向自增强片材及其结构与性能的研究[J].高分子材料科学与工程,2002,18(1):145-148
    [36] 赖士兴,杨卫民等.精密注射成型中背压对制品重复精度的影响.中国塑料,2006,20(12):52-55
    [37] 周应国,董斌斌,陈静波,申长雨.气体辅助注塑成型充填数值模拟及其实验对比[J].高分子材料科学与工程,2006,22(5):28-31,35
    [38] 奚国栋,周华民,李德群.注塑工艺参数对制品残余应力和收缩的影响[J].化工学报,2007,58(1):248-254
    [39] 周华民,李德群.基于成形模拟的注塑件熔接缝确定与评价[J].中国机械工程,2004,15(21):1962-1966
    [40] 宋满仓,刘柱,于同敏,王敏杰.注射工艺参数对超薄塑件成型影响实验研究[J].大连理工大学学报,2006,42(6):198-201
    [41] 杨利霞,杨杨,王蓓,申长雨.注塑成型工艺参数对制品体收缩率变化的影响及工艺参数优化[J].高分子材料科学与工程,2004,(02):173-176
    [42] 黄科雄.模腔压力测控新技术[J].国外塑料,2003,21(4):15-18,20
    [43] JWJ Cheng, TC Chao, LH Chang, BF Huang. A model-based virtual sensing approach for the injection molding process[J]. Polymer Engineering and Science, 2004, 44(9):1605-1614
    [44] 项辉宇等.注塑过程CAE及其对模具与工艺设计的作用[J].山东大学学报:工学版,2004,34(2):26-30
    [45] 周坤鲁,刘建柱.提高塑料件尺寸精度的研究[J].工程塑料应用,2003,31(1):31-34
    [46] Ueda M. Plastic substrate with high performance using a new polycarbonate with addition of an antiplasticizer[C]. Proceedings of SPIE-The International Society for Optical Engineering, 2002:39-44
    [47] V. Kalima et al. Transparent thermoplastics: Replication of diffractive optical elements using micro-injection molding[J] Opt. Mater. (2007), doi:10.1016/j, optmat. 2006. 11.046
    [48] C.K.Huang, S.W.Chiu. Formability and accuracy of micropolymer compound with added nanomaterials in microinjection molding[J]. Journal of Applied Polymer Science, 2005,98(5): 1865-1874
    [49] J.L. Thomason.Structure - Property Relationships in Glass-Reinforced Polyamide, Part 1 :The Effects of Fiber Content[J]. Polymer Composites, 2006 DOI: 10.1002/pc. 552-562
    [50] 朱复华,江顺亮,刘延华.可视化挤出机促进了聚合物加工科学的研究[J].化工进展,1997,(5):5-9
    [51] 朱复华,刘廷华.同向旋转双螺杆挤出可视化研究[j].塑料,1996,25(4):9-15,22
    [52] 朱复华.挤出理论及应用[M].北京:中国轻工业出版社,2001
    [53] 何红,朱复华.单螺杆挤出过程的亚宏观可视化技术与理论[J].工程塑料应用,2000,28(12):12-14
    [54] 黄汉雄,易玉华.聚合物熔体收敛流动的可视化实验与理论研究[J].合成树脂及塑料,1998,15(2):24-28
    [55] RS Spencer, GD Gilmore. Some Flow Phenomena in the Injection Molding of Polystyrene[J]. Journal of Colloidal Science, 1951, (6): 118-132
    [56] 林德宽,马天保.以透明模研究塑料注射充模行为.塑料工业,1980,(6):22-26
    [57] 马天保,林德宽.以透明模研究塑料注射充模流变-喷射充模流动与融接痕的观察.工程塑料应用,1983,(2):15-23
    [58] Shigeru Hasegawa, Yasuhiko Murata, HIdetoshiYokoi. Dynamic visualization of mold filling process inside thin-walled rectangular cavity inultra-high speed injection molding[J]. Monthly journal of the Institute of Industrial Science, 2003, 55(6):52-55
    [59] 横井秀俊.温度分布計測用小型加熱開発[J].生産研究,2000,52(9):410-413
    [60] 松田元,横井秀俊.3次元可視化金型繊維高充填系樹脂不安定流動観察[J].生産研究,2000,52(9):414-417
    [61] 孙翔,杨卫民,丁玉梅,王兴天.基于可视化的注射成型缺陷及其产生机理的研究[J].中国塑料,2005(12):21-23
    [62] Sun Xiang, Yang Weimin et al. Injection molding defects and its generation mechanism based on visualization Advanced Materials Research[A]. AICAM 2005-Proceedings of the Asian International Conference on Advanced Materials[C]. Switzerland:Advanced Materials Research, 2006, (11-12):705-708
    [63] Louis Tredoux, lsao Satoh, Yashuo Kurosaki. Investigation of wave-like flow marks in injection molding: Flow visualization and micro-geometry[J]. Polymer Engineering and Science, 1999, 39(11):2233-2241
    [64] Louis Tredoux,lsao Satoh,Yasuo Kurosaki. Investigation of wavelike flow marks in injection molding: A new hypothesis for the generation mechanism[J]. Polymer Engineering & Science, 2000, 40(10):2161-2174
    [65] O. Uluer, An experimental investigation of flow formation during polymer melt flow into the mold cavity in plastic injection molding[D]. Ankara:Gazi University, 2002
    [66] A. Ozdemir,O. Uluer,A. Guldas. Flow front advancement of molten thermoplastic materials during filling stage of a mold cavity[J]. Polymer Testing, 2004,23(8):957-966
    [67] Shih-Jung Liu and Yi-Chuan Wu. Dynamic visualization of cavity-filling process in fluid-assisted injection molding-gas versus water[J]. Polymer Testing,2007, 26(2):232-242
    [68] S.Y. Yang, S.J. Liou, W.N. Liou. Flow visualization of the gas-assisted injection molding process[J]. Adv. Polym. Technol. 1997, (16): 175
    [69] 张强.注塑成型过程可视化实验装置的研制[D].大连:大连理工大学,2006
    [70] 横井秀俊.射出成形金型可視化·計測技術[J].精密工学会誌,2007,73(2):188-192
    [71] Takashi Ohta, Hidetoshi Yokoi. Visual analysis of cavity filling and packing process in injection molding of thermoset phenolic resin by the gate-magnetization method[J]. Polymer Engineering & Science, 2004, 41 (5):806-819
    [72] 宮内英和,今出政明等.着磁法射出成形金型内樹脂流動可視化[A].電子情報通信学会総合大会講演論文集[C].东京:情報,1998:159
    [73] KEING S, KAMAL M R. Heat transfer in the cooling of thermoplastic melts under pressure[J]. J Chem Eng, 1971 (4): 210-219
    [74] Tadmor Z, Broyer E, Gutfinger C.Flow analysis network(FAN)---a method for solving flow problems in polymer processing[J]. Polym Eng Sci, 1974(14): 660-665
    [75] SATO T., RICHARDSON S. M. Numerical simulation method for viscoelastic flows with free surfaces : fringe element generation method[J] Int. j. numer, methods fluids,1994, 19(7):555-574
    [76] HIMASEKHAR K,LOTTER J,WANG K K. CAE of mold cooling in injection molding using a three-dimensional numerical simulation[J]. Journal of Engineering for Industry,1992, 114:213-221
    [77] Polynkin, A, Pittman, J F T,Sienz, J. 3D Simulation of Gas Assisted Injection Molding Analysis of Primary and Secondary Gas Penetration and Comparison with Experimental Results[J]. International Polymer Processing, 20(2): 191-201
    [78] S.T. Chung, T. H. Kwon. Numerical simulation of fiber orientation in injection molding of short-fiber-reinforced thermoplastics[J]. Polymer Engineering and Science, 1995, 35(7):604-618
    [79] Mahesh Gupta, K.K. Wang. Fiber orientation and mechanical properties of short-fiber-reinforced injection-molded composites: Simulated and experimental results[J]. Polymer Composites, 1993, 14(5):367-382
    [80] 奚国栋,周华民,李德群.注塑工艺参数对制品残余应力和收缩的影响[J].化工学报,2007,58(1):248-254
    [81] Jansen K M B,Titomanlio G.Effect of pressure history on shrinkage and residual stresses-injection molding with constrained shrinkage[J]. Polym.Eng.Sci., 1996, 36(15):2029-2040
    [82] Bushko W C,Stokes V K. Solidification of thermoviscoelastic melts(Ⅱ): Effects of processing conditions on shrinkage and residual stresses[J]. Polym.Eng.Sci., 1995, 35(4):365-383
    [83] Dongjin Seo, Jae Ryoun Youn.Numerical analysis on reaction injection molding of polyurethane foam by using a finite volume method[J]. Polymer,2005, 46(17): 6482-6493
    [84] 周应国,董斌斌,陈静波,申长雨.气体辅助注塑成型充填数值模拟及其实验对比[J].高分子材料科学与工程,2006,22(5):28-31,35
    [85] A. Polynkin, J.F.T. Pittman, J. Sienz. Gas assisted injection molding of a handle: Three-dimensional simulation and experimental verification[J]. 2005, 45(8): 1049-1058
    [86] 张静,杨卫民,谭晶,谢鹏程.医用皮囊注塑模具的CAE优化设计[J].塑料,2006,35(4):72-75
    [87] 杨高品,洛永彪,谢鹏程等.水介质单体液压支柱Y型密封圈的CAE优化分析[J].润滑与密封,2006,(12):139-142
    [88] 橫井秀俊,植田幸治,岡克典,平野彰士,村田泰彦.金型内樹脂流動举動解析[C].见:橫井秀俊,村田泰彦,JSPP'92 Tech.Papers,东京:成形加工学会,1992,207-210
    [89] J. Beaumont, J. Young. Mold Filling Imbalances in Geometrically Balanced Runner Systems [J]. Journal of Injection Molding Technology, 1997, 1(3): 133-136
    [90] 横井秀俊,植田幸治,岡克典,平野彰士,村田泰彦.金型内樹脂流動举動解析[C].见:横井秀俊,村田泰彦,JSPP'92 Tech.Papers,东京:成形加工学会,1992,207-210
    [91] Yang Weimin, Hidetoshi Yokoi. A Study on Filling Balance in Multi-cavity Molds[C].见: Yang Weimin, Hidetoshi Yokoi, JSPP'02 Tech. Papers, 东京:成形加工学会, 2002,259-262
    [92] Nikan Kogyo Xinbonnsha. Data book for plastics process [M]. Tokyo: JSTP, 1988
    [93] J.M. Mckelvey. Polymer Processing [M]. New York: John Wiley & Sons lnc, 1962
    [94] H.L. Toor, Trans. Soc. Of Rheology, 1, (1957)177
    [95] 杨卫民,谢鹏程,杨高品.注射成型多模腔充填不平衡现象的产生机理Ⅰ-模具流道系统中熔体流动行为的研究[J].中国塑料,2004,18(11):93-99
    [96] Yasuhiko MURATA, Hidetoshi YOKOI, Yukiharu UEDA. Measurement of Melt Temperature Profile inside the Nozzle of Injection Molding Machine by Integrated Thermocouple Sensor [C]. 见: Hidetoshi YOKOI. 生产研究.东京:东京大学国际产学共同研究所, 1998, 165-171
    [97] Hidetoshi YOKOI. Measurement of Melt Temperature Profiles inside a Nozzle by Using Integrated Thermocouple Ceramic Sensor [C]. 见: Hidetoshi YOKOI. 生产研究. 东京:东京大学国际产学共同研究所, 1998, 172-175
    [98] 杨卫民,谢鹏程,杨高品.注射成型多模腔充填不平衡现象的产生机理Ⅱ-模具流道系统中熔体流动行为的研究[J].中国塑料,2004,18(12):81-84
    [99] 楊衛民,横井秀俊.多数個取部樹脂温度充填相関解析[C].见:楊衛民,横井秀俊,JSPP'03 Tech.Papers,东京:成形加工学会,2003,271-274
    [100] John P. Beaumont. Method and apparatus for balancing the filling of injection molds[P]. US Patent. 6077470, 2000-6-20
    [101] 横井秀俊.先端成形加工技术[M].SIGMA出版社,1999
    [102] 王向东,杨惠娣.注射成型技术进展[J].中国塑料,2001,15(10):1-6
    [103] Xu Guojun. Study of thin- wall injection molding[D].The Ohio State:The Ohio State University, 2004
    [104] Huang Ming- Chih, Tai Ching- Chih. The effective factors in the warpage problem of an injection molded part with a thin shell feature[J]. Materials Processing Technology, 2001,(1):1-9
    [105] LIAO S. J., CHANG D. Y., CHEN H. J. et al. Optimal Process Conditions of Shrinkage and Warpage of Thin-Wall Parts[J]. Polymer Engineering and Science, 2004, (5):917-928
    [106] 谷诤巍.薄壳注塑成型中熔体充填过程的模拟研究[D].长春:吉林大学,2001
    [107] PARK Keun, KIM Byung, Donggang YAO. Numerical simulation for injection molding with a rapidly heated mold, Part Ⅰ: Flow simulation for thin wall parts[J]. Polymer-plastics technology and engineering, 2006, 45(7-9):897-902
    [108] Shen Y.K., Yeh P.H. and Wu J.S. Numerical simulation for thin wall injection molding of fiber- reinforced thermoplastics[J]. International Communications in Heat Mass Transfer,2001, (8):1035-1042
    [109] Yoshiharu Inaba, The latest Tehnologies of Plastic Injection Molding, JSPP'01 Tech.Papers, Tokyo ,May31, June1,2001
    [110] New possibilities in thin-wall injection moulding. Netstal News, 2002, (5):8-10.
    [111] Naitove M H. High-speed thin-wall molding doesn't need an accumulator [J]. Plastics Technology, 2001,47(8): 49
    [112] Amazingly thin.Translated from Kunststoffe 2004, (12): 126-134
    [113] 肖俊东.新型直接驱动式电液阀的基础性关键技术研究[D].北京:北京航空航天大学,2006
    [114] 王博文.超磁致伸缩材料制备与器件设计[M].北京:冶金工业出版社,2003
    [115] Clark A E. Magnetostrictive rare earth-Fe2 compounds In Wohlfarth E P, ed. Ferromagnetic Materials, North-Holland Amsterdam, 1980
    [116] 蒋成保,宫声凯,徐惠彬.超磁致伸缩材料及其在航空航天工业中的应用[J].航空学报,2000,21:35-38
    [117] 徐峰,张虎,蒋成保,徐惠彬.超磁致伸缩材料作动器的研制及特性分析[J].航空学报,2002,23(6):552-555
    [118] 吕福在,项占琴,戚宗军,程耀东.稀土超磁致伸缩材料高速强力电磁阀的研究[J].内燃机学报,2000,18(2):199-202
    [119] 贾振元,杨兴,武丹,郭东明.超磁致伸缩执行器及其在流体控制元件中的应用[J].机床与液压,2000(2):3-4,27
    [120] 王传礼,丁凡,张凯军.基于超磁致伸缩转换器的流体控制阀及其技术[J].农业机械学报,2003,34(5):164-167
    [121] 柯闻.一步法制成最大直径稀土超磁致伸缩材料[J].稀土信息,2003(1):19
    [122] 孙宝元.现代执行器技术.长春:吉林大学出版社.2003
    [123] Goran Engdahl. Handbook of Giant Magnetostrictive Materials. Sa Diego: Academic Press, 2000
    [124] K. Prajapati, R. D. Greenough, A. G Jenner. Device oriented magnetoelastic properties of TbxDyFe1.95 (X=0.27, 0.3) at elevated temperatures. J. Appl. Phys, 1994, 76(10):7154-7156
    [125] Takahiro Urai, Takahiro Sugiyama. Development of a direct drive servo valve using a giant magnetostrictive material[A].In: Proceeding of the Second JHPS International Symposium on Fluid Power[C]. Fluid Power, 1993, 131-135
    [126] 夏春林,丁凡,陶国良.GMM电—机械转换器驱动的气动压力阀[J].液压气动与密封,1999(03):21-22
    [127] M Anjanappa, J Bi. A theoretical and experimental study of magnetostrictive mini-actuators [J]. Smart Mater. Struct.,1994, (3):83-91
    [128] 杨兴.磁场与位移感知型磁致伸缩微位移执行器及其相关技术研究[D].大连:大连理工大学,2001
    [129] 雷银照.轴对称线圈磁场计算[M].北京:中国计量出版社,1991
    [130] 杨斌堂,陶华,C.Prelle,M.bonis.磁致伸缩微小驱动器驱动电磁线圈的设计研究[J].机械科学与技术,2004,23(8):982-984,1008
    [131] Legtenbeerg R, lierenschot E,Elwenspoek M, et al. Electrostatic micro-actuators with integrated gear linkages for mechanical power transmissions [A].In: IEEE Micro Electro Mechanical Systems[C]. New York: Institute of Electrical and Electronics Engineers,1996, 204-209
    [132] Maloney J M, Schreiber D S, De Voe D L. Largeforce electro-thermal linear micro-motors[J]. J Micro-mech M icroeng,2004, 14( 2):226-234
    [133] 谢鹏程,杨卫民,丁玉梅.一种超磁致伸缩材料驱动的微位移机构[P].中国专利,00610150582.7,2006-10-20
    [134] 谢鹏程,杨卫民,丁玉梅.一种微位移机构[P].中国专利,200620149062.X,2006-10-20
    [135] 肖俊东,王占林.新型超磁致伸缩电液高速开关阀及其驱动控制技术研究[J].机床与液压,2006,(1):80-83
    [136] 文西芹,张永忠,宁晓明.逆磁致伸缩效应扭矩传感器的历史、现状、趋势[J].传感器世界,2002,(02):1-7
    [137] TJ Moreau, AW McFadyen. Magnetostrictive linear displacement transducer utilizing axial strain pulses[P]. US Patent, 5717330. 1998-2-10
    [138] Raymond J. Krisst. Magnetostrictive position indicator [P]. US Patent, 071818. 1976-6-1
    [139] 赵晗.磁致伸缩式直线位移传感器[J].现代制造,2002,(13):34-36
    [140] 黄卉,肖定国等.磁致伸缩式扭转超声波位移传感器的研究与设计[J].仪表技术与传感器,2002,(6):4-5,12
    [141] Stephen William Surko. The residual strength of a ship after an internal explosion[D]. Massachusetts: Massachusetts institute of technology, 1988
    [142] ISO 17744-2004, Plastics-Determination of specific volume as a function of temperature and pressure (PVT diagram)-Piston apparatus method[S], 2004
    [143] TOYOSEIKI. No.633 P-V-T test system[P].General Catalogue Polymer's testing machines.42
    [144] Siddharth Neekhra.A new mineralogical approach to predict the coefficient of thermal expansion of aggregate and concrete[D]. Texas: Texas A&M University. 2004
    [145] 钱汉英,刘均科.聚合物PVT关系测定技术[J].中国塑料,1996,10(2):63
    [146] 杨卫民,王建,谢鹏程,丁玉梅.在线测试聚合物压力-比容-温度关系的方法及装置[P].中国专利,200710063461.3.2007-1-30
    [147] 柳昌庆等.测试技术与实验方法[M].北京:中国矿业大学出版社,1997
    [148] 夏爱生,杨胜友.工程数学:概率论与数理统计.北京:朝华出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700