用户名: 密码: 验证码:
污灌土壤中重金属形态及化学治理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于人口急剧增长和工业迅猛发展,固体废物向土壤表面堆放倾倒、有害废水向土壤中渗透、大气中的有害气体及飘尘不断随雨水降落在土壤中及大量引用工业污水灌溉致使土壤污染日益严重化,土壤污染问题已成为一个亟待重视和解决的问题。土壤污染的类型大致可以分为重金属污染、农药和有机物污染、放射性污染、病原菌污染等。重金属污染是造成土壤环境质量下降的重要原因之一,和其他类型的污染物相比,重金属污染的特殊性在于它很难被土壤微生物降解而从环境中彻底消除,当其在土壤中积累到一定程度时,就会对土壤—植物系统产生毒害和破坏作用。重金属污染物难降解、易积累、毒性大,并且具有隐蔽性、长期性和不可逆转性的特点,是影响生态系统安全的一类重要污染物质。并且由于重金属存留于表层土壤中容易使农作物吸收,并通过食物链对人体造成严重的危害,使重金属污染的治理研究早已成为国际论坛及科研的焦点。
     长期以来,由于我国单纯注重经济的发展,对环境污染持有先污染后治理的态度,因而忽略了对环境的保护,导致环境质量日益下降。而今,人类生存与发展一刻也离不开环境,可持续发展的战略的提出使人类保护生态环境的认识提高到一个新的高度,要求在满足当代人的需求的同时,不影响后代人生存的能力。由此,针对白银地区污灌土壤重金属污染的特点,应用相适应的科学手段,提出可行的治理措施以降低重金属生物有效性和毒性是十分必要的。
     第一章土壤重金属污染状况及化学治理技术
     文中较为详细地介绍了我国和白银地区重金属污染状况及危害、相关土壤中重金属形态与生物有效性的研究,以及污染土壤中重金属的化学固定及淋洗的研究进展,并对已有的土壤固定剂和冲洗剂进行了评述,共引用文献75篇。
     第二章腐殖酸对污灌土壤中Cu、Cd、Pb、Zn形态的影响研究
     土壤中过量的有毒重金属如Cu、Cd、Pb、Zn对农作物生长及人类的健康都有极大的危害,它们在土壤中的不同形态也直接影响其在环境中的迁移转化及毒性。腐殖酸(Humic acid简称HA)是地球生态环境中分布最为广泛的天然有机物,约占土壤有机质60%,由于其复杂的结构和多种官能团的高反应活性,对重金属进入土壤环境后的毒性及生物有效性有着重要的影响和调控作用。本章选择腐殖酸以及柠檬酸、乙酸和EDTA为土壤添加物,对比研究了不同添加量及不同pH值条件时,腐殖酸等对污灌土壤中Cu、Cd、Pb、Zn不同形态的影响。结果显示:在污灌土壤中添加腐殖酸可以改变土壤对重金属离子各形态的吸持能力,使具有直接毒性的重金属可溶态急剧减少60—80%,同时使重金属氧化物结合态、碳酸盐结合态及有机结合态增加,降低重金属在土壤中的流动性、活性和生物可利用性。
     第三章腐殖酸对Cd在黄土上吸附特性影响的研究
     腐殖酸是土壤环境中的重要天然有机物,含有较多的活性基团和具有特殊结构,使其与金属离子能够发生离子交换、表面吸附、配位和凝结等作用。近年来土壤中存在的天然可溶有机物对重金属迁移转化的影响引起了研究者们极大兴趣,但主要集中于天然有机物对重金属吸附解吸的研究。本章研究了腐殖酸对Cd在西部黄土上的吸附特征的影响,并对其它相关影响因素进行了研究。结果显示:无论是否加入腐殖酸,Cd的吸附都能够较好地符合Freundlich方程,25℃时加入10ml 55mg·L~(-1)的腐殖酸使土样对Cd的饱和吸附量由29.22mmol·kg~(-1)增加到了31.39mmol·kg~(-1),并且吸附量随温度升高而降低,表明吸附为放热过程。加入与不加腐殖酸相比,吸附标准自由能改变量分别为△G_2~θ=-0.9497kJ·mol~(-1)和△G_1~θ=-0.8885kJ·mol~(-1),不加腐殖酸时,描述Cd在供试土样上的吸附动力学最优方程为Elovich方程,其次为双常数方程;加入腐殖酸溶液后,其吸附动力学最优方程改变为双常数方程,且Cd的吸附平衡时间缩短。随着加入腐殖酸量的增加,土壤样品对Cd的吸附量明显增加;随pH值的增加,加入腐殖酸降低了土壤对Cd的吸附增加量。
     第四章表面活性剂强化EDTA络合洗脱污灌土壤中的重金属
     土壤冲洗技术在淋洗液中加入有机或无机酸降低土壤pH值、加入无污染的电解质溶液交换解吸和加入有机配体生成水溶性配合物等以释放存留于土壤固相的重金属。其中有机配体如EDTA由于对土壤性质影响较小,对多种重金属有较好的络合溶解能力,已有较为深入的研究。现应用表面活性剂对有毒有机污染物增溶洗脱的研究较多,但对于表面活性剂应用于重金属的解吸及与螯合剂复合解吸研究相对较少。
     本章选用白银地区污灌土壤为供试样品,以两种表面活性剂与EDTA复合应用于重金属Cd和Pb的解吸,以补偿单一解吸剂使用时的缺点,同时根据复合解吸前后土壤样品中Cd、Pb形态的变化情况,综合评价复合洗脱的效果。结果显示:加入表面活性剂SDS可使EDTA对Cd的解吸量由61.67%增加到79.68%,对Pb的解吸量由57.25%增加到89.65%。在EDTA浓度较小时,加入SDS对Cd、Pb的解吸产生拮抗作用,抑制了EDTA对污染土样中Cd、Pb的解吸;随着EDTA浓度的不断增加,加入SDS与EDTA产生明显的协同增溶作用;表面活性剂Brij35具有相同的增溶作用,且增溶效果SDS>Brij35。比较复配解吸前后重金属形态变化,可溶态、碳酸盐结合态较解吸前减少60%-90%,大大降低了污灌土壤中重金属的毒性和生物可利用性。
     第五章皂角苷络合洗脱污灌土壤中重金属的研究
     生物表面活性剂具有低毒性、生物可降解性和表面活性等优点,并可回收加以重复利用,具有较高的经济价值,并且其在环境治理方面的应用也引起了研究者的关注。
     本章选用白银地区污灌土壤为供试样品,采用生物表面活性剂皂角苷对土样中重金属进行解吸研究,同时根据解吸前后土壤样品中重金属形态的变化情况,综合评价皂角苷洗脱的效果。实验结果显示:随皂角苷浓度增加,土样中Cu、Cd、Pb、Zn的解吸率也不断增加,在皂角苷浓度为3%时,Cu、Cd、Pb、Zn解吸量分别达到43.87%95.11%、83.54%和20.34%,而单独用水冲洗各重金属解吸量最大不超过5%;并且发现随土壤pH值增加,重金属解吸量逐渐减小。同时实验结果显示离子强度对Pb、Zn影响不大,而Cu、Cd随离子强度增大解吸量减小。比较冲洗前后重金属形态的变化,发现Cu、Cd、Pb、Zn的可溶态、碳酸盐结合态减少在50%以上,而氧化物结合态和残渣态含量略有减少。表明皂角苷与重金属形成稳定的可溶性的络合物,大大降低土壤对重金属的吸附作用,从而降低了土壤中重金属的毒性和生物可利用性,因此生物表面活性剂皂角苷对污灌土样中重金属具有较好的冲洗去除效果。
There are currently many sites that contain soils contaminated with heavy metals because of incresement of population, rapid development of industry, leacheat and run off from waste solids on soil surface, hazardous material in atmosphere fall on the ground and irrigated by sewage water, et, al. Heavy metal-contaminated soil is one of most common problem and much need of recognition and settlement. There are mainly five kinds of soil pollution: heavy metal-contaminated soil, rdionclides of metal, pesticides and hazardous organic compounds and biologic containment. It is not only hard to degrade and also retain in surface of soil, which easy to assimilate by crop, and tranfer in food chain. Heavy metal pollution is the important reasons for degrading of soil quality, and comparing with orther pollutants the particularity of metal pollution is that it is hard to biotic degrad and etire died away. When reached a high concentration, it can be detrimental and destroy the soil-plant system.
     It was only focus on developing of our national economy in long-term, and people hold viewpoint of contamination first, then remediation on environmental pollution. So the environmental protect against pollution has been ignored, which lead to reduce of environmental quality. Nowdays survive and development of people maintain close ties with the environment and the proposition of sustainable development strategy is to enhance the knowledge that human protect the ecological environment to a new height, it is also required that doesn't influence the survival ability of offspring while meeting contemporary people's demands. So it is necessary for us to take effect measure to effectively increase the resistance to bioavailability and toxicity of heavy metals in sewage farm in the light of situaion of metal-contaminated soil in Baiyin.
     Chapter 1.
     Situation of soils contaminated by heavy metals and the chemicalremediation technology by solidification and solubilization
     A review with 75 references is given on characteristics and current situation of contaminated by heavy metals and the relation between species and bioavailability of heavy metals in soil. There are two main type of remediation for metal contaminated soil: solidification/stabilization and desorption/solubilization, which mainly are discussed. In addition, some kinds of agents for solidification and desorption of heavy metals in soil also dicussed in these section.
     Chapter 2.The effect of humic acid on species of Cu、Cd、Pb、Zn in sewage farm.
     The superfluous heavy metals are harm for health of human being and the different speciation of heavy metals has direct influence on tranfer and transform and toxicity of heavy metals in soils. Humic acid is the most common natural organic matter in soil, and it is about 60% in soil organic matter. It has an important influence on toxicity and bioavailability of heavy metals in soil environment because of its complex structure and high activity of functional groups. Although, natural organic matter and its effect on tranfer and tranform of heavy metals have been studied, it mainly about sorption and desorption of heavy metals, but the effect of humic acid on speciation of heavy metals has not studied in previous work. To investigate the effects of humic acid on the speciations of heavy metals, such as Cu, Pb, Zn and Cd in sewage farm in Baiyin, four kinds of organic matters including humic acid, EDTA, citric acid and acetic acid were added, respectively, in polluted soil with a method of successive extraction performed to determine the species of heavy metals. The results showed that humic acid could remarkably decrease the content of soluble heavy metals with about60—80 %, while increase the fractions of Fe+Al+MnO_x and carbonate, which demonstrated clearly that huimc substance, under certain conditions, could effectively increase the resistance to bioavailability and toxicity of heavy metals in sewage farm.
     Chapter 3.Study on sorption of Cd on loess soil affected by humic acid.
     Humic acid is the most common natural organic matter in soil, and it has some engernic groups. It can be sorption and complexing with heavy metals because of its special structure and high activity of functional groups. Natural organic matter and its effect on tranfer and tranform of heavy metals has been studied, mainly about sorption and desorption of heavy metals, In this section vibration-centrifuge experiments were chosen to study on adsorption isotherms and adsorption thermodynamics of Cd on loess soil affected by humic acid in order to study the tranfer and transform regulation of heavy metal in soil. The results showed that the adsorption of Cd on loess soils fitted well with Freundlich isothermal equation no matter with or without humic acid, and the adsorption capacity of Cd increased from 29.22 mmol·kg~(-1) to 31.39 mmol·kg~(-1) by adding 10ml 55mg·L~(-1) humic acid solution at 25°C, The adsorption quantity of Cd were reduced with increasing of environmental temperature, which indicated that adsorption of Cd was an excergic process, meanwhile, the respective adsorption standard free energy were△G_2~θ=-0.9497kJ·mol~(-1) and△G_1~θ=-0.8885kJ·mol~(-1) with or without humic acid. The adsorption kinetics of Cd fitted with Evolich kinetics equation the best, and then was Double constant equation, but it changed to Double constant equation at present of humic acid. The adsorption speed of Cd is faster then no humic acid at present. The adsorption capability of Cd increased with an increase in the humic acid concentration and the solution pH. The adsorption quantity of Cd was high at low pH then high pH.
     Chapter 4.Surfactants enhanced soils washing efficiency of heavy metal with EDTA.
     Soil washing is common used to treat soils contaminated with heavy metal that separated heavy from soils in an aqueous-based system. The wash water may be augmented with a basic leaching agent, acid, surfactant, pH adjustments, or chealting agents in order to separate heavy metals that absorbed on soil surface. The most common chelating agent studied in the literature is ethylenediamine-tetraacetic acid (EDTA) because of its strong chelation nature, and little influence on soil nature. Meanwhile, the most study on desorption of organic pollutants in soils by surfactants carried out, but not mainly about heavy metals desorption. In this section, the effects of sodium dodecyl sulfate(SDS)、laural polooxyethylene ether(Brij35) and Ethylenediaminetetraacetic acid(EDTA) on desorption of Cd and Pb from the soil contaminated by the wastewater irrigation are studied in laboratory, respectively, while the influence of adding SDS and Brij35 on EDTA desorption capacity is certified. The changes of the heavy metal's species before and after desorption in the soil matrix are certified too. The experimental results show that the removal of Cd from the soil increases from 61.67% by using EDTA alone to 79.68% if adding SDS, meantime, the removal of Pb increases from 57.25% to 79.68%. However, the addition of the surfactants could restrain the desorption capacity of EDTA, if EDTA has a lower concentration. SDS can significantly enhance the synergetic solubilization of Cd and Pb by an increase of EDTA concentrations. Brij35 has the same effect on the enhanced solubilization of Cd and Pb, but its efficiency appears to be little weaker than SDS. With a comparison of the changes of the heavy metal species in the desorption processes, the contents of soluble and carbonate species were decreased by 60-90% compared to that measured before desorption. It is said that bioavailability and toxicity of heavy metals in sewage farm have been decreased. The research results not only could theoretically provide the approach how to use surfactants to enhance the complexing capacity of EDTA for desorption of heavy metals from soil media, but also could extensively be used in the in-situ flushing technique for heavy metal contaminated soils. The research results not only could theoretically provide the approach how to use surfactants to enhance the complexing capacity of EDTA for desorption of heavy metals from soil media, but also could extensively be used in the in-situ flushing technique for heavy metal contaminated soils.
     Chapter 5.Study on desorption of heavy metal in sewage-irrigated soil bycomplexing with saponin.
     Biosurfactant which contains a hydrophobic portion and a hydrophilic group from qullaja bark seemed to be an attractive cleaning agent in environmental applications for researchers because of its biodegradability, low loxicity, possibility of reuse, and high economic value.
     In this section, the vibration-centrifuge experiments were performed to evaluate the feasibility of using saponin for the removal of heavy metals from the soil contaminated by the wastewater irrigation in laboratory, respectively, the sequential extraction procedure were selected to determine the speciation of heavy metal, at the same time, recovery of heavy metals and recycle of used saponin were also studied as a method for decreasing the costs of remediation processes. The results showed that desorption efficiency could be enhanced with the increase of the added Saponin concentrations, and could finally reach 43.9%, 95.1%, 83.5% and 20.7% for Cu、Cd、Pb、and Zn, respectively, by adding 3.0% of Saponin, while desorption by water alone was less than 5%. It was also found that the desorbed amount gradually decreased with the increase of pH values of the soil, which indicated that the high removal only take place in the week acidic environment. The ionic strength slightly had a negative influence on the desorption of Cd、Cu, but no efforts on Pb、Zn. Comparing the spices transformation of heavy metals before and after desorption in the soil matrix by Tesseri method, it was evident that soluble spices and carbonated fractions of Cu、Cd、Pb、Zn adsorbed on the soil surfaces were washed away tremendously but oxidant-combined and residual spices only reduced little. As a result, the toxicity and bio-reusability of the heavy metals were significantly decreased.
引文
[1] 陈怀满,郑春荣,中国土壤重金属污染现状及防治对策[J],人类环境杂志,1999,28(2):130-134
    [2] 郑喜坤,鲁安怀,高翔等,土壤中重金属污染现状与防治方法[J],土壤与环境,2002,11(1):79-84
    [3] 黄宝荣,矿山重金属污染土壤化学修复技术研究,湖南大学硕士学位论文,2004
    [4] 赵传燕、南忠仁,《近10年来白银市灰钙土区土壤作物系统重金属污染治理效果分析及进一步防治对策研究》,2000,5-8
    [5] 李海华,刘建武,李树人等.土壤-植物系统中重金属污染及作物富集研究进展[J].河南农业大学学报,2000,34(1):30~34
    [6] 姜彬慧,林碧琴.重金属对藻类的毒性作用研究进展[J].辽宁大学学报,2000,27(3):281~287
    [7] 秦天才,吴玉树,王焕校.镉铅及相互作用对小白菜生理生化特性的影响[J].生态学报,1994,14(1):46~49
    [8] Kahle H. Response of roots of trees to heavy metals[J].Env-iron ExperiBot, 1993,(33):99~119
    [9] Bernal M P, Grath S P. Effects of pH and heavy metals con-centrations in solution culture on the proton release,growth and elemental composition of Alyssum murale and Raphanus sativus.Plant Soil,1994,166:83~92
    [10] 林碧琴,张晓波.羊角月牙藻对镉毒作用的反应和累积的研究,1.镉对羊角月牙藻的毒性作用[J].植物研究,1988,8:195~202
    [11] 董庆森,林碧琴.铅对羊角月牙藻的毒性及吸收作用的研究[J].辽宁大学学报,1997,24:89~94
    [12] 戴树桂主编,环境化学[M],高等教育出版社,1997,155~157
    [13] 李天杰等,土壤环境学[M],高等教育出版社,1995,P.102~112
    [14] 刘清,王子健,汤鸿霄,重金属形态与生物毒性及生物有效性关系的研究进展,环境科学,1996,17(1):89~922
    [15] 单孝全,王仲文,形态分析与生物可给性,分析实验室,2001,20(6):103~108
    [16] Tessier A., Campbell P.C.,Bisson M., Sequential extraction procedure for the speciation of particulate trace metals, Environ.Sci.Teho1,1979, 51:844-851
    [17] 王学锋,杨艳琴,土壤-植物系统重金属形态分析和生物有效性研究进展[J],化工环保,2004,24(1):24-28
    [18] 丁疆华,温琰茂,舒强,土壤环境中镉、锌形态转化的探讨[J],城市环境与城市生态,2001,14(2):47-49
    [19] 李宗利,薛澄泽,污灌土壤中Pb、Cd形态的研究[J].农业环境保护,1994,(4):152-157.
    [20] 宋菲,郭玉文,刘孝义等.镉、锌、铅复合污染对菠菜的影响[J].农业环境保护,1999,(1):9-14.
    [21] 林琦,陈怀满,郑春荣等.根际环境中镉的形态转化[J].土壤学报,1998,(4):461-467.
    [22] 张维碟,林琦,陈英旭,不同Cu形态在土壤-植物系统中的可利用性及其活性诱导[J],环境科学学报,2003,23(3):376~38
    [23] 李瑛,张桂银,李洪军等,根际土壤中Cd、Pb形态转化及其植物效应[J],生态学报,2004,13(3):316-319
    [24] Robert W. Peters, Chelant extraction of heavy metals from contaminated soils[J], Journal of Hazardous Materials,1999,66:151-210
    [25] M.A. Marino, R.M. Bricka, C.N. Neale, Heavy metal soil remediation: the effects of attrition scrubbing on a wet gravity concentration process, Environ. Prog. 1997,16(3): 208-214.
    [26] Xiaobing C, Judith V.W., Jamesel c. et al, Evalation of heavy metal remediation using mineral apatite, Water, air and soil pollution, 1997,98(1):57-78
    [27] W.R.Berti, S.D.Cunningham, In-place inactivation of Pb in Pb-contaminated soils[J], Environ.Sci. Technol.,1997,31(5):1359-1364
    [28] Q. Y. Ma, S. J. Traina, T. J.Logan,et al, Effects of aqueous Al、Cd、Cu、Fe(Ⅱ), Ni and Pb immobilization by.hydroxyapatite[J], Environ.Sci.Technol., 1994, 28(3): 1219-1228
    [29] M.V.Ruby, A.Davis, A.Nicholson, In situ formation of lead phosphates in soils as a method to immobilize lead[J], Environ.Sci.Technol.,1994,28(3)646-654
    [30] L.Q.Ma, Factors influencing the effectiveness and stability of aqueous lead immobilization by hydroxyapatite[J], Environ.Sci.Technol., 1996, 25(6): 1420-1429
    [31] X.Chen, J.V.Wright, J.L.Conca, et.al, Effects of pH on heavy metal sorption on mineral apatite[J], Environ.Sci.TechnoL, 1997,31(3):624-631
    [32] G.M.Hettiarachchi, G.M.Pierzynski, M.D.Ransom, In situ stabilization of soil lead using phosphorus and manganese oxide[J], Environ.Sci.Technol.,2000, 34:4614-4619
    [33] Olin Y., David E.M., Tan W.C. et al, Lead immobilization using phosphoric acid in a smelter-contaminated urban soils[J], Environ.Sci.Technol.,2000,35(17) 3553-3559
    [34] Y.M. Wang, T.C.Chen, K.J.Yeh, et al, Stabilization of an elevated heavy metal contaminated site[J], Journal of Hazardous Material, 2001,88(1):63-74
    [35] K.A.Maenpan, J.V.K.Kukkonen, M.J.Lydy, Remediation of heavy metal-contaminated soil using phosphorus: Evaluation of bioavilability using an earthworm bioassay[J], Arch. Environ. Contam. Toxical., 2002,43(4):389-378
    [36] Garcia-Sanchez, A.Alastuey, X.Querol, Heavy metal adsorption by different minerals: application to the remediation of polluted soil[J], The Science of Tatol Environment, 1999,242(3):179-188
    [37] R.Ciccu, M.Ghiani, A.Serci, et al., Heavy metal immobilization in the mining-contaminted soil using various industrial wastes[J], Minerals Engineering, 2003,16(3):187-192
    [38] Barbara L., Gerhard F.,et al., Immobilization of zinc and cadmium by montmorlillonite compounds:Effects of aging and subsequent acidification[J], Environ.Sci.Technol., 1999,33(17) 2945-2952
    [39] Enzo Lombi, Fang-Jie Zhao, GangYa Zhang, et al., In situ fixation of metals in soil using bauxite residue: chemical assessment[J], Environmetal Pollution, 2002,118(3):445-452
    [40] R.Krebs, S.K.Gupta, G.Furrer, et al., Gravel sludge as an immobilization agent in soils contaminated by heavy metals: a field study[J], Water Air and Soil Pollution, 1999,115(4):465-479
    [41] 白庆中,宋燕光,王晖,有机物对重金属在粘土上吸附行为的影响[J],环境科学,2000,21(5):64-67
    [42] 余贵芬,蒋新,孙磊等,有机物质对土壤镉有效性的影响研究综述[J],生态学报,2002,22(5):770-775
    [43] 余贵芬,蒋新,吴泓涛等,镉铅在粘土上的吸附及受腐殖酸的影响[J],环境科学,2002,22(5):109-112
    [44] 余贵芬,蒋新,和文祥等,腐殖酸对红壤中PbCd赋存形态及活性的影响[J],环境科学学报,2002,22(4):508-513
    [45] 姚爱军,青长乐,牟树森,腐殖酸对矿物结合汞植物活性的影响[J],中国环境科学,2000,20(3):215-219
    [46] M.Petrovic, M.Kastelan-macan and A.j.M.Horvat, Interactive sorption of metal ions and humic acid aonto mineral particles[J], Water Air and Soil Pollution, 1999,111(1):41-56
    [47] 王艮梅,周立祥,施用有机物料对污染土壤水溶性有机物和Cu活性的动态影响[J],环境科学学报,2003,23(4):452-457
    [48] 华珞,白玲玉,韦东普等,有机肥-Cd-Zn交互作用对土壤中CdZn形态和小麦生长的影响[J],中国环境科学,2002,22(4)346-350
    [49] 武晓峰,唐杰,藤间幸久,土壤、地下水中有机污染物的就地处理[J],环境污染治理技术与设备,2000,4(1):46-51.
    [50] 周加祥,刘铮,铬污染土壤修复技术研究进展[J],环境污染治理技术与设备,2000,4(1):51-55
    [51] Semer R., Reddy K.R., Evaluation of soil washing process to remove mixed contaminants from a sandy loam[J], Journal of Hazardous Materials, 1996,45:45-57
    [52] 巩宗强,李培军,台培东等,污染土壤的淋洗法修复研究进展[J],环境污染治理技术与设备,2002,3(7):45-50
    [53] 周启星,宋玉芳.污染土壤修复原理与方法.北京:科学出版社,2004
    [54] 孙铁珩,周启星,李培军.污染生态学.北京:科学出版社,2001
    [55] Tampouris S., Papassiooi N.I., Removal of contaminant metals from fine grained soil using agglomeration chloride solutions and pile leaching techniques[J], Haz. Mat.,2001, B 84:297-319.
    [56] Alam MGM, Tokunga S., Maekawa T., Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate [J], Chemosphere, 2001, 43:1035-1041.
    [57] 方晓航,仇荣亮,有机螯合剂在镍污染土壤植物修复中的研究进展[J],环境污染治理技术与设备2002,3(10):1-5
    [58] B.Sun, F.J.Zhao, E.Lombi et al, Leaching of heavy metals from contaminated soils using EDTA[J], Environmental Pollution,2001,113:111-120
    [59] Andrew Hong P.K., Chelsea Li, Feasibility of metal recovery from soil using DTPA and its biostability [J], Haz. Mat., 2002, B 94:253-272.
    [60] Ruey-an Doong, Ya-We Wu and Wen-gang Lei, Surfactant enhanced remediation of cadmium contaminated soils [J], Wat.Sci Tech.,1998, 37(8): 65-71.
    [61] 周东美,郑春荣,陈怀满等,镉与柠檬酸、EDTA在几种典型土壤中交互作用的研究[J],土壤学报,2002,39(1):29-36.
    [62] 魏世强,木立坚,青长乐,几种有机物对紫色土镉溶出效应与吸附-解吸行为影响的研究[J],土壤学报,2003,40(1):110-117.
    [63] Wasay S.A., Barrington S., Tokunaga S., Organic acids for the in situ remediation of soil pollution by heavy metals: soil flushing in columns [J], Water, Air and Soil Pollution, 2001,127:301-314.
    [64] Catherine N. Mulligan, Raymond.Yong,Bernard F. Gibbs, Surfactant-enhanced remediation of contaminated soil:a review [J], Engineering Geology, 2001, 60:371-380
    [65] 孟佑婷,袁兴中,曾光明等,生物表面活性剂修复重金属污染研究进展[J],生态学杂志,2005,24(6):677-680
    [66] 陈玉成,熊双莲,熊治廷,基与表面活性剂的重金属去除技术[J],环境科学与技术,2004,27:162-165
    [67] Catherine N. Mulligan, Environmental applications for biosurfactants [J], Environmental pollution, 2005, 133:183-198
    [68] Miller R.M., Biosurfactant facilitated remediation of metal contaminated soils [J], Environ. Health Persp., 1995,103(1) 59-62
    [69] Catherine N. Mulligan, Raymond.Yong,Bernard E Gibbs,Metal Removal from Contaminated soil and Sediments by the Biosurfactant Surfactin, Environ.Sci.Tehol., 1999, 33: 3812-3820
    [70] Catherine N. Mulligan, Raymond.Yong, Bernard F. Gibbs,On the use of biosurfaetant for the removel of heavy metal from oil-contaminated soil [J],Process Safety Progress,1999,18(1): 50-54
    [71] Catherine N. Mulligan, Raymond N. Yong,Bernard F.Gibbs,Heavy metal removal from sediments by biosurfactant,Journal of Hazardous Materials, 2001, 85:111-125
    [72] Kyung-Jin Hong, Shuzo Tokunaga, Toshio Kajiuchi, Evaluation of remediation process with plant-derived Biosurfactant for recovery of heavy metals from contaminated soils, Chemosphere, 2002,49:379-387
    [73] David C. Herman, Janick E Artiola, Raina M. Miller. Removal of Cadmium, Lead, and Zinc. from soil by a Rhamnolipid Biosurfactant, Environ.Sci.Tehnol., 29(1995)2280-2285
    [74] Tan Hua, Complexation of cadmium by rhamnolipid biosurfactant [J], Environ.Sci.Tehnol. 1994, 28(13):2402~2406.
    [75] Catherine N. Mulligan, Raymond N. Yong,Bernard F.Gibbs,Heavy metal removal from sediments by biosurfactant [J],Journal of Hazardous Materials,2001, 85:111-125
    [1] Y.-S. Keum, Q.X. Li. Copper dissociation as a mechanism of fungai laccase denaturation by humic acid[J], Applied Microbiology and Biotechnology, 2003, 64(4): 588-592
    [2] 王晶,张旭东,李彬等.腐殖酸对土壤中Cd形态的影响及利用研究[J],土壤通报,2002,33(3):185-187
    [3] 余贵芬,蒋新,孙磊等.有机物质对土壤镉有效性的影响研究综述[J],生态学报,2002,20(5):770-775
    [4] 陈建斌,高山.有机物料对土壤中外源铜形态及土壤化学性质的影响[J],农业环境保护,2000,19(1):38-40
    [5] I.-C.kong,G.Bitton,Correlation between heavy metal toxicity and metal fractions of contaminated solls in Korea[J],Bull.Environ.Contam.Toxical,2003,70:557-565
    [6] 《环境污染分析方法》科研协作组编著,环境污染分析方法[M],科学出版社,1987,第一卷,85-87,13-135
    [7] 宋菲,郭玉文,刘孝义等.土壤中重金属镉铅锌复合污染的研究[J],环境科学学报,1996,16(4):431-436
    [8] Matthieu Francois, Henri-Charles Dubourgaier, Dongyan li etal, Prediction of heavy metal solubility in agricultural topsoils around two smelters by physics-chemical parameters of the soils[J]. Aquat. Sci., 2004,66:78-85
    [9] 戴树桂主编.环境化学[M],高等教育出版社,1997,155-157
    [10] 高彦征,贺纪正,凌婉婷.湖北省几种土壤的重金属镉、铜形态[J],华中农业大学学报,2001,20(2):143-147
    [11] 李俊莉,宋华明.土壤理化性质对重金属行为的影响分析[J],环境科学动态,2003,1:24-26
    [12] 张维碟,林琦,陈英旭,不同Cu形态在土壤-植物系统中的可利用性及活性诱导[J],环境科学学报,2003,23(3):376-38
    [1] 宗良纲,徐晓炎,土壤中镉的吸附解吸研究进展[J],生态环境,2003,12(3):331-335
    [2] 李俊莉,宋华明,土壤理化性质对重金属行为的影响分析[J],环境科学动态,2003,1:24-26
    [3] 李光林,魏世强,青长乐等,镉在腐植酸上的吸附与解吸特征研究[J],农业环境科学学报,2003,22(1):34-37
    [4] Aiguo Liu, Richard D. Gonzalez, Adsorption/desorption in a system consisting of humic acid、heavy metal and clay minerals[J],Journal of Colloid and Interface Science,1999,218,225-232
    [5] 王晶,张旭东,李彬等,腐植酸对土壤中Cd形态的影响及利用研究[J],土壤通报,2002,33(3):185-187
    [6] 白庆中,宋燕光,王晖,有机物对重金属在粘土上吸附行为的影响[J],环境科学,2000,21(5):64-67
    [7] 余贵芬,蒋新,孙磊等,有机物质对土壤镉有效性的影响研究综述[J],生态学报,2002,22(5):770-775
    [8] 余贵芬,蒋新,吴泓涛等,镉铅在粘土上的吸附及受腐殖酸的影响[J],环境科学,2002,22(5):109-112
    [9] M.Arias, M.T.Barral, J.C.Mejuto,Ehancement of copper and cadmium adsorption on kaolin by the presence of humic acids[J], Chemosphere,2002,48:1081-1088
    [10] 傅献彩,沈文霞,姚天扬,物理化学[M],北京高等教育出版社,1997,379-407
    [1] Robert W. Peters, Chelant extraction of heavy metals from contaminated soils[J],Journal of Hazardous Materials,1999,66:151-210
    [2] 龙新宪,杨宵娥,倪吾钟,重金属污染土壤修复技术研究的现状和展望[J],应用生态学报,2002,13(6):757-762
    [3] 可欣,李培军,巩宗强等,重金属污染土壤修复技术中有关淋洗剂的研究进展[J],生态学杂志,2004,23(5):145-149
    [4] A. Barona, I. Aranguiz, A. Elias, Metal association in soils before and after EDTA extractive decontamination: implications for the effectiveness of further clean up procedures[J], Environmental Pollution,2001,113:79-85
    [5] R.S.Tejowulan, W.H.Hendershot, Removal of trace metals from contaminated soils using EDTA incorporating resin trapping techniques [J], Environmental Pollution, 1998,103:135-142
    [6] B.Sun, F.J.Zhao, E.Lombi et al, Leaching of heavy metals from contaminated soils using EDTA[J], Environmental Pollution,2001,113:111-120
    [7] Ruey-an Doong, Ya-Wen Wu, Wen-gang Lei. Suffactant enhanced remediation of Cadmium contaminated soils[J], Wat. Sci. Tech.1998, 37(8):65-71
    [8]姜霞,高学晟,应佩峰等,表面活性剂的增溶作用及在土壤中的行为[J],应用生态学报,2003,14(11):2072-2076
    [9] S.Deshpande, B.J.Shiau, D.Wade, et al, Surfactant selection for enhancing ex situ soil washing [J], Wat.Res., 1999,33(2):351-360
    [10] 陈玉成,郭颖,魏沙平,螯合剂与表面活性剂复合去除城市污泥中Cd、Cr[J],中国环境科学,2004,24(1):100-104
    [11]《环境污染分析方法》科研协作组编著,环境污染分析方法,科学出版社,1987,第一卷,85-87,13-135
    [12] 程晓东,郭新明,河流底泥中重金属不同形态的生物有效性,农业环境保护,2001,20(1):19-22
    [13] Ruey-an Doong, Ya-Wen Wu and Wen-gang Lei, Surfactant enhanced remediation of cadmium contaminated soils[J],Wat.Sci.Tech.,1998,37(8):65-71
    [14] Wallace A. Additive,protective and synergistic effects on plants with excess elements[J],Soil Science,1982,139(5):319-323
    [15] 余国营,吴燕玉,环境中重金属元素的相互作用及其对吸持特性的影响[J],环境化学,1997,16(1):30-36
    [16] Kubilay Guclu and Resat Apak, Modeling the adsorption of free and heavy metal complex-bound EDTA onto red mud by nonelectrostatic surface complexation model[J], Journal of Colloid and Interface Science,2003,260:280-290
    [17] 王学锋,杨艳琴,土壤-植物系统重金属形态分析和生物有效性研究进展[J],化工环保,2004,24(1):24-28
    [1] Robert W. Peters, 1999, Chelant extraction of heavy metals from contaminated soils[J], Journal of Hazardous Materlals, 66:151-210
    [2] David C. Herman, Janick F. Artiola, Raina M. Miller. 1995, Removal of Cadmium, Lead, and Zinc from soil by a Rhamnolipid Biosurfactant [J], Environ.Sci. Tehnol, 29:2280—2285
    [3] Catherine N. Mulligan. 2005, Environmental applications for biosurfactants[J], Environmental pollution, 133:183-198
    [4] Catherine N. Mulligan, Raymond N. Yong, Bernard F.Gibbs, 2001, Heavy metal removal from sediments by biosurfactants [J], Journal of Hazardous Materials, 85:111—125
    [5] K.J. Hoog, S. Tokunaga, Y. Ishigami, 2000, Extraction of heavy metals from MSW incinerator fly ash using saponins[J], Chemoshere, 41:345-352
    [6] Kyung-Jin Hong, Shuzo Tokunaga, Toshio Kajiuchi, 2002, Evaluation of remediation process with plant-derived Biosurfactant for recovery of heavy metals from contaminated soils[J], Chemosphere, 49:379-387
    [7] 张辉,马东升,南京地区土壤沉积物中重金属形态的研究[J],环境科学学报,1997,17(3):346-352
    [8] Catherine N.Mulligan, Raymond.Yong,Bernard F. Gibbs, 1999, Metal Removal from Contaminated soil and Sediments by the Biosurfactant Surfactin [J], Environ.Sci. Tehol. 33:3812—3820
    [9] 王学锋,杨艳琴,土壤-植物系统重金属形态分析和生物有效性研究进展[J],化工环保,2004,24(1):24-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700