用户名: 密码: 验证码:
改性壳聚糖在环境痕量元素及其形态分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境问题是全球共同关注的一个热点,对环境污染物的监测分析已成为当今分析化学领域的一大热门。在各种环境污染物中,环境痕量元素由于其对生命物质的营养和毒害双重作用而广受重视。环境痕量元素的生物有效性和毒性大小不仅与其总量有关,更主要取决于其存在的化学形态。对环境痕量元素进行形态分析对于掌握其毒性和了解其生物有效性具有重大的现实意义,元素形态分析目前已成为分析化学的一个前沿研究课题。
     环境痕量元素由于其含量非常低,一般在分析测定前都要进行预富集分离,常用的预富集分离技术有萃取、共沉淀、离子交换、吸附等。利用生物吸附剂吸附的预富集分离方法由于其取材来源广、成本低、操作简单而吸引了众多研究者的兴趣。壳聚糖(CTS)就是这样的一种生物吸附剂,关于壳聚糖已有大量研究报道,但是将改性壳聚糖应用于痕量元素形态分析的研究却比较少。本论文以壳聚糖的改性及其在环境痕量元素形态分析中的应用为研究内容,主要工作和创新点如下:
     (1)、合成了二乙烯三胺交联壳聚糖(DCCTS),并将其应用于无机硒和砷的形态分析。利用红外光谱和扫描电镜对DCCTS进行了结构表征,研究了DCCTS对Se(Ⅵ)和Se(Ⅳ)、As(Ⅴ)和As(Ⅲ)的吸附行为,结果表明,在pH=3.6时,DCCTS对Se(Ⅵ)的吸附率达94%,对Se(Ⅳ)的吸附率只有5%左右,所以在pH=3.6时,DCCTS能选择性富集分离Se(Ⅵ);在pH=3.0时,DCCTS对As(V)的吸附率达96%,对As(Ⅲ)的吸附率小于10%,所以在pH=3.0时,DCCTS能选择性富集分离As(V)。以DCCTS为富集分离剂,电感耦合等离子体发射光谱法(ICP-OES)和石墨炉原子吸收光谱法(GFAAS)为检测手段,分别测定了环境水样中Se(Ⅵ)和Se(Ⅳ)、As(Ⅴ)和As(Ⅲ)形态,获得了满意的结果。(2)、制备了氯化胆碱接枝壳聚糖(HGCTS),并将其应用于无机铬的形态分析。研究了HGCTS对Cr(Ⅵ)和Cr(Ⅲ)的吸附行为,结果表明,在pH=4.0时,HGCTS对Cr(Ⅵ)的吸附率达97%,对Cr(Ⅲ)的吸附率只有5%左右,所以在pH=4.0时,HGCTS能选择性富集分离Cr(Ⅵ)。HGCTS对Cr(Ⅵ)的吸附机理为静电引力和离子交换作用,吸附符合Langmuir模型和准二级动力学模型。以HGCTS为富集分离剂,火焰原子吸收光谱法为检测手段,构建了一种新的测定环境水样中Cr(Ⅵ)和Cr(Ⅲ)形态的方法。
     (3)、制备了氨基硫脲接枝壳聚糖(AGCTS),并将其应用于Mn(Ⅱ)和Mn(Ⅶ)的形态分析。研究了AGCTS对Mn(Ⅶ)和Mn(Ⅱ)的吸附行为,结果表明,在pH=3.3时,HGCTS对Mn(Ⅶ)的吸附率达96%,对Mn(Ⅱ)的吸附率只有4%左右,所以在pH=3.3时,AGCTS能选择性富集分离Mn(Ⅶ)。考察了溶液pH、温度和接触时间等因素对吸附的影响。以AGCTS为富集分离剂,石墨炉原子吸收光谱法为检测手段,构建了一种新的测定环境水样中Mn(Ⅶ)和Mn(Ⅱ)形态的方法。
     (4)、合成了氨基乙酸交联壳聚糖(ACCTS),并将其应用于Sb(Ⅲ)和Sb(Ⅴ)的形态分析。研究结果表明,未用吡咯烷二硫代氨基甲酸铵(APDC)络合时,ACCTS对Sb(Ⅲ)和Sb(Ⅴ)的吸附率都不高,用APDC络合后,在pH=5.0时,ACCTS对Sb(Ⅲ)-APDC的吸附率达98%,而对Sb(Ⅴ)-APDC的吸附率小于10%,所以,用APDC络合后,在pH=5.0时,ACCTS能选择性富集分离Sb(Ⅲ)。以ACCTS为富集分离剂,石墨炉原子吸收光谱法为检测手段,构建了一种新的测定环境水样中Sb(Ⅲ)和Sb(Ⅴ)形态的方法。
     (5)、合成了铁(Ⅲ)模板-硫脲交联壳聚糖(Fe(Ⅲ)-TCCTS),考察了Fe(Ⅲ)和Fe(Ⅱ)在Fe(Ⅲ)-TCCTS上的吸附行为。研究结果表明,Fe(Ⅲ)-TCCTS对Fe(Ⅲ)和Fe(Ⅱ)的吸附行为非常相似,但对Fe(Ⅲ)的吸附容量比Fe(Ⅱ)大,吸附符合Langmuir模型和准二级动力学模型。Fe(Ⅲ)-TCCTS能选择性吸附Fe(Ⅲ),可将其应用于除去废水中的铁离子。
The problem of environment has already become a global focus. The analysis of environmental pollution has attracted large attention in current analytical chemistry region. The environmental trace elements are very important pollutants for their effect of nutrition and toxicity on life. The effect of nutrition and toxicity of the environmental trace elements is decided not only by their amounts but also by their speciation. It is very important to know the effect of nutrition and toxicity of the environmental trace elements by speciation of the environmental trace elements. Speciation analysis of element has become an advanced region.
     Enrichment and separation are necessary prior to determination of trace elements because their content is low. The methods of enrichment and separation include extraction, precipitation, ion-exchange and adsorption. The bio-adsorbents have attracted more attention for their advantages of large source, low cost and easy operation. Chitosan is one of these bio-adsorbents, there are many reports about chitosan, however, the reports about application of modified chitosan to speciation of trace elements are few. This thesis concentrates research on chitosan modification and their application to speciation of trace elements. The major contents and novelty of this thesis are given in the following.
     (1) The cross-linked chitosan was synthesized with Diethylene Triamine (DCCTS), and applied to speciation of inorganic selenium and arsenic. The characterization of DCCTS was performed by FTIR and SEM. The adsorption behavior of Se(Ⅵ) and Se(Ⅳ), As(Ⅴ) and As(Ⅲ) on DCCTS was studied. The results indicated that the adsorption efficiency of Se(Ⅵ) was94%at pH3.6, whereas5%of Se(Ⅳ). Thus DCCTS can concentrate and separate Se (Ⅵ) from Se (Ⅳ) solution at pH3.6. The results also showed that the adsorption efficiency of As(Ⅴ) was96%at pH3.0, whereas which of As(Ⅲ) was lower than10%. DCCTS can concentrate and separate As(Ⅴ) from As(Ⅲ) solution at pH3.0. Speciation of Se(Ⅵ) and Se(Ⅳ), As(Ⅴ) and As(Ⅲ) in environmental water samples was performed using DCCTS as adsorbent and ICP-OES, GFAAS as determination means, respectively. The result was approving.
     (2) The grafting chitosan was prepared with2-Hydroxyethyl trimethyl ammonium chloride(HGCTS), and applied to speciation of inorganic chromium. The adsorption behavior of Cr(Ⅵ) and Cr(Ⅲ) on HGCTS was studied. The results indicated that the adsorption efficiency of Cr(Ⅵ) was97%at pH4.0, whereas5%of Cr(Ⅲ). Thus HGCTS can concentrate and separate Cr(Ⅵ) from Cr(Ⅲ) solution at pH4.0. The adsorption mechanism of Cr(VI) on HGCTS was electrostatic attraction and ion exchange. The adsorption agreed very well with the Langmuir model and the Pseudo second-order kinetic model. A novel method for speciation of Cr(Ⅵ) and Cr(Ⅲ) in environmental water samples has been developed using HGCTS as adsorbent and FAAS as determination means.
     (3) The grafting chitosan was prepared with aminothiourea (AGCTS), and applied to speciation of Mn(Ⅶ) and Mn(Ⅱ). The adsorption behavior of Mn(Ⅶ) and Mn(Ⅱ) on AGCTS was studied. The results indicated that the adsorption efficiency of Mn(Ⅶ) was96%at pH3.3, whereas4%of Mn(Ⅱ). Thus AGCTS can concentrate and separate Mn(Ⅶ) from Mn(Ⅱ) solution at pH3.3. The effect of pH, temperature and contact time was investigated. A novel method for speciation of Mn(Ⅶ) and Mn(Ⅱ) in environmental water samples has been developed using AGCTS as adsorbent and GFAAS as determination means.
     (4) The cross-linked chitosan was synthesized with aminoacetic (ACCTS), and applied to speciation of Sb(Ⅲ) and Sb(Ⅴ). The results showed that the adsorption efficiency of Sb(Ⅲ) and Sb(Ⅴ) was low on ACCTS before chelated with ammonium pyrrolidine dithiocarbamate (APDC) and after chelated with APDC, the adsorption efficiency of Sb(Ⅲ)-APDC was98%at pH5.0, whereas which of Sb(Ⅴ)-APDC was lower than10%. Thus, ACCTS can concentrate and separate Sb(Ⅲ) at pH5.0after chelated with APDC. A novel method for speciation of Sb(Ⅲ) and Sb(Ⅴ) in environmental water samples has been developed using ACCTS as adsorbent and GFAAS as determination means.
     (5) The thiourea cross-linked chitosan with Fe(Ⅲ) as template (Fe(Ⅲ)-TCCTS) was synthesized. The adsorption behavior of Fe(III) and Fe(Ⅱ) on Fe(Ⅲ)-TCCTS was studied. The results indicated that the adsorption behavior of Fe(Ⅲ) and Fe(Ⅱ) on Fe(Ⅲ)-TCCTS was similar, but the adsorption content of Fe(Ⅲ) was higher than which of Fe(Ⅱ). The adsorption agreed very well with the Langmuir model and the Pseudo second-order kinetic model. Fe(Ⅲ)-TCCTS can adsorb Fe(Ⅲ) selectively. It can be applied to remove iron ion from waste water.
引文
[1]何红蓼,倪哲明,李冰等.环境样品中痕量元素的化学形态分析Ⅱ.砷汞镉锡铅硒铬的形态分析.岩矿测试,2005,24(2):118-128
    [2]方宇,江桂斌,何滨等.砷形态分析中的样品前处理方法.环境污染治理技术与设备,2002,3(2):46-52
    [3]张艳雅,马启敏.壳聚糖改性吸附剂的制备及其吸附性能研究.中国海洋大学学报,2006,36(增刊):153-156
    [4]汪玉庭,高松奇,唐玉蓉等.新型冠醚交联壳聚糖的吸附性能.环境污染与防治,2000,22(1):8-10
    [5]Lu-G, Yao-X, Wu-X, et al. Determiantion of the total iron by chitosan modified glassy carbon electrode. Microchem,2001,69:81-87
    [6]Liming Zhou, Zhirong Liu, Jinhui Liu, et al. Adsorption of Hg(Ⅱ) from aqueous solution by ethylenediamine-modified magnetic crosslinking chitosan microsphere. Desalination,2010,258:41-47
    [7]Ramesh.A, Hasegawa.H, Sugimoto.W, et al. Adsorption of gold(Ⅲ), platinum(Ⅳ) and palladium(Ⅱ) onto glycine modified crosslinked chitosan resin. Bioresour. Technol,2008,99:3801-3809
    [8]汪琴,王爱勤.N-琥珀酰壳聚糖的合成和性能研究.功能高分子学报,2004,17(1):51-54.
    [9]汪琴,王丽,王爱勤.N-琥珀酰壳聚糖的吸湿保湿性评价.日用化学工业,2005,8(35):4
    [10]罗华丽,臧剑甬,张秀娟.壳聚糖载药微球的制备和体外释放研究.河南科学,2011,29(1):20-24
    [11]蒋挺大.壳聚糖.北京:化学工业出版社,2001.122-130
    [12]Sandford P A. Chitin and Chitosan. New York:Plenum Press,1986.51-62
    [13]Jonathan Z. K, Samuel M. H, Katherine A. M. Improved mechanical properties of chitosan fibers. Journal of Applied Polymer Science,1999,72:1721-1732
    [14]Shin Y, Yoo D I, Min K. Antimicrobial finishing of polypropylene nonwoven fabric by treatment with chitosan oligomer. Journal of Applied Polymer Science,1999, 74:2911-2916
    [15]薛爱芳,钱沙华,黄淦泉.甲壳素及其衍生物在痕量元素及其形态分析中的应用.分析科学学报,2001,17(2):171-173
    [16]蒋挺大.甲壳素.北京:中国环境科学出版社,1996.355-362
    [17]Brine C. J, Sandford P. A, Zikakis J. P. Advances in Chitin and Chitosan. NewYork:Elsevier,1992.11-15
    [18]周天嬅,唐文琼,沈青.壳聚糖改性技术的新进展.高分子通报,2011,11:54-64
    [19]Uragami T, Kato S, Miyata T. Structure of N-alkyl chitosan membranes on Water-permselectivity for aqueous ethanol solutions. Journal of Membrane Science,1997,124(2):203-211
    [20]Wang X-P, Shen Z-Q, Zhang F-Y. Pervaporation separation of water/alcohol mixtures through hydroxypropylated chitosan membranes. Journal of Applied Polymer Science,1998,69(10):2035-2041
    [21]Cao Z-Y, Wei Q-F, Zhang Q-X. Template synthesis and adsorption properties of chitosan salicylal Schiff bases. Journal of Central South University of Technology.2004,11(2):169-172
    [22]居红芳.Schiff碱型大环化合物改性壳聚糖的研究.常熟理工学院学报,2005,19(2):58-62
    [23]刘芳,董世华,徐羽悟.带希夫碱和酰肼基团的壳聚糖螯合树脂的合成及其吸附性能.环境化学,1996,15(3):207-213
    [24]Rosi Ketrin Katarina, Toshio Takayanagi, Mitsuko Oshima, et al. Synthesis of a chitosan-based chelating resin and its application to the selective concentration and ultratrace determination of silver in environmental water samples. Analytical Chimica Acta,2006,558:246-253
    [25]Dhakal R P, Inoue K, Yoshizuka K. Solvent extraction of some metal ions with lipophilic chitin and chitosan. Solvent Extraction and Ion Exchange,2005, 23(4):529-543
    [26]Navarro R R, Tatsumi K. Improved performance of a chitosan -based adsorbent for the sequestration of some transition metals. Water Science and Technology,2001,43(11):9-16
    [27]安胜姬,张兰英,郑松志等.二异氰酸酯与壳聚糖交联产物对金属离子的吸附性能.长春科技大学学报,1999,19(2):197-199
    [28]高永红,马全红,邹宗柏.a-酮戊二酸改性壳聚糖对金属离子的吸附性能.东南大学学报(自然科学版),2001,31(1):104-106
    [29]Inoue K, Ohto K, Yoshizuka K. Adsorption of lead(Ⅱ) ion on complexane types of chemically modified chitosan. Bulletin of the Chemical Society of Japan, 1997,70(10):2443-2447
    [30]孙新枝,杨声,张凯峰等.马来酸酐酰化壳聚糖的合成.化学研究与应用,2005,17(2):243-244
    [31]郑大锋,葛华才.香草醛接枝壳聚糖的微波辐射制备及其吸附性能.华南理工大学学报(自然科学版).2003,31(12):51-53
    [32]Ouchi T, Nishizawa H, Ohya Y. Aggregation phenomenon of PEG-grafted chitosan in aqueous solution. Polymer,1998,39(21):5171-5175
    [33]Krajewska B.Diffusion of metal ions through gel chitosan membranes. Reactive and Functional Polymers,2001,47(1):37-47
    [34]Juang R-S, Shao H-J. A simplified equilibrium model for sorption of heavy metal ions from aqueous solutions on chitosan. Water Research,2002,36 (12): 2999-3008
    [35]Juang, R-S, Shao, H-J. Effect of pH on competitive adsorption of Cu(Ⅱ), Ni(Ⅱ), and Zn(Ⅱ) from water onto chitosan beads. Adsorption,2002,1(8):71-78
    [36]Wan Ngah, W.S, Fatinathan, S. Adsorption characterization of Pb(Ⅱ) and Cu(Ⅱ) ions onto chitosan-tripolyphosphate beads:Kinetic, equilibrium and thermodynamic studies. Journal of Environmental Management,2010,91:958-969
    [37]刘辉.交联壳聚糖的合成及其对Cu2+的去除效果.山西大学学报(自然科学版),2004,27(3):268-270
    [38]陈新,邵正中,黄郁芳等.不同交联剂含量对戊二醛交联壳聚糖膜结构与性能影响的研究.化学学报,2000,58(12):1654-1659
    [39]袁春桃,蒋先明,谭凤娇等.壳聚糖与苯甲醛缩合反应的研究.化工技术与 开发,2005,34(3):4-5
    [40]赵春禄,刘辉,刘振儒.壳聚糖的化学改性及其吸附性能的研究.环境化学,2005,2(24):209-212
    [41]袁彦超,陈炳稔,王瑞香.甲醛、环氧氯丙烷交联壳聚糖树脂的制备及性能.高分子材料科学与工程,2004,20(1):53-57
    [42]庄华,张征林,金万勤等.交联聚氨基壳聚糖螯合树脂的制备及吸附性能研究.离子交换与吸附,2001,17(6):507-514
    [43]Kannamba. B, Laxma Reddy. K, Apparao. B.V. Removal of Cu(Ⅱ) from aqueous solutions using chemically modified chitosan. Journal of Hazardous Materials,2010, 175:939-948
    [44]Shimizu Y, Izumi S, Saito Y, et al. Ethylenediamine tetraacetic acid modification of crosslinked chitosan designed for a novel metal-ion adsorbent. Journal of Applied Polymer Science,2004,92(5):2758-2764
    [45]张瑞,韩宝三,彭承宏等.壳聚糖球形多孔微载体的血液相容性评价.中国组织工程研究与临床康复,2011,15(3):404-408
    [46]姚述光,张文豪,杨培慧等.羧甲基壳聚糖载药纳米微球的制备及其对喉肿瘤细胞的杀伤及靶向作用的探测.东南大学学报(医学版),2011,30(1):67-70
    [47]Wang Ben, Zhang Yulian, Miao Chunbao. Preparation of cationic chitosan-polyacrylamide flocculant and its properties in wastewater treatment. J. Ocean Univ. China,2011,10(1):42-46
    [48]林友文,林青,蒋智清等.羟丙基三甲基氯化铵壳聚糖的制备及其吸湿、保湿性能.应用化学,2002,19(4):351-354
    [49]许晨,胡丙环.壳聚糖季铵盐超声波催化合成.化学工程与装备,2006,6:5-8
    [50]Khalid Z. Elwakeel. Removal of Cr(Ⅵ) from alkaline aqueous solutions using chemically modified magnetic chitosan resins. Desalination,2010,250:105-112
    [51]Hon D N-S, Tang L-G. Chelation of chitosan derivatives with zinc ions. O,N-carboxymethyl chitosan. Journal of Applied Polymer Science,2000,77 (10):2246-2253
    [52]孙新枝,苏中兴.改性壳聚糖的制备及其对金属离子的吸附性能.化学研 究,2005,16(1):29-31
    [53]韩继友.壳聚糖的改性及其在造纸工业的应用.浙江造纸,2009,2:42-45
    [54]Chung Y-C, Kuo C-L, Chen C-C. Preparation and important functional properties of water -soluble chitosan produced through Maillard reaction. Bioresource Technology,2005,96(13):1473-1482
    [55]Ezel Boyac, Ahmet E, Eroglu, Talal Shahwan. Sorption of As(Ⅴ) from waters using chitosan and chitosan-immobilized sodium silicate prior to atomic spectrometric determination. Talanta,2010,80:1452-1460
    [56]刘斌,孙向英,徐金瑞.改性壳聚糖絮凝螯合及释放Cu2+的性能研究.华侨大学学报(自然科学版),2003,24(4):364-368
    [57]Luca D, Franco D. Binding of metal cations by N-carboxymethyl chitosans in water. Carbohydrate Polymers,1992,18(4):273-282
    [58]易琼,叶菊招.壳聚糖吸附剂的制备及其性能.离子交换与吸附,1996,12(1):19-23
    [59]邵健,杨宇民.香草醛改性壳聚糖的制备及其吸附性能研究.中国环境科学,2000,20(1):61-64
    [60]Rorrer GL, Hsien T.Y, Way J.D. Adsorption of metal ions on polyaminated highly porous chitosan. Ind Eng Chem Res,1993,32(9):2170-2172
    [61]黄晓佳,袁光谱,王爱勤.模板交联壳聚糖对过渡金属离子的吸附性能研究.离子交换与吸附,2000,16(3):262-266
    [62]苏海佳,贺小进,谭天伟.球形壳聚糖树脂对含重金属离子废水的吸附性能研究.北京化工大学学报(自然科学版),2003,30(2):19-22
    [63]蔡照胜,王锦堂,杨春生等.2-羟丙基三甲基氯化铵壳聚糖的制备及其表征.精细化工,2004,21(9):654-673
    [64]Singh D.k, Way A.R. Controlled release of glucose through modified chitosan membranes. Journal of Membrane science,1999,155(1):107-112
    [65]孟哲,胡章记,毛宝玲.壳聚糖的结构特性及其衍生物的应用.化学教育,2006,8:1-3
    [66]梁沛,胡斌,江祖成等.吸附材料在元素形态分析中的应用.分析科学学报,2004,20(3):322-326
    [67]韩永萍,卢晶,张欢等.DCC缩合酯化法合成水杨酸低聚壳聚糖酯及抑菌性研究.化学世界,2011,3:155-161
    [68]林炎平.壳聚糖的结构、性质和应用.化学工程师,1998,68(5):33-35
    [69]袁志,王明力,李霞.纳米Si02壳聚糖复合膜保鲜草莓的研究.现代食品科技,2011,27(1):11-15
    [70]张苏敏,史载锋,何秀花等.壳聚糖和血桐提取液保鲜槟榔效果研究.安徽农业科学,2011,39(5):3050-3051
    [71]李俊,王乖虎,左墨等.壳聚糖-氢氧化镁絮凝剂在皮革废水处理中的应用.西部皮革,2011,33(3):20-22
    [72]吴新华.壳聚糖-Ti02复合絮凝剂处理废水的研究.河北化工,2010,33(12):8-9
    [73]Sarzanini.C, Abolino.O, Mentastri.E. Flow-injection preconcentration and electrothermal atomic absorption spectrometry determination of manganese in seawater. Anal. Chim. Acta 2001,435:343-350
    [74]Aydin.F.A, Soylak.M. A novel multi-element coprecipitation technique for separation and enrichment of metal ions in environmental samples. Talanta,2007,73: 134-141
    [75]Okamoto.Y, Nomura.Y, Iwamaru.K. High preconcentration of ultra-trace metal ions by liquid-liquid extraction using water/oil/water emulsions as liquid surfactant membranes. Microchem,2000,65:341-346
    [76]Wan.W.S, Ngah.S, Ghani.A, et al. Adsorption behaviour of Fe(Ⅱ) and Fe(Ⅲ) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresour. Technol, 2005,96:443-450
    [77]Shafey. El, Pichugin.M, Appleton.A. Application of a carbon sorbent for the removal of cadmium and other heavy metal ions from aqueous solution. Chem. Technol. Biotechnol,2002,77:429-436
    [78]曲荣君,刘庆俭,田福军等.水杨醛改性壳聚糖对金属离子的吸附性能.环境化学,1997,16(1):55-59
    [79]曲荣君,刘庆俭.PEG双缩水甘油醚交联壳聚糖的制备及其对金属离子的吸附性能.环境化学,1996,15(1):41-45
    [80]完莉莉,汪玉庭.新型冠醚壳聚糖的合成.化学试剂,2001,23(1):6-7
    [81]刘玉红,汪玉庭,唐玉蓉等.一种新型吸附剂在痕量重金属分析中的应用.化学试剂,2003,25(4):219-222
    [82]杨智宽,汪玉庭,袁扬.氮杂冠醚接枝壳聚糖的合成及其对金属离子的吸附性能.离子交换与吸附,1999,15(6):518-523
    [83]张淑琴,汪玉庭,唐玉蓉.冠醚交联壳聚糖在砷形态分析中的应用.武汉科技大学学报(自然科学版),2007,30(6):636-639
    [84]Jeferson Schneider Carletto, Kalya Cravo Di Pietro Roux, Heloisa Franca Maltez, et al. Use of 8-hydroxyquinoline-chitosan chelating resin in an automated on-line preconcentration system for determination of zinc(Ⅱ) by FAAS. Journal of Hazardous Materials,2008,157:88-93
    [85]Khalid Z. Elwakeel, Asem A. Atia, Ahmed M. Donia. Removal of Mo(Ⅵ) as oxoanions from aqueous solutions using chemically modified magnetic chitosan resins. Hydrometallurgy,2009,97:21-28
    [86]姜建生,’黄淦泉,钱沙华等.交联壳聚糖在硒的形态分析中的应用研究.光谱学与光谱分析,1999,19(1):75-77
    [87]姜建生,黄淦泉,钱沙华等.交联壳聚糖在汞形态分析中的应用.分析化学,1998,26(1):12-16
    [88]WAN -Z, XU- ZR. WANG- JH. Flow injection on-line solid phase extraction for ultra-trace lead screening with hydride generation atomic fluorescence spectrometry. Analyst,2006,131:141-147
    [89]Bispo, M.S, Kornm, GA,Mortee, S.B, et al. Determination of lead in seawater by inductively coupled plasma optical emission spectrometry after separation and preconcentration with cocrystallized naphthalene alizarin. Spectrochim Acta(PartB),2002,57:2175-2180
    [90]徐芳,邱德仁,杨梵原等.硒的化学与生物形态分析综述.光谱学与光谱分析,2004,22:331-340
    [91]张普敦,许国旺,魏复盛.砷形态分析方法进展.分析化学,2001,29(8):971-977
    [92]杨红丽,王镨,朱四喜等.联用技术在砷形态分析中的应用进展.浙江海洋学院学报(自然科学版),2007,26(1):65-73
    [93]毕伟东,工成艳,王成贤.砷及砷化物与人类疾病.微量元素与健康研究, 2002,19(2):76-79
    [94]Thomas DJ. Arsenic toxicity in humans-research problems and prospects. Environ Geoclzem. Hlth,1994,16(3):107-111
    [95]Ellwood M J, Maher W A. Measurement of arsenic species in marine sediments by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Analytica Chimica Acta,2003,477:279-291
    [96]Schoen A, Beck B, Sharma. Arsenic toxicity at low doses:epidemiological and mode of action considerations. Toxicol. Appl. Pharm,2004,198(3):253-267
    [97]沈健,吴敏华,陈铭华等.氧化砷对小鼠移植性肝癌的作用.中国肿瘤生物治疗杂志,2002,9(3):168-171
    [98]Qiu, J.H, Wang, Q.Q, Huang, B.L. New approaches to selenium speciation. Spectrocopy Spectral Anal,2006,26:1692-1701
    [99]Uden, P.C. Modern trends in the speciation of selenium by hyphenated techniques. Anal. Bioanal. Chem,2003,373:422-431
    [100]地理研究所环境与地方病研究组.我国低硒带和克山病、大骨节病病因研究.中国科学院院刊,1988,1:54-60
    [101]Dumont E, Vanhaecke F, Cornelis R. Selenium speciation from food source to metabolites:A critical review. Anal. Bioanal. Chem.,2006,386:1304-1323
    [102]杨光圻,顾履珍.微量元素硒的人体需要量和安全摄入量范围.生理科学进展,1992,23:184-186
    [103]郑凤英,李顺兴.Se(Ⅳ)/Se(Ⅵ)富集检测方法研究进展.漳州师范学院学报(自然科学版),2002,15(4):72-75
    [104]李绥荣,林守麟.铬的化学形态分析进展.理化检验-化学分册,1998,34(2):88-90
    [105]Zhitkovich, A. Importance of chromium-DNA adducts in mutagenicity and toxicity of chromium(Ⅵ). Chem. Res. Toxicol.2005,18:3-11
    [106]Li Y, Yan X P, Dong L M, et al. Development of an ambient temperature post-column oxidation system for high-performance liquid chromatography on-line coupled with cold vapor atomicfluorescence spectrometry for mercury speciation in seafood. J Anal At Spectrom,2005,20:467-472
    [107]Tu Q, Johnson W, Buckle Y B. Mercury speciation analysis in soil samples by ion chromatography, post-column cold vapor generation and inductively coupled plasma mass spectrometry. J Anal At Spectrom,2003,18:696-701
    [108]Leermakers M, Baeyens W, Quevauviller P, et al. Mercury in environmental samples:Speciation, artifacts and validation. Trends Anal Chem,2005,24:383-393
    [109]阮素云,顾祖维,马国云等.用EDX能谱分析研究人参皂苷和维生素C保护铅对血脑屏障损害的作用.中国公共卫生,1998,14(9):552-554
    [110]Chuachuad W, Tyson J F. Determination of lead by flow injection hydride generation atomic absorption spectrometry with tetrahydroborate immobilized on an anion-exchange resin. J Anal At Spectrom,2005,20:282-288
    [111]余晓平,邓天龙,吴怡等.环境样品中痕量锑的形态分析研究进展.广东微量元素科学,2009,16(1):1-7
    [112]Smichowski P, Madrid Y, Comara C. Analytical methods for antimony speciation in waters at trace and ultratrace levels. A review. Fresenius J Anal Chem, 1998,360:623-629
    [113]Sayago A, Beltron R, Gomez-Ariza J L. Hydride generation atomic fluorescence spectrometry(HG-AFS)as a sensitive detector for Sb(Ⅲ)and Sb(Ⅴ)speciation in water. J Anal Atom Spectrom,2000,15:423-428
    [114]Templeton D M, Ariese F, Cornelis R, et al. Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches. Pure Appl. Chem.,2000,72:453-470
    [115]陈志澄.食用植物中砷的形态分析方法研究.中国卫生检验杂志,2002,12(5):548-550
    [116]陈静,周黎明,曲刚莲.HPLC联用技术在环境砷形态分析上的应用.环境科学与技术,2003,26(2):60-62
    [117]Span W D, Lynn J G. Andersen J L, et al. High-performance liquid chromatographic separation of biologically important arsenic species utilizing online inductively coupled argon plasma atomic emission spectrometric detection. Anal Chem,1988,58(7):1344-1349
    [118]刘桂华,汪丽.HPLC-ICP-MS在紫菜中砷形态分析的应用.分析测试学报,2002,21(4):88-90
    [119]秦燕.毛细管气相色谱法测定血浆、尿及指甲中的砷.上海第二医科大学学报,2003,23(4):325-327
    [120]Urasa JT, Ferde E. Use of direct current plasma as an element selective detector for simultaneous ion chromatographic determination of arsenic(Ⅲ)and arsenic(Ⅴ)in the presence of other common anions. Anal Chem,1987,59(11):1563-1568
    [121]Ricci C R, Shepard L S, Colobos G, et al. Ion chromatography with atomic absorption spectrometric detection for determination of organic and inorganic arsenic species. Anal Chem,1981,53:610-613
    [122]Lu C Y, Yan X P. Capillary electrophoresis on-line coupled with hydride generation-atomic fluorescence spectrometry for speciation analysis of selenium. Electrophoresis,2005,26:155-160
    [123]Sun B G, Macka M, Haddad P R. Speciation of arsenic and selenium by capillary electrophoresis. Journal of Chromatography A,2004,1039:201-208
    [124]李琳,黄淦泉.氢氧化铁共沉淀浮选石墨炉原子吸收光谱测水中痕量Cr(Ⅲ)与Cr(Ⅵ).理化检验-化学分册,1994,30(3):160-162
    [125]Demirhan Citak, Mustafa Tuzen, Mustafa Soylak. Speciation of Mn(Ⅱ), Mn(Ⅶ) and total manganese in water and food samples by coprecipitation-atomic absorption spectrometry combination. Journal of Hazardous Materials,2010,173:773-777
    [126]李四生,董晓根,李家涛等.甲苯萃取-微波消解-原子荧光光谱方测定富硒保健品中有机硒和总硒.中国卫生检验杂志,2008,18(1):87-89
    [127]Kadriye O Saygi, Esra Melek, Mustafa Tuzen, et al. Speciation of selenium(Ⅳ) and selenium(VI) in environmental samples by the combination of graphite furnace atomic absorption spectrometric determination and solid phase extraction on Diaion HP-2MG Talanta,2007,71:1375-1381
    [128]陶思,李维,颜永欣等.环境水样中硒形态分析的样品预处理.化学分析计量,2007,16(2):72-75
    [129]Jitaru P, Adams F C. Speciation analysis of mercury by solid-phase microextraction and multicapillary gas chromatography hyphenated to inductively coupled plasmatime-of-flight-mass spectrometry. J Chromatogr A,2004,1055: 197-207
    [130]Yu L P. Cloud point extraction preconcentration prior to high-performance liquid chromatography coupled with cold vapor generation atomic fluorescence spectrometry for speciation analysis of mercury in fish samples. J Agri Food Chem, 2005,53:9656-9662
    [131]朱霞石,江祖成,胡斌.浊点萃取-电热原子吸收光谱法分析铬的形态.分析化学,2003,31(11):1312-1316
    [132]仓金顺.浊点萃取-原子吸收光谱法测定生物试样中微量锰.分析仪器,2008,6:40-43
    [133]Pei Liang, Hongbo Sang. Speciation of chromium in water samples with cloud point extraction separation and preconcentration and determination by graphite furnace atomic absorption spectrometry. Journal of Hazardous Materials,2008,154: 1115-1119
    [134]李顺兴,黄淦泉,钱沙华.固氮蓝藻分离富集石墨炉原子吸收光谱法测定痕量Cr(Ⅵ)/Cr(Ⅲ).分析科学学报,1995,11(1):42-46
    [135]Veera M. Boddu, Krishnaiah Abburi, Jonathan L.Talbott, et al. Removal of arsenic (Ⅲ) and arsenic (Ⅴ) from aqueous medium using chitosan-coated biosorbent. Water Research,2008,42:633-642
    [136]卢菊生,田久英,吴宏.浊点萃取-石英双缝管捕集火焰原子吸收光谱法分析铬价态.分析化学,2009,37(1):99-102
    [137]王梅林,黄淦泉,钱沙华等.交联壳聚糖在汞形态分析中的应用.分析化学,1998,26(1):12-16
    [138]Li X, Jia J, Wang Z H. Speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry. Analytica Chimica Acta,2006, 560:153-158
    [139]徐国栋,邱海鸥,王义壮等.原子荧光光谱法用于水系沉积物中迁移毒性态汞的形态分析.岩矿测试,2007,26(5):359-362
    [140]徐强,刘静,赵娜等.顺序注射氢化物发生-原子荧光光谱法测定海带中无机砷和总砷.光谱实验室,2008,25(3):380-383
    [141]Mato-Fern Andez M J, Otero-Rey J R, Moreda-Pineiro J, et al. Arsenic extraction in marine biological materials using pressurised liquid extraction. Talanta, 2007,71(2):515-520
    [142]季海冰,赵承易,何孟常.氢化物发生结合电感耦合等离子体原子发射光 谱法测定天然水样中Sb(Ⅲ)和Sb(Ⅴ).理化检验-化学分册,2004,40(7):410-412
    [143]Jitmanee K, Oshima M, Motomizu S. Speciation of arsenic(Ⅲ)and arsenic(Ⅴ)by inductively coupled plasma-atomic emission spectrometry coupled with preconcentration system. Talanta.2005,66:529-533
    [144]何小青,刘湘生,潘元海等.HPLC-ICP-MS联用技术应用于砷的形态分析.现代科学仪器,2004,4:33-36
    [145]Chen R X, Smith B W, Winefordner J D, et al. Arsenic speciation in Chinese brake fern by ion-pair high-performance liquid chromatography inductively coupled plasma mass spectroscopy. Analytica Chimica Acta,2004,504:199-207
    [146]甄云鹏,范必威.砷形态分析方法进展.广东微量元素科学,2005,12(7):5-11
    [147]张华,王英峰,施燕支等.高效液相色谱及联用技术在砷形态分析中的应用.光谱学与光谱分析,2007,27(2):386-390
    [148]Tao S, Li W, Yan YX, Liu, et al. Sample pretreatment methods for analysis of selenium speciation in environmental waters. Chem. Anal. Meterage,2007,16: 72-74
    [149]Gomea-Ariza J.L, Pozas J.A, Giraldez I, et al. Speciation of volatile forms of selenium in sediments by gas chromatography-mass spectrometry. J. Chromatogr. A, 1998,823:259-277
    [150]斯兰兰,周晶.几种蜂蜜中硒含量的分析.世界元素医学,2005,12(4):25-26
    [151]Capelo J.L, Fernadez C, Pedras B, et al. Trends in selenium determination/ speciation by hyphenated technique based on AAS or AFS. Talanta 2006,28: 1442-1447
    [152]Deng B, Feng J, Meng J. Speciation of inorganic selenium using capillary electrophoresis-inductively coupled plasma-atomic emission spectrometry with online hydredegeneration. Anal. Chim. Acta,2007,583:92-97
    [153]Wang R.Y, Hsu Y.L, Chang L.F, et al. Speciation analysis of arsenic and selenium compounds in environmental and biological samples by ion chromatogr-aphy-inductively coupled plasma dynamic reaction cell mass spectrometer. Anal. Chim. Acta,2007,590:239-244
    [154]Ramesh A, Hasegawa H, Sugimoto W, et al. Adsorption of gold(III), platinum(Ⅳ) and palladium(Ⅱ) onto glycine modified crosslinked chitosan resin. Bioresour. Technol,2008,99:3801-3809
    [155]Chen L, Chen D.H. A new approach for the flocculation mechanism of chitosan. J. Polym. Environ,2003,11:87-92
    [156]Zhou T, Wei T, Wen Q, et al. New progress on modifications of chitosan. Chin. Polym. Bull,2008,12:56-66
    [157]唐星华,周爱玲,张小敏.壳聚糖改性吸附剂的制备及其吸附性能研究.南昌航空大学学报(自然科学版),2007,21(2):21-25
    [158]Jun Dai, FengLian Ren, ChunYuan Tao, etal. Synthesis of Cross-Linked Chitosan and Application to Adsorption and Speciation of Se (Ⅵ) and Se (Ⅳ) in Environmental Water Samples by Inductively Coupled Plasma Optical Emission Spectrometry. Internation Journal of Molecular sciences,2011,12:4009-4020
    [159]唐星华.壳聚糖交联接枝改性及性能研究:[博士学位论文].长沙:湖南大学,2008
    [160]Yang Z, Zhuang L, Tan G Preparation and adsorption behavior for metal of chitosan cross-linked by dihydroxy azacrown ether. J. Appl. Polym. Sci,2002,85: 530-535
    [161]Laurent Dambies, Thierry Vincent, Eric Guibal. Treatment of arsenic conta-ining solutions using chitosan derivatives:uptake mechanism and sorption performances. Water Research,2002,36:3699-3710
    [162]Chih-Yu Chen, Tsu-Hua Chang, Jong-Tar Kuo, et al. Characteristics of molybdate-impregnated chitosan beads (MICB) in terms of arsenic removal from water and the application of a MICB-packed column to remove arsenic from wastewater. Bioresource Technology,2008,99:7487-7494
    [163]侯艳雯,姜建生,梁顺文.水中痕量As(Ⅲ)/As(Ⅴ)测定方法的研究.武汉城市建设学院学报,1999,16(3):61-64
    [164]Furuta N, Shlnofuji T. Determination of different oxidation states of arsenic and selenium by inductivelv coupled plasma atomic emission spectrometry with ion chromatography. Fresenius J Anal Chem,1996,355:457-469
    [165]Dinesh Mohan, Charles U. Pittman Jr. Arsenic removal from water/wastewater using adsorbents-A critical review. Journal of hazardous materials,2007,142:1-53
    [166]Yan X.P, Kerrich R, Hendry M.J. Distribution of arsenic(Ⅲ), arsenic(Ⅴ) and total inorganic arsenic in porewaters from a thick till and clay-rich aquitard sequence, Saskatchewan, Canada. Geochim.Cosmochim. Acta,2000,64:2637-2648
    [167]Kotas J, Stasicka Z. Chromium occurrence in the environment and methods of its speciation. Environ. Pollut,2000,107:263-283
    [168]Shanker A.K, Cervantes C, Loza-Tavera H, et al. Chromium toxicity in plants. Environ. Int,2005,31:739-753
    [169]Zhitkovich A. Importance of chromium-DNA adducts in mutagenicity and toxicity of chromium(Ⅵ). Chem. Res. Toxicol,2005,18:3-11
    [170]Ling Y W, Lin Q, Jiang Z Q, et al. Preparation,moisture adsorbability and retentivity of 2-Hydroxypropyltrimethyl ammonium chloride chitosan. Chinese Journ-al of Applied Chemistry,2002,19:351-354
    [171]Khalid Z. E. Removal of Cr(VI) from alkaline aqueous solutions using chemically modified magnetic chitosan resins. Desalination,2010,250:105-112
    [172]Graciela R, Jorge S, Jaime A. F. Adsorption of chromium onto crossed-linked chitosan. Separation and Purification Technology,2005,44:31-36
    [173]Chiou M.S, Li H.Y. Adsorption behaviour of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere,2003,50:1095-1105
    [174]McKay G, Ho Y.S. Pseudo-second order model for sorption process. Process Biochem,1999,34:451-465
    [175]Brown S, Taylor N.L. Could mitochondrial dysfunction play a role in manganese toxicity. Environ. Toxicol. Pharmacol,1999,7:49-57
    [176]Michalke B. Manganese speciation using capillary electrophoresis-ICP-mass Spectrometry. J. Chromatogr. A,2004,1050:69-76
    [177]Ozdemir S, Kilinc E, Poli A, et al. Biosorption of Cd, Cu, Ni,Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub.sp. decanicus and Geobacillus thermoleovorans sub.sp. stromboliensis:equilibrium, kinetic and thermodynamic studies. Chem. Eng. J,2009,152:195-206
    [178]Crossgrove J.S, Allen D.D, Bukaveckas B.L, et al. Manganese distribution across the blood-brain barrier. I. Evidence for carriermediated influx of managanese citrate as well as manganese and manganese transferring. NeuroToxicology,2003,24: 3-13
    [179]Gerber G.B, Leonard A, Hantson P. Carcinogenicity, mutagenicity and teratogenicity of manganese compounds. Crit. Rev. Oncol. Hematol,2002,42: 25-34
    [180]Van Staden J.F, Mulaudzi L.V, Stefan R.I. Speciation of Mn(Ⅱ) and Mn(Ⅶ) by on-line spectrophotometric sequential injection analysis. Analytical Chimica Acta, 2003,499:129-137
    [181]薛爱芳,钱沙华,黄淦泉.交联壳聚糖富集分离火焰原子吸收法测定环境样品中微量锰.环境科学与技术,2000,92(4):32-34
    [182]Ellingsen D.G, Hetland S, Thomassen Y. Manganese air exposure assessment and biological monitoring in the manganese alloy production industry. J. Environ. Monit,2003,5:84-90
    [183]Pearson G.F, Greenway GM. Recent developments in manganese speciation. Trends Anal. Chem,2005,24:803-809
    [184]Teo K.C, Chen J. Determination of manganese in water samples by flame atomic absorption spectrometry after cloud point extraction. Analyst.2001,126: 534-537
    [185]Okamoto Y, Nomura Y, Nakamura H, et al. High preconcentration of ultra-trace metal ions by liquid-liquid extraction using water/oil/water emulsions as liquid surfactant membranes. Microchem.J,2000,65:341-346
    [186]Sarzanini C, Abollino O, Mentastri E. Flow-injection preconcentration and electrothermal atomic absorption spectrometry determination of manganese in seawater. Anal. Chim. Acta,2001,435:343-351
    [187]薛爱芳,陈浩,罗兴才等.交联壳聚糖预富集火焰原子吸收光谱法测定水中总锰.光谱学与光谱分析,2005,25(9):1514-1517
    [188]庄莉,杨智宽.含硫壳聚糖研究—氨基硫脲接枝壳聚糖的合成.化学试剂,2002,24(5):282-283
    [189]Nalan Ozdemir, Mustafa Soylak, Latif Elci, et al. Speciation analysis of inorganic Sb(Ⅲ) and Sb(Ⅴ) ions by using mini column filled with Amberlite XAD-8 resin. Analytical Chimica Acta,2004,505:37-41
    [190]Alsi Erdem, Ahmet E. Eroglu. Speciation and preconcentration of inorganic antimony in waters by Duolite GT-73 microcolumn and determination by segmented flow injection-hydride generation atomic absorption spectrometry (SFI-HGAAS). Talanta,2005,68:86-92
    [191]Smichowski P. Antimony in the environment as a global pollutant:a review on analytical methodologies for its determination in atmospheric aerosol, Talanta,2008, 75:2-14
    [192]Chaozhang Huang, Bing Hu, Zucheng Jiang. Simultaneous speciation of inorganic arsenic and antimony in natural waters by dimercaptosuccinic acid modified mesoporous titanium dioxide micro-column on-line separation and inductively coupled plasma optical emission spectrometry determination. Spectrochimica Acta part B,2007,62:454-460
    [193]Miravet R, Hernandez-Nataren E, Sahuquillo A, et al. Speciation of antimony in environmental matrices by coupled techniques. Trends in analytical chemistry,2010, 29(1):28-39
    [194]Potin-Gautier M, Pannier F, Quiroz W, et al. Antimony speciation analysis in sediment reference materials using high-performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry. Analytica Chimica Acta, 2005,553:214-222
    [195]Tian-Long Deng, Yu-Wei Chen, Nelson Belzile. Antimony speciation at ultra trace levels using hydride generation atomic fluorescence spectrometry and 8-hydroxyquinoline as an efficient masking agent. Analytica Chimica Acta,2001,432: 293-302
    [196]Semenova N.V, Leal L.O, Forteza R, et al. Antimony determination and speciation by multisyringe flow injection analysis with hydride generation atomic fluorescence spectrometry detection. Analytica Chimica Acta,2005,530:113-120
    [197]Liang Zhang, Yukitoki Morita, Akio Sakuragawa, et al. Inorganic speciation of As(Ⅲ,Ⅴ), Se(Ⅳ,Ⅵ) and Sb(Ⅲ, Ⅴ) in natural water with GF-AAS using solid phase extraction technology. Talanta,2007,72:723-729
    [198]Rath S, Jardim W.F, Dorea J.G A simple spectrophotometric procedure for the determination of antimony(Ⅲ) and (Ⅴ) in antileishmanial drugs. Fresenius J. Anal. Chem,1997,358:548-550
    [199]Gonzales M.J.G, Renedo O.D, Martinez M.J.A. Simultaneous determination of antimony(Ⅲ) and antimony(Ⅴ) by UV-Vis spectroscopy and partial least squares method (PLS). Talanta,2005,68:67-71
    [200]Gonzales M.J.G, Renedo O.D, Martinez M.J.A. Speciation of antimony by adsorptive stripping voltammetry using pyrogallol. Talanta,2007,71:691-698
    [201]Flores E.M.M, Santos E.P, Barin J.S, et al. Determination of antimony(Ⅲ) and total antimony by hydride generation atomic absorption spectrometry in samples of injectable drugs used for leishmaniasis treatment.J. Anal. At. Spectrom,2002,17: 819-823
    [202]Flores E.M.M, Paula F.R, Silva E.F.B, et al. Selective determination of Sb(Ⅲ) in drugs by flow injection hydride generation AAS. At. Spectrosc,2003,24:15-21
    [203]Pilar Vinas, Ignacio Lopez Carcia, Beatriz Merino-Merono, et al. Liquid chromatography-hydride generation-atomic fluorescence spectrometry hybridation for antimony speciation in environmental samples. Talanta,2001,68:1401-1405
    [204]Safavi A, Abdollahi H. Speciation of Fe(Ⅱ) and Fe(Ⅲ) with chromagenic mixed reagents by principal-component regression. Microchem. J,1999,63:211-217
    [205]Aksu Z, Calik A, Dursun A. Y, et al. Biosorption of iron(Ⅲ)-cyanide complex anions to Rhizopus arrhizus:application of adsorption isotherms. Process Biochem, 1999,34:483-491
    [206]郭敏杰,刘振,李梅.壳聚糖吸附重金属离子的研究进展.化工环保,2004,24(4):262-265
    [207]张廷安,扬欢,赵乃仁.用壳聚糖絮凝剂处理含镉(Ⅱ)废水.东北大学学报(自然科学版),2001,22(5):547-549
    [208]黄晓佳,王爱勤,袁光谱.N-烷基壳聚糖衍生物的合成及其对阳离子的吸附性能.应用化学,2000,17(1):66-68
    [209]Jansson Charrier M, Guibal E, Roussy J, et al. Vanadium(Ⅳ) sorption by chitosan:kinetics and quilibrium. Pergamon,1996,30(2):465-475
    [210]Coelho T. C, Laus R, Mangrich A. S, et al. Effect of heparin coating on epichlorohydrin cross-linked chitosan microspheres on the adsorption of copper (Ⅱ) ions. Reactive and Functional Polymers,2007,67(5):468-475
    [211]Birinci E, Gulfen M, Aydin A.O. Separation and recovery of palladium(Ⅱ) from base metal ions by melamine-formaldehyde-thiourea(MFT) chelating resin. Hydrometallurgy,2009,95:15-21
    [212]Donia A.M, Atia A.A, Elwakeel K.Z. Recovery of gold(Ⅲ) and silver(Ⅰ) on a chemically modified chitosan with magnetic properties. Hydrometallurgy,2007,87: 197-206
    [213]Guibal E, Vincent T, Mendoza R. N. Synthesis and characterization of a thiourea derivative of chitosan for platinum recovery. Journal of Applied Polymer Science,2000,75(1):119-134
    [214]Gavilan K.C, Pestov A.V, Garcia H.M. Mercury sorption on a thiocarbamoyl derivative of chitosan. Journal of Hazardous Materials,2009,165:415-426
    [215]Lin W, Ronge X, Song L. Studies on adsorption behavior of Pb(Ⅱ) onto a thiourea-modified chitosan resin with Pb(Ⅱ) as template. Carbohydrate Polymers, 2010,81:305-310
    [216]曲荣君,徐依斌,王春华.镍(Ⅱ)模板-缩二乙二醇双缩水甘油醚交联壳聚糖的合成及其吸附特性.环境化学,1996,15(3):214-219

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700