用户名: 密码: 验证码:
导电聚合物及其杂化电活性功能材料的可控制备与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电活性材料(Electroactive Material, EM)是电子-离子的混合导体,其体相在氧化和还原过程中能够从溶液中可逆地置入和释放离子(离子交换或充放电过程)成为电导体。EM主要包括无机过渡金属络合物、导电高分子聚合物和有机/无机杂化材料,它们所具有的电化学属性并不随EM的体相不同而改变。EM在离子选择性电极、离子交换膜、化学/生物传感器、电催化、二次电池以及电致生色器件等新技术领域有着广阔的应用前景。因此,寻求廉价、易合成、高电子传递速率、高离子交换容量、高电催化活性和高循环稳定性的EM,是EM研究的重点。
     聚苯胺是导电高分子EM中具有代表性的导电聚合物,虽然广大研究者通过不同方法合成不同形貌的聚苯胺基EM并用于不同领域,但很少人注意到不同分子构象聚苯胺的物理化学特性及分子构象对聚苯胺本质属性的影响。因此我们可以通过合成单一分子构象或一种分子构象含量多的聚苯胺材料,研究分子构象对其本质属性的影响。本论文首次通过单极脉冲自组装聚合法制备了全顺式聚苯胺纳米管膜电极,并阐明该全顺式聚苯胺纳米管的自组装聚合成长机理。该全顺式聚苯胺纳米管膜具有低的电荷传递阻力、好的润湿性、高的表观扩散系数、高的离子交换容量和良好的稳定性,这些优良的性能都归因于全顺式聚苯胺具有螺旋上升的分子结构。并将该全顺式聚苯胺成功用于超级电容器材料和电催化氧化抗坏血酸传感器,同时期待该材料应用于其他电化学领域。
     在众多电控离子交换材料中,对重金属离子具有选择性的电活性材料的报道很少。因此,开发电控重金属离子交换材料来处理重金属离子废水迫在眉睫。本论文首次将聚2,6-吡啶二甲酸导电高分子EM应用于电控离子交换分离回收废液中的铜离子,并提出一种全新的电控离子交换机制。采用EQCM方法原位跟踪离子置入置出膜的过程,并通过傅立叶红外光谱(FTIR)和X-射线光电子能谱(XPS)等方法对聚2,6-吡啶二甲酸电控离子交换分离回收铜离子机理进行分析。结果表明,聚2,6-吡啶二甲酸对铜离子具有优良的选择性、高的离子交换容量和超强的循环稳定性。
     本论文首次采用单极脉冲氧化法将铁氰化镍纳米颗粒锚固到碳纳米管表面,制得铁氰化镍/壳聚糖/碳纳米管复合膜电极,并通过调变氧化电位来实现对铁氰化镍的结构调控。该复合膜电极制备方法简单、结构可控,整个膜合成过程时间仅仅几分钟。该膜作为双氧水传感器,显示了优良的电催化还原活性,其归因于碳纳米管与铁氰化镍的协同催化效应。结果表明,在-0.2V电位下对双氧水的电催化活性最高,其检测双氧水的线性范围为0.04-5.6mM,敏感度为654mA-M-1·cm-2,在2s内电催化反应达到平衡,在信噪比为3时其检出限为2.8×101M。
     本论文还通过一步循环伏安电沉积法在碳纳米管表面沉积得到立方体聚苯胺/铁氰化镍纳米复合颗粒。通过扫描电子显微镜(SEM)和FTIR对立方体聚苯胺/铁氰化镍纳米复合颗粒的形貌和结构进行表征,观察到立方体聚苯胺/铁氰化镍纳米复合颗粒均匀的分散在碳纳米管表面。由于羧基化碳纳米管的引入,为导电聚苯胺链上的氮原子提供了一种酸性的导电微环境,使得该复合膜电极在中性条件下具有电活性。该复合膜用于双氧水传感器显示了良好的电催化还原性能,归因于碳纳米管与铁氰化镍间的协同效应。结果表明,该复合膜作为双氧水传感器具有高的敏感度、快速的响应时间和低的检测限,其电催化双氧水的动力学常数为1.29×108cm3·mol-1·s-1。同时该复合膜具有高稳定性和重现性。
This field encompasses mixed (electron-ion) conducting materials whose bulk phases can be charged/discharged electronically from an external electric circuit or by chemical agents. To retain the electroneutrality of the phase the transferred electronic charge must be compensated by the incorporation/expulsion of ionic species. Such a phenomenon is characteristic of numerous systems with very diverse chemical natures, including redox or electronically conducting polymers, inorganic solids with mixed-valence transition metals, and lithium cation intercalation layers, placed in contact with an electrolyte solution. Despite the broad variety of underlying molecular mechanisms, the electrochemical processes occurring in these materials possess many common features. It is important that the EM with high electronic transfer rate, high ion exchange capacity and high stability, was found and synthesized.
     In this paper, the all cis-polyaniline nanotube film was successfully obtained using a novel unipolar pulse electro-polymerization method. To the best our knowledge, this is the first report and confirmation of this kind promising film composed of all cis-polyaniline nanotubes. To date, although various polyaniline-based materials have been synthesized and used in different fields, little attention has been paid to these potentially important species on which the chemical and physical properties of polyaniline are based. Only a few scattered reports can be found in the literatures with respect to the molecular conformation of PANI and the effects of possible isomeric forms on the intrinsic properties of polyaniline. That may be why some conflicting results were reported even by some highly respectable research groups. Therefore, in order to understand the performance mechanism of PANI and to determine the intrinsic properties of PANI, it should be very interesting if we can synthesize PANI preferably in one isomeric form or as a mixture containing a smaller than usual number of different isomer. In the present study, we found a facile way to get the all cis-polyaniline nanotube film and its formation mechanism was also analyzed and discussed. Furthermore, many excellent performances such as less charge transfer resistance, better water wettability, higher apparent diffusion coefficient, higher redox site capacity and super-stability of all cis-polyaniline nanotube film with the unique chemical molecular conformation were identified and successfully applied for the supercapacitor and high sensitive ascorbic acid sensor. It is expected that this advanced material will be applied in many electrochemical fields based on this Study.
     In this paper, the PPDC film was successfully obtained using a novel unipolar pulse electro-polymerization method and its electronic switch copper ion exchange mechanism was analyzed and discussed. The process and mechanism of copper ion exchange were characterized by electrochemical quartz crystal microbalance (EQCM), X-ray Photoelectron Spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The PPDC film prepared had good stability and high ion exchange capacity, and should be useful in practical heavy metal ion waste treatment.
     Unipolar pulse waveforms consist of an applied anode potential during the on-period and an open-circuit potential during the off-period. Unipolar pulse electrodeposition was used to fabricate nickel hexacyanoferrate/chitosan/carbon nanotubes (NiHCF/CS/CNTs) nanocomposite films with controllable structure on electrode surface and the as-prepared films were applied in hydrogen peroxide (H2O2) sensor. One-step electrodeposition of NiHCF/CS/CNTs film with insoluble-structure NiHCF nanoparticles was performed, and the whole procedure took only several minutes. The morphology and the composition of the NiHCF/CS/CNTs film were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDS). With the introduction of CNTs, the formed NiHCF/CS/CNTs system showed synergy between CNTs and NiHCF with a significant improvement of redox activity of NiHCF due to the excellent electron-transfer ability of CNTs. Electrochemical experiments revealed that the modified electrode allowed low potential (-0.2V) detection of H2O2and showed high electrocatalytic activity to the reduction of H2O2. The linear range for the detection of H2O2was0.04-5.6mM with a high sensitivity of654mA M-1cm2, and the response was very fast (less than2s). A detection limit of as low as2.8×10-7M (S/N=3) for H2O2was achieved.
     Electroactive hybrid films with cubic nickel hexacyanoferrate/polyaniline (NiHCF/PANI) were synthesized on carbon nanotubes (CNTs) modified platinum electrodes by a facile one-step electrosynthesis method using cyclic voltammetry (CV). The morphologies and structures of the as-prepared NiHCF/PANI/CNTs films were characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively. Due to the introduction of CNTs with carboxyl groups, an acidic micro-environment was provided for the nitrogen atoms in the PANI chains, which could maintain its electroactivity in neutral aqueous solutions. The hybrid films were applied for hydrogen peroxide (H2O2) detection and showed synergy and higher electrocatalytic activity with a higher sensitivity, a faster response time and a lower detection limit. It was found that detection sensitivity could be regulated by controlling the time of CV of electrosynthesis during the preparation of the hybrid film. A catalytic rate constant of1.29×108cm3·mol-1·s-1was obtained from an investigation of the kinetics of the catalytic reaction. SEM images showed that the cubic composite nano-particles of PANI and NiHCF were formed and distributed uniformly on the CNTs. The hybrid film prepared had good stability and reproducibility in the detection of H2O2, and should be useful in practical H2O2sensors.
引文
[1]Hillman A. R., Kulesza P. J., Vorotyntsev M. A. Electrochemistry of electroactive materials-foreword [J]. Electrochimica Acta,2008,53(11):3742-3743.
    [2]Khan A. A., Paquiza L., Khan A. An advanced nano-composite cation-exchanger polypyrrole zirconium titanium phosphate as a Th(IV)-selective potentiometric sensor: Preparation, characterization and its analytical application [J]. Journal of Materials Science,2010,45(13):3610-3625.
    [3]Lv K., Luo Y. M., Xiong L. P. Studies on ion exchange behavior of cesium into zirconium molybdopyrophosphate and its application as precursor of cesium ion sieve [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2013,417: 243-249.
    [4]Weidlich C., Mangold K. M. Electrochemically switchable polypyrrole coated membranes [J]. Electrochimica Acta,2011,56(10):3481-3484.
    [5]Wang X. Y., Zhang Y., Banks C. E., et al. Non-enzymatic amperometric glucose biosensor based on nickel hexacyanoferrate nanoparticle film modified electrodes [J]. Colloids and Surfaces B-Biointerfaces,2010,78(2):363-366.
    [6]Chen X. J., Xie H., Seow Z. Y, et al. An ultrasensitive DNA biosensor based on enzyme-catalyzed deposition of cupric hexacyanoferrate nanoparticles [J]. Biosensors & Bioelectronics,2010,25(6):1420-1426.
    [7]Wang Z. D., Hao X. G., Zhang Z. L., et al. One-step unipolar pulse electrodeposition of nickel hexacyanoferrate/chitosan/carbon nanotubes film and its application in hydrogen peroxide sensor [J]. Sensors and Actuators B-Chemical,2012,162(1): 353-360.
    [8]Mashhadizadeh M. H., Yousefi T., Golikand A. N. A nickel hexacyanoferrate and poly(1-naphthol) hybrid film modified electrode used in the selective electroanalysis of dopamine [J]. Electrochimica Acta,2012,59:321-328.
    [9]Liu Y. J., Yang Z. Z., Zhong Y. W, et al. Construction of europium hexacyanoferrate film and its electrocatalytic activity to tyrosine determination [J]. Applied Surface Science,2010,256(10):3148-3154.
    [10]Wilamowska M., Lisowska-Oleksiak A. Hybrid electrodes composed of electroactive polymer and metal hexacyanoferrates in aprotic electrolytes [J]. Journal of Power Sources,2009,194(1):112-117.
    [11]Pahal S., Deepa M., Bhandari S., et al. Electrochromism and redox switching of cobalt hexacyanoferrate-polyaniline hybrid films in a hydrophobic ionic liquid [J]. Solar Energy Materials and Solar Cells,2010,94(6):1064-1075.
    [12]Li N., Li Z. J., Yuan J. H., et al. Nickel hexacyanoferrate nanoparticles anchored to multiwalled carbon nanotubes with a grafted poly(4-vinylpyridine) linker for electrically switched ion exchange [J]. Electrochimica Acta,2012,72:150-156.
    [13]Hao X. G., Li Y. G., Pritzker M. Pulsed electrodeposition of nickel hexacyanoferrate films for electrochemically switched ion exchange [J]. Separation and Purification Technology,2008,63(2):407-414.
    [14]Weidlich C., Mangold K. M., Jiittner K. Eqcm study of the ion exchange behaviour of polypyrrole with different counterions in different electrolytes [J]. Electrochimica Acta, 2005,50(7-8):1547-1552.
    [15]Wang Z. D., Sun S. B., Hao X. G, et al. A facile electrosynthesis method for the controllable preparation of electroactive nickel hexacyanoferrate/polyaniline hybrid films for h2o2 detection [J]. Sensors and Actuators B-Chemical,2012,171: 1073-1080.
    [16]Hao X. G, Yu Q. M., Jiang S. Y., et al. Molecular dynamics simulation of ion selectivity traits of nickel hexacyanoferrate thin films [J]. Transactions of Nonferrous Metals Society of China,2006,16(4):897-902.
    [17]Hao X. G, Guo J. X., Liu S. B., et al. Electrochemically switched ion exchange performances of capillary deposited nickel hexacyanoferrate thin films [J]. Transactions of Nonferrous Metals Society of China,2006,16(3):556-561.
    [18]Herren F., Fischer P., Ludi A., Haelg W. Neutron diffraction study of prussian blue, fe4[fe(cn)6]3.Xh2O. Location of water molecules and long-range magnetic order [J]. Inorg. Chem.,1980,19:956-959.
    [19]Mazeikiene R., Niaura G., Malinauskas A. Electrocatalytic reduction of hydrogen peroxide at prussian blue modified electrode:An in situ raman spectroelectrochemical study [J]. Journal of Electroanalytical Chemistry,2011,660(1):140-146.
    [20]Zamponi S., Berrettoni M., Kulesza P. J., et al. Influence of experimental conditions on electrochemical behavior of prussian blue type nickel hexacyanoferrate film [J]. Electrochimica Acta,2003,48(28):4261-4269.
    [21]Macdiarmid A. G, Chiang J. C., Richter A. F., et al. Polyaniline:A new concept in conducting polymers [J]. Synthetic Metals,1987,18(1-3):285-290.
    [22]Nechtschein M., Genoud F., Menardo C., et al. On the nature of the conducting state of polyaniline [J]. Synthetic Metals,1989,29(1):211-218.
    [23]Joo J. Epstein A. J. Electromagnetic radiation shielding by intrinsically conducting polymers [J]. Applied Physics Letters,1994,65:2278-2280.
    [24]MacDiarmid A. G, Zhou Y., Feng J. Oligomers and isomers:New horizons in poly-anilines [J]. Synthetic Metals,1999,100(1):131-140.
    [25]李永舫.导电聚吡咯的研究[J].高分子通报,2005,(04):51-57.
    [26]李永舫.导电聚合物的电化学性质[J].复旦学报(自然科学版),2004,(04):468-476+481.
    [27]Gangopadhyay R., De A. Conducting polymer nanocomposites:A brief overview [J]. Chemistry of Materials,2000,12(3):608-622.
    [28]Baibarac M., Gomez-Romero P. Nanocomposites based on conducting polymers and carbon nanotubes:From fancy materials to functional applications [J]. Journal of Nanoscience and Nanotechnology,2006,6(2):289-302.
    [29]Lin Y, Cui X. L. Novel hybrid materials with high stability for electrically switched ion exchange:Carbon nanotube-polyaniline-nickel hexacyanoferrate nanocomposites [J]. Chemical Communications,2005,0(17):2226-2228.
    [30]Lin Y, Cui X. L. Electrosynthesis, characterization, and application of novel hybrid materials based on carbon nanotube-polyaniline-nickel hexacyanoferrate nanocomposites [J]. Journal of Materials Chemistry,2006,16(6):585-592.
    [31]Fiorito P. A., Cordoba de Torresi S. I. Hybrid nickel hexacyanoferrate/polypyrrole composite as mediator for hydrogen peroxide detection and its application in oxidase-based biosensors [J]. Journal of Electroanalytical Chemistry,2005,581(1): 31-37.
    [32]Bocarsly A. B., Sinha S. Chemically-derivatized nickel surfaces:Synthesis of a new class of stable electrode interfaces [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1982,137(1):157-162.
    [33]Lilga M. A., Orth R. J., Sukamto J. P. H., et al. Metal ion separations using electrically switched ion exchange [J]. Separation and Purification Technology,1997,11(3): 147-158.
    [34]Rassat S. D., Sukamto J. H., Orth R. J., et al. Development of an electrically switched ion exchange process for selective ion separations [J]. Separation and Purification Technology,1999,15(3):207-222.
    [35]Lilga M. A., Orth R. J., Sukamto J. P., et al. Cesium separation using electrically switched ion exchange [J]. Separation and Purification Technology,2001,24(3): 451-466.
    [36]Jeerage K. M., Schwartz D. T. Characterization of cathodically deposited nickel hexacyanoferrate for electrochemically switched ion exchange [J]. Separation Science and Technology,2000,35(15):2375-2392.
    [37]Jeerage K. M., Steen W. A., Schwartz D. T. Correlating nanoscale structure with ion intercalation in electrodeposited nickel hexacyanoferrate thin films [J]. Chemistry of Materials,2002,14(2):530-535.
    [38]Jeerage K. M., Steen W. A., Schwartz D. T. Charge-density-dependent partitioning of cs+and k+ into nickel hexacyanoferrate matrixes [J]. Langmuir,2002,18(9): 3620-3625.
    [39]Steen W. A., Jeerage K. M., Schwartz D. T. Raman spectroscopy of redox activity in cathodically electrodeposited nickel hexacyanoferrate thin films [J]. Appl. Spectrosc., 2002,56(8):1021-1029.
    [40]Steen W. A., Han S. W., Yu Q. M., et al. Structure of cathodically deposited nickel hexacyanoferrate thin films using xrd and exafs [J]. Langmuir,2002,18(20): 7714-7721.
    [41]Chen W., Tang J., Cheng H. J., et al. A simple method for fabrication of sole composition nickel hexacyanoferrate modified electrode and its application [J]. Talanta,2009,80(2):539-543.
    [42]Chen W., Tang J., Xia X. H. Composition and shape control in the construction of functional nickel hexacyanoferrate nanointerfaces [J]. The Journal of Physical Chemistry C,2009,113(52):21577-21581.
    [43]Hao X. G, Li Y. G., Pritzker M. Pulsed electrodeposition of nickel hexacyanoferrate films for electrochemically switched ion exchange [J]. Separation and Purification Technology,2008,63(2):407-414.
    [44]Hao X. G, Yan T., Wang Z. D., et al. Unipolar pulse electrodeposition of nickel hexacyanoferrate thin films with controllable structure on platinum substrates [J]. Thin Solid Films,2012,520(7):2438-2448.
    [45]马旭莉,郝晓刚,李永国,et al.脉冲电沉积制备电控离子分离NiHCF膜电极[J].中国有色金属学报,2009,(07):1294-1299.
    [46]Chen W., Xia X. H. An electrokinetic method for rapid synthesis of nanotubes [J]. ChemPhysChem,2007,8(7):1009-1012.
    [47]Chen W., Xia X. H. Highly stable nickel hexacyanoferrate nanotubes for electrically switched ion exchange [J]. Advanced Functional Materials,2007,17(15):2943-2948.
    [48]Cao G Z. Nanostructures & nanomaterials:Synthesis, properties & applications [M]. World Scientific Publishing Company,2004.
    [49]Parthasarathy R. V., Martin C. R. Template-synthesized polyaniline microtubules [J]. Chemistry of Materials,1994,6(10):1627-1632.
    [50]Martin C. R. Template synthesis of electronically conductive polymer nanostructures [J]. Accounts of Chemical Research,1995,28(2):61-68.
    [51]Xiong S. X., Wang Q., Xia H. S. Preparation of polyaniline nanotubes array based on anodic aluminum oxide template [J]. Materials Research Bulletin,2004,39(10): 1569-1580.
    [52]Wu C. G, Bein T. Conducting polyaniline filaments in a mesoporous channel host [J]. Science,1994:1757-1759.
    [53]Dong B., Zhong D. Y, Chi L. F, et al. Patterning of conducting polymers based on a random copolymer strategy:Toward the facile fabrication of nanosensors exclusively based on polymers [J]. Advanced Materials,2005,17(22):2736-2741.
    [54]Hassan P. A., Sawant S. N., Bagkar N. C, et al. Polyaniline nanoparticles prepared in rodlike micelles [J]. Langmuir,2004,20(12):4874-4880.
    [55]Huang J. X., Kaner R. B. Nanofiber formation in the chemical polymerization of aniline:A mechanistic study [J]. Angewandte Chemie,2004,116(43):5941-5945.
    [56]Wan M. X. A template-free method towards conducting polymer nanostructures [J]. Advanced Materials,2008,20(15):2926-2932.
    [57]Huang J. X., Kaner R. B. A general chemical route to polyaniline nanofibers [J]. Journal of the American Chemical Society,2003,126(3):851-855.
    [58]Michaelson J. C., McEvoy A. J. Interfacial polymerization of aniline [J]. Journal of the Chemical Society, Chemical Communications,1994,0(1):79-80.
    [59]Zhang L., Ma C. S., Mukerjee S. Oxygen reduction and transport characteristics at a platinum and alternative proton conducting membrane interface [J]. Journal of Electroanalytical Chemistry,2004,568(0):273-291.
    [60]Zhang J., Kong L. B., Wang B., et al. In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors [J]. Synthetic Metals,2009,159(3-4):260-266.
    [61]Peng X. Y., Luan F., Liu X. X., et al. Ph-controlled morphological structure of polyaniline during electrochemical deposition [J]. Electrochimica Acta,2009,54(26): 6172-6177.
    [62]Zhang Y., Li Q., Cui H., et al. Removal of phenols from the aqueous solutions based on their electrochemical polymerization on the polyaniline electrode [J]. Electrochimica Acta,2010,55(24):7219-7224.
    [63]Konig U., Schultze J. W. Kinetics of polyaniline formation and redox processes [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1988, 242(1-2):243-254.
    [64]Kobayashi T., Yoneyama H., Tamura H. Electrochemical reactions concerned with electrochromism of polyaniline film-coated electrodes [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1984,177(1-2):281-291.
    [65]Zhou H. H., Jiao S. Q., Chen J. H., et al. Relationship between preparation conditions, morphology and electrochemical properties of polyaniline prepared by pulse galvanostatic method (PGM) [J]. Thin Solid Films,2004,450(2):233-239.
    [66]Jiao S. Q., Zhou H. H., Chen J. H., et al. Influence of the preparation conditions on the morphology of polyaniline electrodeposited by the pulse galvanostatic method [J]. Journal of Applied Polymer Science,2004,94(4):1389-1394.
    [67]Jiang H. F., Liu X. X. One-dimensional growth and electrochemical properties of polyaniline deposited by a pulse potentiostatic method [J]. Electrochimica Acta,2010, 55(24):7175-7181.
    [68]Zhou H. H., Wen J. B., Ning X. H., et al. Comparison of the growth process and electrochemical properties of polyaniline films prepared by pulse potentiostatic and potentiostatic method on titanium electrode [J]. Journal of Applied Polymer Science, 2007,104(1):458-463.
    [69]Zhang H. B., Wang J. X., Wang Z., et al. Electrodeposition of polyaniline nanostructures:A lamellar structure [J]. Synthetic Metals,2009,159(3-4):277-281.
    [70]Wang J. G., Neoh K. G, Kang E. T. Preparation of nanosized metallic particles in polyaniline [J]. Journal of Colloid and Interface Science,2001,239(1):78-86.
    [71]Sellinger A., Weiss P. M., Nguyen A., et al. Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre [J]. Nature,1998, 394(6690):256-260.
    [72]Regev O., ElKati P. N. B., Loos J., et al. Preparation of conductive nanotube-polymer composites using latex technology [J]. Advanced Materials,2004,16(3):248-251.
    [73]Wessling B. Dispersion as the link between basic research and commercial applications of conductive polymers (polyaniline) [J]. Synthetic Metals,1998,93(2): 143-154.
    [74]陈光明,漆宗能.甲苯—2,4—二异氰酸酯修饰蒙脱土及聚苯乙烯/蒙脱土纳米复合材料[J].高分子学报,2000,(5):599-603.
    [75]Rathmell A. R., Bergin S. M., Hua Y. L., et al. The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films [J]. Advanced Materials,2010,22(32):3558-3563.
    [76]Basheer R. A., Hopkins A. R., Rasmussen P. G. Dependence of transition temperatures and enthalpies of fusion and crystallization on composition in polyaniline/nylon blends [J]. Macromolecules,1999,32(14):4706-4712.
    [77]Fiorito P. A., Brett C., Cordoba de Torresi S. I. Polypyrrole/copper hexacyanoferrate hybrid as redox mediator for glucose biosensors [J]. Talanta,2006,69(2):403-408.
    [78]臧杨,郝晓刚,王忠德,et al.碳纳米管/聚苯胺/铁氰化镍复合膜的电化学共聚制备与电容性能[J].物理化学学报,2010,26(2):291-298.
    [79]Lupu A., Lisboa P., Valsesia A., et al. Hydrogen peroxide detection nanosensor array for biosensor development [J]. Sensors and Actuators B:Chemical,2009,137(1): 56-61.
    [80]Li S., Qiu Y. B., Guo X. P. Comparison of PPy/sulfate-copper complexes synthesized by the pulse method and the traditional DC method [J]. Reactive and Fu nctional Polymers,2009,69(10):743-749.
    [81]Kavita M. J., Daniel T. S. Characterization of cathodically deposited nickel hexacyanoferrate for electrochemically switched ion exchange [J]. Separation Science and Technology,2000,35(15):2375-2392.
    [82]Guo J. X., Hao X. G, Ma X. L., et al. Electrochemical characterization of ion selectivity in electrodeposited nickel hexacyanoferrate thin films [J]. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material,2008, 15(1):79-83.
    [83]Cui X. L., Engelhard M. H., Lin Y. H. Preparation, characterization and anion exchange properties of polypyrrole/carbon nanotube nanocomposites [J]. Journal of Nanoscience and Nanotechnology,2006,6(2):547-553.
    [84]Cui H., Li Q., Qian Y, et al. Defluoridation of water via electrically controlled anion exchange by polyaniline modified electrode reactor [J]. Water Research,2011,45(17): 5736-5744.
    [85]Mangold K. M., Weidlich C., Schuster J., et al. Ion exchange properties and selectivity of pss in an electrochemically switchable ppy matrix [J]. Journal of applied electrochemistry,2005,35(12):1293-1301.
    [86]Pascal V., Laetitia D., Joel L., et al. New concept to remove heavy metals from liquid waste based on electrochemical ph-switchable immobilized ligands [J]. Applied Surface Science,2007,253(6):3263-3269.
    [87]Makowski O., Kowalewska B., Szymanska D., et al. Controlled fabrication of multilayered 4-(pyrrole-1-yl) benzoate supported poly(3,4-ethylenedioxythi-ophene) linked hybrid films of prussian blue type nickel hexacyanoferrate [J]. Electrochimica Acta,2007,53(3):1235-1243.
    [88]Wang Y., Shi Z. Q., Huang Y., et al. Supercapacitor devices based on graphene materials [J]. The Journal of Physical Chemistry C,2009,113(30):13103-13107.
    [89]Park B. O., Lokhande C. D., Park H. S., et al. Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes-effect of film thickness [J]. Journal of Power Sources,2004,134(1):148-152.
    [90]Xiao Q. F., Zhou X. The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor [J]. Electrochimica Acta,2003,48(5):575-580.
    [91]Arbizzani C., Mastragostino M., Meneghello L. Polymer-based redox supercapacitors: A comparative study [J]. Electrochimica Acta,1996,41(1):21-26.
    [92]Snook G. A., Kao P., Best A. S. Conducting-polymer-based supercapacitor devices and electrodes [J]. Journal of Power Sources,2011,196(1):1-12.
    [93]Yu A., Liang Z. J., Cho J. H., et al. Nanostructured electrochemical sensor based on dense gold nanoparticle films [J]. Nano Letters,2003,3(9):1203-1207.
    [94]Marrazza G, Chianella I., Mascini M. Disposable DNA electrochemical sensor for hybridization detection [J]. Biosensors and Bioelectronics,1999,14(1):43-51.
    [95]Sun Y. X., Wang S. F., Zhang X. H., et al. Simultaneous determination of epinephrine and ascorbic acid at the electrochemical sensor of triazole sam modified gold electrode [J]. Sensors and Actuators B:Chemical,2006,113(1):156-161.
    [96]Wang Y, Huang J. H., Zhang C. G., et al. Determination of hydrogen peroxide in rainwater by using a polyaniline film and platinum particles co-modified carbon fiber microelectrode [J]. Electroanalysis,1998,10(11):776-778
    [1]Macdiarmid A. G., Chiang J. C., Richter A. F., et al. Polyaniline:a new concept in conducting polymers [J]. Synthetic Metals,1987,18(1-3):285-290.
    [2]Gospodinova N., Terlemezyan L. Conducting polymers prepared by oxidative polymerization:polyaniline [J]. Progress in Polymer Science,1998,23(8):1443-1484.
    [3]Bhadra S., Khastgir D., Singha N. K., et al. Progress in preparation, processing and applications of polyaniline [J]. Progress in Polymer Science,2009,34(8):783-810.
    [4]Wu G, More K. L., Johnston C. M., et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt [J]. Science,2011,332(6028): 443-447.
    [5]Wang H., Hao Q., Yang X., et al. Graphene oxide doped polyaniline for supercapacitors [J]. Electrochemistry Communications,2009,11(6):1158-1161.
    [6]MacDiarmid A. G, Epstein A. J. Secondary doping in polyaniline [J]. Synthetic Metals, 1995,69(1-3):85-92.
    [7]Lee S. H., Lee D. H., Lee K., et al. High-performance polyaniline prepared via polymerization in a self-stabilized dispersion [J]. Advanced Functional Materials,2005, 15(9):1495-1500.
    [8]Gomez-Romero P., Torres-Gomez G. Molecular batteries:Harnessing fe(cn)63-electroactivity in hybrid polyaniline-hexacyanoferrate electrodes [J]. Advanced Materials,2000,12(19):1454-1456.
    [9]Feng X. M., Li R. M., Ma Y. W., et al. One-step electrochemical synthesis of graphene/polyaniline composite film and its applications [J]. Advanced Functional Materials,2011,21(15):2989-2996.
    [10]Kovalenko I., Bucknall D. G, Yushin G. Detonation nanodiamond and onion-like-carbon-embedded polyaniline for supercapacitors [J]. Advanced Functional Materials,2010,20(22):3979-3986.
    [11]Karami H., Asadi M. G, Mansoori M. Pulse electropolymerization and the characterization of polyaniline nanofibers [J]. Electrochimica Acta,2012,61(0): 154-164.
    [12]Chiou N. R, Epstein A. J. Polyaniline nanofibers prepared by dilute polymerization [J]. Advanced Materials,2005,17(13):1679-1683.
    [13]Pomfret S. J., Adams P. N., Comfort N. P., et al. Inherently electrically conductive fibers wet spun from a sulfonic acid-doped polyaniline solution [J]. Advanced Materials,1998, 10(16):1351-1353.
    [14]Qiu H., Zhai J., Li S., et al. Oriented growth of self-assembled polyaniline nanowire arrays using a novel method [J]. Advanced Functional Materials,2003,13(12):925-928.
    [15]Chiou N. R., Lu C. M., Guan J. J., et al. Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties [J]. Nat Nano,2007,2(6): 354-357.
    [16]Green A. G, Woodhead A. E. Ccxliii.-aniline-black and allied compounds. Part i [J]. Journal of the Chemical Society, Transactions,1910,97:2388-2403.
    [17]Ding H., Wan M., Wei Y. Controlling the diameter of polyaniline nanofibers by adjusting the oxidant redox potential [J]. Advanced Materials,2007,19(3):465-469.
    [18]Macdiarmid A. G., Chiang J. C., Halpern M., et al. "Polyaniline":Interconversion of metallic and insulating forms [J]. Molecular Crystals and Liquid Crystals,1985, 121(1-4):173-180.
    [19]Liang L., Liu J., Windisch C. F., et al. Direct assembly of large arrays of oriented conducting polymer nanowires [J]. Angewandte Chemie International Edition,2002, 41(19):3665-3668.
    [20]Hao X. G., Li Y. G, Pritzker M. Pulsed electrodeposition of nickel hexacyanoferrate films for electrochemically switched ion exchange [J]. Separation and Purification Technology,2008,63(2):407-414.
    [21]Hao X. G, Yan T., Wang Z. D., et al. Unipolar pulse electrodeposition of nickel hexacyanoferrate thin films with controllable structure on platinum substrates [J]. Thin Solid Films,2012,520(7):2438-2448.
    [22]Li Y., Zhao K., Du X., et al. Capacitance behaviors of nanorod polyaniline films controllably synthesized by using a novel unipolar pulse electro-polymerization method [J]. Synthetic Metals,2012,162(1-2):107-113.
    [23]Wang Z. D., Hao X. G, Zhang Z. L., et al. One-step unipolar pulse electrodeposition of nickel hexacyanoferrate/chitosan/carbon nanotubes film and its application in hydrogen peroxide sensor [J]. Sensors and Actuators B:Chemical,2012,162(1):353-360.
    [24]Sandberg M., Hjertberg T. E/z isomerism in polyaniline, a model study [J]. Synthetic Metals,1989,29(1):257-264.
    [25]Kertesz M., Ho-Choi C, Hong S. Y. Conformational information from vibrational spectra of polyaniline [J]. Synthetic Metals,1997,85(1-3):1073-1076.
    [26]MacDiarmid A. G, Zhou Y., Feng J. Oligomers and isomers:new horizons in poly-anilines [J]. Synthetic Metals,1999,100(1):131-140.
    [27]Kang E. T., Neoh K. G, Tan K. L. Polyaniline:A polymer with many interesting intrinsic redox states [J]. Progress in Polymer Science,1998,23(2):277-324.
    [28]Tang J. S., Jing X. B., Wang B. C., et al. Infrared spectra of soluble polyaniline [J]. Synthetic Metals,1988,24(3):231-238.
    [29]邓芹英,刘岚,邓慧敏.波谱分析教程[M].科学出版社,2003.
    [30]Yang R., Evans D. F., Christensen L., et al. Scanning tunneling microscopy (STM) evidence of semicrystalline and helical conducting polymer structures [J]. The Journal of Physical Chemistry,1990,94(15):6117-6122.
    [31]Gamier F., Tourillon G, Barraud J. Y, et al. First evidence of crystalline structure in conducting polythiophene [J]. Journal of Materials Science,1985,20(8):2687-2694.
    [32]Kobayashi T., Yoneyama H., Tamura H. Electrochemical reactions concerned with electrochromism of polyaniline film-coated electrodes [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1984,177(1-2):281-291.
    [33]Mazeikien R., Malinauskas A. Electrochemical stability of polyaniline [J]. European Polymer Journal,2002,38(10):1947-1952.
    [34]Delley B. From molecules to solids with the dmol[sup 3] approach [J]. The Journal of Chemical Physics,2000,113(18):7756-7764.
    [35]Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules [J]. The Journal of Chemical Physics,1990,92(1):508-517.
    [36]Becke A. D. A multicenter numerical integration scheme for polyatomic molecules [J]. The Journal of Chemical Physics,1988,88(4):2547-2553.
    [37]Lee C, Yang W., Parr R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density [J]. Physical Review B,1988,37(2): 785-789.
    [38]Inada Y., Orita H. Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes:Evidence of small basis set superposition error compared to gaussian basis sets [J]. Journal of Computational Chemistry,2008,29(2): 225-232.
    [39]Lu F. L., Wudl F., Nowak M., et al. Phenyl-capped octaaniline (coa):An excellent model for polyaniline [J]. Journal of the American Chemical Society,1986,108(26): 8311-8313.
    [40]Bunker B. C., Rieke P. C., Tarasevich B. J., et al. Ceramic thin-film formation on functionalized interfaces through biomimetic processing [J]. Science (New York, N.Y.), 1994,264(5155):48-55.
    [41]Sharma R. K., Rastogi A. C., Desu S. B. Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor [J]. Electrochemistry Communications,2008,10(2):268-272.
    [42]Kalaji M., Nyholm L., Peter L. M. Chronopotentiometric studies of polyaniline films [J]. Journal of Electroanalytical Chemistry,1992,325(1-2):269-284.
    [43]Heinze J. Cyclic voltammetry-"electrochemical spectroscopy". New analytical methods [J]. Angewandte Chemie International Edition in English,1984,23(11): 831-847.
    [44]Nyffenegger R. M., Penner R. M. Nanometer-scale electropolymerization of aniline using the scanning tunneling microscope [J]. The Journal of Physical Chemistry,1996, 100(42):17041-17049.
    [45]Jang J. Conducting polymer nanomaterials and their applications. Emissive materials nanomaterials.2006, Springer Berlin Heidelberg. p.189-260.
    [46]Mi H., Zhang X., Yang S., et al. Polyaniline nanofibers as the electrode material for supercapacitors [J]. Materials Chemistry and Physics,2008,112(1):127-131.
    [47]Jiang H. F., Liu X. X. One-dimensional growth and electrochemical properties of polyaniline deposited by a pulse potentiostatic method [J]. Electrochimica Acta,2010, 55(24):7175-7181.
    [48]Kalakodimi R. P., Nookala M. Electrooxidation of ascorbic acid on a polyaniline-deposited nickel electrode:Surface modification of a non-platinum metal for an electrooxidative analysis [J]. Analytical Chemistry,2002,74(21):5531-5537.
    [49]Chauhan N., Narang J., Pundir C. S. Fabrication of multiwalled carbon nanotubes/polyaniline modified au electrode for ascorbic acid determination [J]. Analyst, 2011,136(9):1938-1945.
    [50]Zhang L., Lian J. Y. Electrochemical synthesis of copolymer of aniline and o-aminophenol and its use to the electrocatalytic oxidation of ascorbic acid [J]. Journal of Electroanalytical Chemistry,2007,611(1-2):51-59.
    [1]Rassat S. D., Sukamto J. H., Orth R. J., et al. Development of an electrically switched ion exchange process for selective ion separations [J]. Separation and purification technology, 1999,15(3):207-222.
    [2]Kavita M. J., Schwartz D. T. Characterization of cathodically deposited nickel hexacyanoferrate for electrochemically switched ion exchange [J]. Separation Science and Technology,2000,35(15):2375-2392.
    [3]Lin Y., Cui X., Bontha J. Electrically controlled anion exchange based on polypyrrole and carbon nanotubes nanocomposite for perchlorate removal [J]. Environmental science & technology,2006,40(12):4004-4009.
    [4]Lyskawa J., Le Derf F., Levillain E., et al. Univocal demonstration of the electrochemically mediated binding of Pb2+ by a modified surface incorporating a ttf-based redox-switchable ligand [J]. Journal of the American Chemical Society,2004, 126(39):12194-12195.
    [5]Hao X., Schwartz D. T. Tuning intercalation sites in nickel hexacyanoferrate using lattice nonstoichiometry [J]. Chemistry of materials,2005,17(23):5831-5836.
    [6]Green-Pedersen H., Korshin G. V. Separation of cesium from high ionic strength solutions using a cobalt hexacyanoferrate-modified graphite electrode [J]. Environmental science & technology,1999,33(15):2633-2637.
    [7]Chen W., Xia X. H. Highly stable nickel hexacyanoferrate nanotubes for electrically switched ion exchange [J]. Advanced Functional Materials,2007,17(15):2943-2948.
    [8]Weidlich C., Mangold K. M., Juttner K. Conducting polymers as ion-exchangers for water purification [J]. Electrochimica acta,2001,47(5):741-745.
    [9]Weidlich C., Mangold K. M., Juttner K. Continuous ion exchange process based on polypyrrole as an electrochemically switchable ion exchanger [J]. Electrochimica acta, 2005,50(25):5247-5254.
    [10]Weidlich C., Mangold K. M., Juttner K. EQCM study of the ion exchange behaviour of polypyrrole with different counterions in different electrolytes [J]. Electrochimica acta, 2005,50(7):1547-1552.
    [11]Mangold K. M., Weidlich C., Schuster J., et al. Ion exchange properties and selectivity of PSS in an electrochemically switchable PPy matrix [J]. Journal of applied electrochemistry,2005,35(12):1293-1301.
    [12]Lin Y. Electrosynthesis, characterization, and application of novel hybrid materials based on carbon nanotube-polyaniline-nickel hexacyanoferrate nanocomposites [J]. Journal of Materials Chemistry,2006,16(6):585-592.
    [13]Lin Y. Novel hybrid materials with high stability for electrically switched ion exchange: Carbon nanotube-polyaniline-nickel hexacyanoferrate nanocomposites [J]. Chemical communications,2005, (17):2226-2228.
    [14]Zang Y., Hao X. G, Wang Z. D., et al. Copolymerization and capacitive performance of composite carbon nanotubes/polyaniline/nickel hexacyanoferrate films [J]. Acta Phys Chim Sin,2010,26(02):291-298.
    [15]Lisowska-Oleksiak A., Nowak A. P. Impedance spectroscopy studies on hybrid materials consisting of poly(3,4-ethylenedioxythiophene) and iron, cobalt and nickel hexacyanoferrate [J]. Solid State Ionics,2008,179(1):72-78.
    [16]Viel P., Dubois L., Lyskawa J., et al. New concept to remove heavy metals from liquid waste based on electrochemical pH-switchable immobilised ligands [J]. Appl. Surf. Sci, 2007,253:3263-3269.
    [17]Le X. T., Jegou P., Viel P., et al. Electro-switchable surfaces for heavy metal waste treatment:Study of polyacrylic acid films grafted on gold surfaces [J]. Electrochemistry Communications,2008,10(5):699-703.
    [18]Guo X., Qian X., Jia L. A highly selective and sensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution [J]. Journal of the American Chemical Society, 2004,126(8):2272-2273.
    [19]Viel P., Palacin S., Descours F., et al. Electropolymerized poly-4-vinylpyridine for removal of copper from wastewater [J]. Applied surface science,2003,212:792-796.
    [20]Le X. T., Viel P., Sorin A., et al. Electrochemical behaviour of polyacrylic acid coated gold electrodes:An application to remove heavy metal ions from wastewater [J]. Electrochimica acta,2009,54(25):6089-6093.
    [21]Le X. T., Viel P., Jegou P., et al. Electrochemical-switchable polymer film:An emerging technique for treatment of metallic ion aqueous waste [J]. Separation and purification technology,2009,69(2):135-140.
    [22]何星存,李平.聚2,6-吡啶二甲酸膜对儿茶酚和对苯二酚电氧化的催化性能及其应用[J].化学研究与应用,2000,12(2):152-155.
    [23]Palacin S., Bureau C., Charlier J., et al. Molecule-to-metal bonds:Electrografting polymers on conducting surfaces [J]. ChemPhysChem,2004,5(10):1468-1481.
    [24]Hao X., Li Y., Pritzker M. Pulsed electrodeposition of nickel hexacyanoferrate films for electrochemically switched ion exchange [J]. Separation and purification technology, 2008,63(2):407-414.
    [25]Hepel M., Xing Z., Stephenson Richard, et al. Use of electrochemical quartz crystal microbalance technique to track electrochemically assisted removal of heavy metals from aqueous solutions by cation-exchange composite polypyrrole-modified electrodes [J]. Microchemical Journal,1997,56(1):79-92.
    [1]Lee Y. J., Park J. Y., Kim Y, et al. Amperometric sensing of hydrogen peroxide via highly roughened macroporous Gold-/Platinum nanoparticles electrode [J]. Current Applied Physics,2011,11(2):211-216.
    [2]Tsiafoulis C. G.., Trikalitis P. N., Prodromidis M. I. Synthesis, characterization and performance of vanadium hexacyanoferrate as electrocatalyst of H2O2 [J]. Electrochemistry Communications,2005,7(12):1398-1404.
    [3]Wang Y., Huang J. H., Zhang C. G., et al. Determination of hydrogen peroxide in rainwater by using a polyaniline film and platinum particles co-modified carbon fiber microelectrode [J]. Electroanalysis,1998,10(11):776-778.
    [4]Karyakin Arkady A., Puganova Elena A., Budashov Igor A., et al. Prussian blue based nanoelectrode arrays for H2O2 detection [J]. Analytical Chemistry,2003,76(2):474-478.
    [5]Sitnikova N. A., Borisova A. V., Komkova M. A., et al. Superstable advanced hydrogen peroxide transducer based on transition metal hexacyanoferrates [J]. Analytical Chemistry,2011,83(6):2359-2363.
    [6]Shi Y., Liu Z. L., Zhao B., et al. Carbon nanotube decorated with silver nanoparticles via noncovalent interaction for a novel nonenzymatic sensor towards hydrogen peroxide reduction [J]. Journal of Electroanalytical Chemistry,2011,656(1-2):29-33.
    [7]Quintino M. S. M., Winnischofer H., Araki K., et al. Cobalt oxide/tetraruthenated cobalt-porphyrin composite for hydrogen peroxide amperometric sensors [J]. Analyst, 2005,130(2):221-226.
    [8]Ivandini T. A., Sato R., Makide Y., et al. Pt-implanted boron-doped diamond electrodes and the application for electrochemical detection of hydrogen peroxide [J]. Diamond and Related Materials,2005,14(11-12):2133-2138.
    [9]Santhosh P., Manesh K. M., Gopalan A., et al. Fabrication of a new polyaniline grafted multi-wall carbon nanotube modified electrode and its application for electrochemical detection of hydrogen peroxide [J]. Anal Chim Acta,2006,575(1):7-7.
    [10]Shen Y, Trauble M., Wittstock G. Detection of hydrogen peroxide produced during electrochemical oxygen reduction using scanning electrochemical microscopy [J]. Analytical Chemistry,2008,80(3):750-759.
    [11]Puganova E. A., Karyakin A. A. New materials based on nanostructured Prussian blue for development of hydrogen peroxide sensors [J]. Sensors and Actuators B-Chemical,2005, 109(1):167-170.
    [12]Liu Y., Chu Z. Y., Jin W. Q. A sensitivity-controlled hydrogen peroxide sensor based on self-assembled Prussian Blue modified electrode [J]. Electrochemistry Communications, 2009,11(2):484-487.
    [13]Yang M. H., Jiang J. H., Yang Y. H., et al. Carbon nanotube/cobalt hexacyanoferrate nanoparticle-biopolymer system for the fabrication of biosensors [J]. Biosensors and Bioelectronics,2006,21(9):1791-1797.
    [14]Fiorito P. A., Cordoba de Torresi S. I. Hybrid nickel hexacyanoferrate/polypyrrole composite as mediator for hydrogen peroxide detection and its application in oxidase-based biosensors [J]. Journal of Electroanalytical Chemistry,2005,581(1): 31-37.
    [15]Wang Z. D., Hao X. G, Zhang Z. L., et al. One-step unipolar pulse electrodeposition of nickel hexacyanoferrate/chitosan/carbon nanotubes film and its application in hydrogen peroxide sensor [J]. Sensors and Actuators B:Chemical,2012,162(1):353-360.
    [16]Zou Y. J., Sun L. X., Xu F. Prussian Blue electrodeposited on MWNTs-PANI hybrid composites for H2O2 detection [J]. Talanta,2007,72(2):437-442.
    [17]Zou Y. J., Sun L. X., Xu F. Biosensor based on polyaniline-Prussian Blue/multi-walled carbon nanotubes hybrid composites [J]. Biosensors and Bioelectronics,2007,22(11): 2669-2674.
    [18]de Lara Gonzalez G. L., Kahlert H., Scholz F. Catalytic reduction of hydrogen peroxide at metal hexacyanoferrate composite electrodes and applications in enzymatic analysis [J]. Electrochimica Acta,2007,52(5):1968-1974.
    [19]Karyakin A. A., Karyakina E. E. Prussian Blue-based'artificial peroxidase' as a transducer for hydrogen peroxide detection. Application to biosensors [J]. Sensors and Actuators B:Chemical,1999,57(1-3):268-273.
    [20]Qu F. L., Yang M. H., Jiang J. H., et al. Amperometric biosensor for choline based on layer-by-layer assembled functionalized carbon nanotube and polyaniline multilayer film [J]. Analytical Biochemistry,2005,344(1):108-114.
    [21]Wen J. X., Zhou L., Jin L. T., et al. Overoxidized polypyrrole/multi-walled carbon nanotubes composite modified electrode for in vivo liquid chromatography-electrochemical detection of dopamine [J]. Journal of Chromatography B,2009,877(20-21):1793-1798.
    [22]Liu J., Lin Y., Liang L., et al. Templateless assembly of molecularly aligned conductive polymer nanowires:A new approach for oriented nanostructures [J]. Chem. Eur.,2003: 604-611.
    [23]Huang W. S., Humphrey B. D., MacDiarmid A. G. Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes [J]. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases,1986,82(8):2385-2400.
    [24]Hao X. G., Schwartz D. T. Tuning intercalation sites in nickel hexacyanoferrate using lattice nonstoichiometry [J]. Chemistry of Materials,2005,17(23):5831-5836.
    [25]Chen W., Xia X. H. Highly stable nickel hexacyanoferrate nanotubes for electrically switched ion exchange [J]. Advanced Functional Materials,2007,17(15):2943-2948.
    [26]Wang X. Y., Zhang Y., Banks Craig E., et al. Non-enzymatic amperometric glucose biosensor based on nickel hexacyanoferrate nanoparticle film modified electrodes [J]. Colloids and Surfaces B:Biointerfaces,2010,78(2):363-366.
    [27]Hao X. G, Li Y. G, Pritzker M. Pulsed electrodeposition of nickel hexacyanoferrate films for electrochemically switched ion exchange [J]. Separation and Purification Technology, 2008,63(2):407-414.
    [28]Chen W., Tang J., Cheng H. J., et al. A simple method for fabrication of sole composition nickel hexacyanoferrate modified electrode and its application [J]. Talanta,2009,80(2): 539-543.
    [29]Chen W., Tang J., Xia X. H. Composition and shape control in the construction of functional nickel hexacyanoferrate nanointerfaces [J]. The Journal of Physical Chemistry C,2009,113(52):21577-21581.
    [30]Hao X. G, Yan T., Wang Z. D., et al. Unipolar pulse electrodeposition of nickel hexacyanoferrate thin films with controllable structure on platinum substrates [J]. Thin Solid Films,2012,520(7):2438-2448.
    [31]Kulesza P. J., Miecznikowski K., Malik M. A., et al. Electrochemical preparation and characterization of hybrid films composed of Prussian Blue type metal hexacyanoferrate and conducting polymer [J]. Electrochimica Acta,2001,46(26-27):4065-4073.
    [32]Zhang L., Dong S. J. The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of camphorsulfonic acid [J]. Journal of Electroanalytical Chemistry,2004,568(0):189-194.
    [33]Mu S. L., Kan J. Q. The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of ferrocenesulfonic acid [J]. Synthetic Metals,2002,132(1): 29-33.
    [34]Lin H.K., Chen S.A. Synthesis of new water-soluble self-doped polyaniline [J]. Macromolecules 2000,33:8117-8118.
    [35]Lin Y. H., Cui X. L. Electrosynthesis, characterization, and application of novel hybrid materials based on carbon nanotube-polyaniline-nickel hexacyanoferrate nanocomposites [J]. Journal of Materials Chemistry,2006,16(6):585-592.
    [36]Zhan S. L., Tian Y. J., Cui Y. B., et al. Effect of process conditions on the synthesis of carbon nanotubes by catalytic decomposition of methane [J]. China Particuology,2007, 5(3):213-219.
    [37]Narang J., Chauhan N., Pundir C. S. A non-enzymatic sensor for hydrogen peroxide based on polyaniline, multiwalled carbon nanotubes and gold nanoparticles modified Au electrode [J]. Analyst,2011:4460-4466.
    [38]Mi H. Y, Zhang X. G., Yang S. D., et al. Polyaniline nanofibers as the electrode material for supercapacitors [J]. Materials Chemistry and Physics,2008,112(1):127-131.
    [39]Jiang H. F., Liu X. X. One-dimensional growth and electrochemical properties of polyaniline deposited by a pulse potentiostatic method [J]. Electrochimica Acta,2010, 55(24):7175-7181.
    [40]Quiles F., Burneau A. Infrared and Raman spectra of alkaline-earth and copper(ii) acetates in aqueous solutions [J]. Vibrational Spectroscopy,1998,16(2):105-117.
    [41]Galus Z. Fundamentals of electrochemical analysis, ellis horwood press [M]. New York, 1976:313-320.
    [42]Zhang J., Zhang C. H., Zhang L. Polymerization of aniline on orthanilic acid functionalized glassy carbon electrode and its application for electro-oxidation of ascorbic acid [J]. Chinese Journal of Analytical Chemistry 2009,9:1281-1285.
    [43]Cataldi T. R. I., De Benedetto G. E. On the ability of ruthenium to stabilize polynuclear hexacyanometallate film electrodes [J]. Journal of Electroanalytical Chemistry,1998, 458(1-2):149-154.
    [44]Prabhu P., Suresh B. R., Sriman N. S. Amperometric determination of L-Dopa by nickel hexacyanoferrate film modified gold nanoparticle graphite composite electrode [J]. Sensors and Actuators B:Chemical,2011,156(2):606-614.
    [1]Won Y. H., Aboagye D., Jang H. S., et al. Core/shell nanoparticles as hybrid platforms for the fabrication of a hydrogen peroxide biosensor [J]. Journal of Materials Chemistry, 2010,20(24):5030-5034.
    [2]Tietjen J., Mancott A. Rapid assay of hydrogen peroxide solution (USP XVIII) via UV spectrophotometry [J]. Journal of Pharmaceutical Sciences,1971,60(3):460-461.
    [3]Madsen B. C., Kromis M. S. Flow injection and photometric determination of hydrogen peroxide in rainwater with N-ethyl-N-(sulfopropyl)aniline sodium salt [J]. Analytical Chemistry,1984,56(14):2849-2850.
    [4]King D. W., Cooper William J., Rusak S. A., et al. Flow injection analysis of H2O2 in natural waters using acridinium ester chemiluminescence:Method development and optimization using a kinetic model [J]. Analytical Chemistry,2007,79(11):4169-4176.
    [5]Hong J. G., Maguhn J., Freitag D., et al. Determination of H2O2 and organic peroxides by high-performance liquid chromatography with post-column UV irradiation, derivatization and fluorescence detection [J]. Fresenius' Journal of Analytical Chemistry, 1998,361(2):124-128.
    [6]Pappas A. C., Stalikas C. D., Fiamegos Y. C., et al. Determination of hydrogen peroxide by using a flow injection system with immobilized peroxidase and long pathlength capillary spectrophotometry [J]. Analytica Chimica Acta,2002,455(2):305-313.
    [7]Qi H. L., Zhang C. X., Li X. R. Amperometric third-generation hydrogen peroxide biosensor incorporating multiwall carbon nanotubes and hemoglobin [J]. Sensors and Actuators B:Chemical,2006,114(1):364-370.
    [8]Liu S., Li L. M., Hao Q. Y., et al. A novel non-enzymatic hydrogen peroxide sensor based on Mn-nitrilotriacetate acid (Mn-NTA) nanowires [J]. Talanta,2010,81(1-2): 727-731.
    [9]Tao W. Y, Pan D. W., Liu Y. J., et al. An amperometric hydrogen peroxide sensor based on immobilization of hemoglobin in poly(o-aminophenol) film at iron-cobalt hexacyanoferrate-modified gold electrode [J]. Analytical Biochemistry,2005,338(2): 332-340.
    [10]Li W. J., Yuan R., Chai Y. Q., et al. Immobilization of horseradish peroxidase on chitosan/silica sol-gel hybrid membranes for the preparation of hydrogen peroxide biosensor [J]. Journal of Biochemical and Biophysical Methods,2008,70(6):830-837.
    [11]Cao X., Wang N., Wang L., et al. A novel non-enzymatic hydrogen peroxide biosensor based on ultralong manganite MnOOH nanowires [J]. Sensors and Actuators B: Chemical,2010,147(2):730-734.
    [12]Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348):56-58.
    [13]Ragupathy D., Gopalan A. I., Lee K. P. Synergistic contributions of multiwall carbon nanotubes and gold nanoparticles in a chitosan-ionic liquid matrix towards improved performance for a glucose sensor [J]. Electrochemistry Communications,2009,11(2): 397-401.
    [14]Qian L., Yang X. R. Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor [J]. Talanta,2006,68(3):721-727.
    [15]Wang S. F., Shen L., Zhang W. D., et al. Preparation and mechanical properties of chitosan/carbon nanotubes composites [J]. Biomacromolecules,2005,6(6):3067-3072.
    [16]Tsang S. C., Chen Y. K., Harris P. J. F., et al. A simple chemical method of opening and filling carbon nanotubes [J]. Nature,1994,372(6502):159-162.
    [17]Jiang Z. Y, Yu Y. X., Wu H. Preparation of CS/GPTMS hybrid molecularly imprinted membrane for efficient chiral resolution of phenylalanine isomers [J]. Journal of Membrane Science,2006,280(1-2):876-882.
    [18]Wang X. Y, Gu H. F., Yin F., et al. A glucose biosensor based on Prussian blue/chitosan hybrid film [J]. Biosensors and Bioelectronics,2009,24(5):1527-1530.
    [19]Song Z. J., Yuan R., Chai Y. Q., et al. Multilayer structured amperometric immunosensor based on gold nanoparticles and Prussian blue nanoparticles/nanocomposite functionalized interface [J]. Electrochimica Acta,2010,55(5):1778-1784.
    [20]Liu Y, Wang M. K., Zhao F., et al. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix [J]. Biosensors and Bioelectronics,2005,21(6):984-988.
    [21]Kaushik A., Khan R., Solanki P. R., et al. Iron oxide nanoparticles-chitosan composite based glucose biosensor [J]. Biosensors and Bioelectronics,2008,24(4):676-683.
    [22]Wang Y., Wei W. Z., Liu X. Y., et al. Carbon nanotube/chitosan/gold nanoparticles-based glucose biosensor prepared by a layer-by-layer technique [J]. Materials Science and Engineering:C,2009,29(1):50-54.
    [23]Lin J. H., He C. Y, Zhao Y, et al. One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor [J]. Sensors and Actuators B:Chemical,2009,137(2):768-773.
    [24]Yang M. H., Jiang J. H., Yang Y. H., et al. Carbon nanotube/cobalt hexacyanoferrate nanoparticle-biopolymer system for the fabrication of biosensors [J]. Biosensors and Bioelectronics,2006,21(9):1791-1797.
    [25]Rassat S. D., Sukamto J. H., Orth R. J., et al. Development of an electrically switched ion exchange process for selective ion separations [J]. Separation and Purification Technology,1999,15(3):207-222.
    [26]Bocarsly A. B., Sinha S. Chemically-derivatized nickel surfaces:Synthesis of a new class of stable electrode interfaces [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1982,137(1):157-162.
    [27]Bocarsly A. B., Sinha S. Effects of surface structure on electrode charge transfer properties:Induction of ion selectivity at the chemically derivatized interface [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1982,140(1): 167-172.
    [28]Hidalgo-Luangdilok C., Bocarsly Andrew B. Nickel-electrode-confined {Ru(bipyrazine)3[Fe(CN)5]n}2-3n:An inorganic structural matrix yielding photoinduced multinuclear charge-transfer reactivity [J]. Inorganic Chemistry,1990,29(16): 2894-2900.
    [29]Pfennig B. W., Bocarsly A. B. Surface-attached [(NC)5Fe(CN)Pt(NH3)4(NC)Fe(CN)5]4": A study in the electrochemical and photochemical control of surface morphology [J]. Inorganic Chemistry,1991,30(4):666-672.
    [30]Wrighton M. S., Palazzotto M. C., Bocarsly A. B., et al. Preparation of chemically derivatized platinum and gold electrode surfaces. Synthesis, characterization, and surface attachment of trichlorosilylferrocene, (1,1'-ferrocenediyl)dichlorosilane, and 1,1'-bis(triethoxysilyl)ferrocene [J]. Journal of the American Chemical Society,1978, 100(23):7264-7271.
    [31]Jeerage K. M., Steen W. A., Schwartz D. T. Correlating nanoscale structure with ion intercalation in electrodeposited nickel hexacyanoferrate thin films [J]. Chemistry of Materials,2002,14(2):530-535.
    [32]Hao X. G., Schwartz D. T. Tuning intercalation sites in nickel hexacyanoferrate using lattice nonstoichiometry [J]. Chemistry of Materials,2005,17(23):5831-5836.
    [33]Liu Y., Chu Z. Y., Jin W. Q. A sensitivity-controlled hydrogen peroxide sensor based on self-assembled Prussian blue modified electrode [J]. Electrochemistry Communications, 2009,11(2):484-487.
    [34]Kumar A. S., Barathi P., Pillai K. C. In situ precipitation of Nickel-hexacyanoferrate within multi-walled carbon nanotube modified electrode and its selective hydrazine electrocatalysis in physiological pH [J]. Journal of Electroanalytical Chemistry,2011, 654(1-2):85-95.
    [35]Sitnikova N. A., Borisova A. V., Komkova M. A., et al. Superstable advanced hydrogen peroxide transducer based on transition metal hexacyanoferrates [J]. Analytical Chemistry,2011,83(6):2359-2363.
    [36]Longchamp S., Goubard F. AB5-type intermetallic compound as a substrate for nickel hexacyanoferrate modified electrodes [J]. Sensors and Actuators, B:Chemical,2004, 99(2-3):516-524.
    [37]Salimi A., Abdi K. Enhancement of the analytical properties and catalytic activity of a nickel hexacyanoferrate modified carbon ceramic electrode prepared by two-step sol-gel technique:Application to amperometric detection of hydrazine and hydroxyl amine [J]. Talanta,2004,63(2):475-483.
    [38]Karyakin A. A., Karyakina E. E., Gorton L. On the mechanism of H2O2 reduction at Prussian blue modified electrodes [J]. Electrochemistry Communications,1999,1(2): 78-82.
    [39]Yang S. L., Liu X. Y., Zeng X. D., et al. Fabrication of nano-copper/carbon nanotubes/chitosan film by one-step electrodeposition and its sensitive determination of nitrite [J]. Sensors and Actuators B:Chemical,2010,145(2):762-768.
    [40]Chen X. H., Matsumoto N., Hu Y. B., et al. Electrochemically mediated electrodeposition/electropolymerization to yield a glucose microbiosensor with improved characteristics [J]. Analytical Chemistry,2002,74(2):368-372.
    [41]Chandrasekar M. S., Pushpavanam M. Pulse and pulse reverse plating-Conceptual, advantages and applications [J]. Electrochimica Acta,2008,53(8):3313-3322.
    [42]Hao X. G, Li Y. G, Pritzker M. Pulsed electrodeposition of nickel hexacyanoferrate films for electrochemically switched ion exchange [J]. Separation and Purification Technology,2008,63(2):407-414.
    [43]Hao X. G, Ma X. L., Wang Z. D., et al. Unipolar pulse electrodeposition of nickel hexacyanoferrate thin films with controllable structure on platinum substrates [J]. The Solid Films,2012,31(7):2438-2448.
    [44]Chen W., Tang J., Xia X. H. Composition and shape control in the construction of functional nickel hexacyanoferrate nanointerfaces [J]. Journal of Physical Chemistry C, 2009,113(52):21577-21581.
    [45]Chen W., Tang J., Cheng H. J., et al. A simple method for fabrication of sole composition nickel hexacyanoferrate modified electrode and its application [J]. Talanta, 2009,80(2):539-543.
    [46]Kim B., Sigmund W. M. Functionalized multiwall carbon nanotube/gold nanoparticle composites [J]. Langmuir,2004,20(19):8239-8242.
    [47]Xi F. N., Liu L. J., Chen Z. C., et al. One-step construction of reagentless biosensor based on chitosan-carbon nanotubes-nile blue-horseradish peroxidase biocomposite formed by electrodeposition [J]. Talanta,2009,78(3):1077-1082.
    [48]Spinks G. M., Shin S. R., Wallace G G., et al. Mechanical properties of chitosan/CNT microfibers obtained with improved dispersion [J]. Sensors and Actuators B:Chemical, 2006,115(2):678-684.
    [49]Cha C. S., Zu Y. B. Behavior of perfluorinated surfactants at the electrode/solution interface [J]. Langmuir,1998,14(21):6280-6286.
    [50]Qiao R. Control of electroosmotic flow by polymer coating:Effects of the electrical double layer [J]. Langmuir,2006,22(16):7096-7100.
    [51]Luo X. L., Xu J. J., Wang J. L., et al. Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application [J]. Chemical Communications, 2005,0(16):2169-2171.
    [52]Zamponi S., Berrettoni M., Kulesza P. J., et al. Influence of experimental conditions on electrochemical behavior of Prussian blue type nickel hexacyanoferrate film [J]. Electrochimica Acta,2003,48(28):4261-4269.
    [53]Arvinte A., Westermann A. C., Sesay A. M., et al. Electrocatalytic oxidation and determination of insulin at CNT-nickel-cobalt oxide modified electrode [J]. Sensors and Actuators B:Chemical,2010,150(2):756-763.
    [54]Rashkova V., Kitova S., Konstantinov I., et al. Vacuum evaporated thin films of mixed cobalt and nickel oxides as electrocatalyst for oxygen evolution and reduction [J]. Electrochimica Acta,2002,47(10):1555-1560.
    [55]Abbaspour A., Khajehzadeh A., Ghaffarinejad A. Electrocatalytic oxidation and determination of hydrazine on nickel hexacyanoferrate nanoparticles-modified carbon ceramic electrode [J]. Journal of Electroanalytical Chemistry,2009,631(1-2):52-57.
    [56]Yang M. H., Yang Y. H., Qu F. L., et al. Attachment of nickel hexacyanoferrates nanoparticles on carbon nanotubes:Preparation, characterization and bioapplication [J]. Analytica Chimica Acta,2006,571(2):211-217.
    [57]Abbaspour A., Mehrgardi M. A. Electrocatalytic oxidation of guanine and DNA on a carbon paste electrode modified by cobalt hexacyanoferrate films [J]. Analytical Chemistry,2004,76(19):5690-5696.
    [58]Guadagnini L., Tonelli D., Giorgetti M. Improved performances of electrodes based on Cu2+-loaded copper hexacyanoferrate for hydrogen peroxide detection [J]. Electrochimica Acta,2010,55(17):5036-5039.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700