用户名: 密码: 验证码:
水溶性有机物的化学行为及其对土壤中Cu形态和有效性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水溶性有机物(Dissolved organic matter DOM)是有机肥料中最具有活性的组分。农业生产中有机肥的施用历来受到广泛重视,并且通常被认为是提高土壤肥力,改善土壤性质,提高作物产量和品质的重要手段。水溶性有机物随着有机肥的施用进入土壤后,通过与土壤中有机和无机胶体发生的一系列吸附、解吸、转化、络合等作用,将对土壤肥力、土壤理化性质、土壤中微量元素和污染元素等的有效性产生一系列重要影响。研究DOM在土壤中的化学行为及其对土壤中污染元素的影响,对于评价有机肥的效应、有机肥与土壤肥力的关系等具有重要意义。
     本文以鸡粪堆肥作为DOM的来源,选取黑土、褐土和红壤三种土壤,研究了DOM在土壤中的吸附-解吸行为和固定作用,并着重研究了DOM对红壤中重金属Cu形态变化的影响,通过盆栽模拟试验的手段,探讨了DOM对三种Cu污染土壤上作物生长的影响,通过上述研究,主要取得了如下结论:
     (1)外源DOM进入土壤后,能被土壤胶体所吸附,土壤对DOM的吸附过程是一个快速反应的过程,通常在一个小时内即可达到吸附解吸平衡;不同土壤对DOM的吸附能力差异明显,有机质含量高的黑土和低pH值的红壤对DOM的吸附量较大,吸附速率较快,DOM在三种土壤中的分配系数分别为26.57、22.31、16.72;土壤对DOM的吸附是一个可逆的过程,在适当的条件下,土壤所吸附的DOM又可以通过解吸作用释放到土壤溶液中。对DOM吸附量大的土壤,其解吸量较大,而对DOM吸附量小的土壤与DOM的结合更为紧密,三种土壤所吸附DOM的解吸量分别为所吸附DOM的90%、50~60%、40%左右。
     (2)DOM进入土壤后,除了能被土壤吸附外,还能被土壤固定。土壤对DOM的固定与其对DOM的吸附之间联系紧密,对土壤吸附能力强的土壤,对DOM的固定能力亦强。此外,温度越高,土壤对DOM的固定能力越强。
     (3)外源DOM对土壤中重金属的存在形态产生重要影响。外源DOM进入土壤后,土壤中重金属的存在形态迅速发生变化,主要表现为交换态重金属离子的含量提高(最高可提高36.33%),即外源DOM对土壤中重金属产生了活化作用;当土壤中交换态重金属离子的含量升高至一定水平后,随着DOM在土壤中化学行为的变化,交换态重金属离子含量又有所下降,但在相当长的一段时间内仍高于原始土壤的水平(28d后仍高于对照6.74%~26.45%)。DOM导致土壤中重金属存在形态的变化受温度的强烈影响,温度越高时,DOM对土壤中重金属的存在形态影响大,温度越低,则DOM对土壤中重金属的存在形态的影响较小。
     (4)DOM对土壤中重金属形态和有效性的影响体现了复杂的多重效应,DOM在活化土壤中重金属的同时,对土壤pH亦有提高效应(DOM浓度为1000mg C·kg~1时,红壤的pH值提高0.15~0.21个pH单位),从而降低土壤中重金属的有效性。在加入较低含量的DOM时,DOM对重金属的活化效应占主导地位,表现为随DOM浓度的增加,DOM对重金属的活化能力增强;而当DOM浓度增加至一定程度时,DOM对土壤pH的提高效应开始显现,表现为随着DOM浓度的升高,DOM的活化效应降低;DOM对土壤中重金属的活化效应还与土壤的性质有关,有机质含量高,pH值高的土壤,DOM的活化效应弱。
     (5)因DOM能对被重金属污染土壤中的重金属产生活化作用,从而对作物的生长产生重要影响,主要表现为作物的中毒反应,在降低作物产量的同时,提高作物体内重金属浓度,降低作物品质。
     根据本研究的结果,传统上采用增施有机肥以修复重金属污染的方法并非在所有情况下都是适用的,在重金属污染土壤上施用有机肥时应当充分考虑土壤和DOM的性质以及可能发生的各种可能效应,谨慎行事。
Manure fertilization is very popular in agricultural production, which is very important for improving soil fertility, bettering soil quality, increasing crop yield and quality. As dissloved organic matter is the most active component in manure, it will have great influence on the soil fertility, soil physical and chemical property and validity of microelement especially for some contaminated elements through a series of process including sorption, desorption, transfer, transformation and and chelation related to soil organic and inorganic colloid when dissolved organic matter (DOM) entered soils. It is significant to study the chemical behavior of DOM and its effluence on pollutant elements for evaluating the effects of organic manure ferlization, the relationship between organic manure and soil fertility.
     DOM used in this paper was obtained from that of chicken dung compost after special chemical treatment, and the selected materials were black soil, brown soil and red soil. The behavior of DOM including sorption, desorption and fixation in soils, particularly, the effects of DOM on copper fractional distribution was studied. The effects of DOM on crop growth in the three kinds of soil contaminated by copper were also explored using potted plant experiment. The main results from this paper can be described as follows:
     (1)Once DOM entered into soils, most will be absorbed by soil colloid. The sorption and desorption of DOM in soils will reach a balance in a hour with such a rapid process. There is great difference among the absorbing ability of various kinds of soils, and the absorbed amount of DOM is relatively high in Black soil with more organic matter content and red soil with lower pH with more rapid speed. The distribution coefficients of DOM in black soil, red soil and brown soil are 26.57, 22.31 and 16.72 separately.As the adsorption of DOM in soils is a reversible process, the DOM adsorpted by soil can return to soil solution under proper conditions. The soils with stronger adsorption ability of DOM can release more DOM into soils through desorption, while soils with less absorbing ability combined more tightly with DOM. The desorption amound of red soil, black soil, and brown soil are about 90%, 50%~60%, and 40% of the adsorption amound.
     (2) Once the DOM entered into soils, it can also be fixed except for sorption. The fixation of DOM in soils is closely correlated with its sorption. Generally, soils with stronger absorbing ability can stabilize more DOM and more DOM will be fixed with the temperature increased.
     (3) DOM from outer source has very important impact on the fractional distribution of heavy metals. The fractional distribution of heavy metals in soils will change immediately once DOM comes into soils, with the increased rate of exchange form firstly which means the heavy metal activatation role of DOM(36.33% higher at most). The exchangeable content of heavy metals will be reduced with the change of chemical behavior of DOM in soils when it was increased to a high level, but the total amount of exchangeable heavy metals remained at a higher level than that in original soils with such a long time(6.74%~26.45% higher after 28 days). Soil temperature can have great impact on heavy metal fractions with the existence of DOM. With the soil temperature increased, DOM has influence on the heavy metal fractions, while less influence from DOM can be observed at lower temperature.
     (4) The influence of DOM on heavy metal fraction in soils can be regarded a comprehensive process. The validity of heavy metals was reduced with the pH increased in spite of that heavy metals be activated by DOM in soils(the pH increase 0.15-0.21 when the concentration of DOM is 1000 mg C-kg~(-1)). The process was mainly controlled by activation effect when adding low level of DOM, and more amounts of heavy metals was activated with more DOM added. However, when the added DOM reached at a high level, the increasing effect of pH in soils occurred, and less activation effect will be found with DOM content increased. In addition, the activation effects of DOM on heavy metals in soils was correlated with soil properties, and less activation effects was observed with more organic content and higher pH values.
     (5) The growth of crops was greatly affected by DOM since the heavy metals were activated by DOM in soils contaminated by heavy metals, which resulted in toxic effects of crops; yield reduction, higher concentration of heavy metals in plant tissues and crops quality degradation.
     According to this research, adding manure using is not an in point way to rehabilitate heavy metal pollute soil in all conditions. When using manure in heavy metal pollute soils, must think over the influence of DOM, and feel one's way.
引文
1.曹军,李本钢,徐福留等.土壤中水溶性有机碳与铜的相互影响.环境化学2001,20(6):561~565
    2.常红岩,孙白晔,刘春生.植物铜素毒害研究进展.山东农业大学学报(自然科学版),2000,31(2):227~230
    3.陈同斌,陈志军.水溶性有机质对土壤中镉吸附行为的影响.应用生态学报,2002,13(2):183~186
    4.陈同斌,陈志军.土壤中溶解性有机质及其对污染物吸附和解吸行为的影响.植物营养与肥料学报,1998,3(4):201~210
    5.陈同斌,黄泽春,陈煌.废弃物中水溶性有机质对土壤吸附Cd的影响及其机制.环境科学学报,2002,22(2):150~155
    6.陈怀满等.土壤中化学物质的行为与环境质量.2002,北京:科学出版社,479
    7.陈志军,白厚义,陈佩琼.溶解性有机质对镉在蔬菜中累积的影响.广西农业大学学报,1997,16(2):129~132
    8.方华军,杨学明,张晓.平坡耕地黑土活性有机碳空间分布及生物有效性.水土保持学报,2006,20(2):59~63
    9.付美云,周立祥.垃圾渗滤液水溶性有机物对土壤吸附重金属Cd、Pb的影响.环境科学学报,2006,26(5):828~83
    10.付美云,周立祥.垃圾渗滤液水溶性有机物对污染土壤中重金属Pb迁移性的影响,华东理工学院学报,2006:29(2),171~175
    11.付美云,周立祥.渗滤液溶解性有机物对土壤Cd、Pb有效性的影响.应用生态学报.2006:17(7):1295~1300
    12.高树芳,王果,方玲.溶解性有机质对水稻生长及元素吸收的影响.福建农业大学学报,2001,30(1):87-90
    13.郭朝晖,黄昌勇,廖柏寒.模拟酸雨对红壤中铝和水溶性有机质溶出及重金属活动性的影响.土壤学报,2003,40(3):380~385
    14.韩成卫,李忠佩,刘丽等.溶解性有机质在红壤水稻土碳氮转化中的作用.生态环境,2006,15(6):1300~1305
    15.黄泽春,陈同斌,雷梅.陆地生态系统中水溶性有机质的环境效应.生态学报,2002,(22)2:258~269
    16.黄泽春,陈同斌,雷梅.污泥中的DOM对中国土壤中Cd吸附的影响Ⅰ.纬度地带性差异.环境科学学报,2002,22(3):349~353
    17.蒋疆,王果,方玲.土壤水溶解态有机物质与重金属的络合作用.土壤与环境,2001,10(1):67~71
    18.李睿,屈明.土壤溶解性有机质的生态环境效应.生态环境,2004,13(2):271~275
    19.李香真.污泥中水溶性Cu、Zn的形态及水溶性有机物与Cu~(2+)的符合特性.中国农业大学 学报.1996,1(3):113~117
    20.李廷强,杨肖娥.土壤中水溶性有机质及其对重金属化学与生物行为的影响.应用生态学报,2004,15(6):1083~1087
    21.林滨,陶澍,刘晓航.土壤与沉积物中水溶性有机物释放动力学研究.环境科学学报,1997,17(1):8~13
    22.林卉,曹军,陶澍.水溶性有机碳对玉米根部Cu吸收过程的影响.农业环境科学学报.2004,23(6):1061~1064
    23.凌婉婷,徐建民,高彦征等.溶解性有机质对土壤中有机污染物环境行为的影响.应用生态学报,2004,(15)2:326~330
    24.刘铮等,微量元素的农业化学,1991,北京:农业出版社,413
    25.倪进治,徐建民,谢正苗等.不同施肥处理下土壤水溶性有机碳含量及其组成特征的研究.土壤学报2003,40(5):724~730
    26.鲁如坤.土壤农业化学分析方法.2000.北京,中国农业科技出版社
    27.谭洪新,胡熠昂,梅志平.细菌利用溶解有机质的研究.水生生物学报,2000,24(3):154~164
    28.陶澍,曹军.山地土壤表层水溶性有机物淋溶动力学模拟研究.中国环境科学,1996,16(6):410~414
    29.王艮梅,周立祥.陆地生态系统中水溶性有机物动态及其环境学意义.应用生态学报,2003,14(11):2019~2025
    30.王艮梅,周立祥.施用有机物料对污染土壤水溶性有机物和铜活性的动态影响.环境科学学报,2003,23(4):452~457
    31.王艮梅,周立祥,占新华等.水田土壤中水溶性有机物的产生动态及对土壤中重金属活性的影响:田间微区试验.环境科学学报,2004,24(5):858~864
    32.王艮梅,周立祥.水溶性有机物对水田土壤中水溶性氮磷含量及其利用率的影响.生态学杂志,2006,25(1):13~18
    33.王艮梅,周立祥.水溶性有机物在土壤剖面中的分馏及对Cu迁移的作用.环境科学.2006:27(6):1229~1235
    34.王果,谷勋刚,高树芳等.三种有机肥水溶性分解产物对铜、镉吸附的影响.土壤学报,1999,36(2):179~188
    35.王果,李建超,杨佩玉.有机物料影响下土壤溶液中镉形态及其有效性研究.环境科学学报,2000,20(5):622~627
    36.王圣瑞,金相灿,赵海超等.湖泊沉积物中水溶性有机质对吸附磷的影响.土壤学报2005,42(5):805~811
    37.王治喜,屈明.溶解性有机质对土壤重金属活性影响的研究概况.中国农学通报.2005,21(12):388~393
    38.魏群山,王东升,余剑锋等.水体溶解性有机物的化学分级表征:原理与方法.环境污染治理技术与设备,2006,7(10):17~22
    39.吴龙华,骆永明,黄焕忠.铜污染土壤修复的有机调控研究:Ⅰ.可溶性有机物和EDTA对污染红壤铜的释放作用.土壤.2000,2,62~66
    40.吴求亮,杨玉爱,谢正苗等.腐殖酸结合汞的研究现状.农业环境保护,2000,19(4):255~257
    41.许中坚,刘广深,刘维屏.土壤中溶解性有机质的环境特性与行为.环境化学,2003,22(5):427~433
    42.杨桂芬,李德波.我国南方某些铜矿附近水稻土铜污染的调查研究.农村生态环境.1990.(4):55~58
    43.杨苏才,南忠仁,曾静静.土壤重金属污染现状与治理途径研究进展.安徽农业科学,2006,34(3):549-552
    44.杨玉盛,郭剑芬,陈光水等.森林生态系统DOM的来源、特性及流动.生态学报,2003,23(3):547~558
    45.张甲坤,曹军,陶澍.土壤水溶性有机物吸着系数及其影响因素研究.地理科学,2001,21(5):144~148
    46.赵劲松,张旭东,袁星等.土壤溶解性有机质的特性与环境意义.应用生态学报,2003,(14)1:126~130
    47.争萍,单玉华,杨林章.秸秆还田对稻田土壤溶液中溶解性有机质的影响.土壤学报,2006,43(5):736~741
    48.郑立臣,解宏图,张威等.秸秆不同还田方式对土壤中溶解性有机碳的影响.生态环境,2006,15(1):80~83
    49.中国环境监测总站,中国土壤元素背景值.1990,北京:中国环境科学出版社,501
    50.周江敏,代静玉,潘根兴.土壤中水溶性有机质的结构特征及环境意义.农业环境科学学报,2003,22(6):731~735
    51.朱永官,陈怀满著.铜:土壤-植物系统中的重金属污染.1996北京:科学出版社,168~194
    52. Blaser P, Sposito G. Holtzclaw K M. Composition and acidic functional group chemistry of an aqueous chestnut leaf litter extract [J]. Soil Sci Soc Am J, 1984, 48:278~283
    53. Boris Jansen, Klaas G.J. Nierop, Jacobus M. Verstraten. Mobility of Fe(Ⅱ), Fe(Ⅲ) and Al in acidic forest soils mediated by dissolved organic matter: influence of solution pH and metal/organic carbon ratios. Geoderma 113 (2003) 323~340
    54. Boyer J N, Groffman P M. Bioavailability of water extractable organic carbon fractions in forest and agricultural soil profiles. Soil Biol.Biochem. 1996, 28:783~790.
    55. Erwin J M T. Sjoerd EA, Frans A M, et al. 1997. Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter. Enviton Sci Tech 31: 1109~1115
    56. Grasso D, Chin Y P, Weber W JJ. 1990. Structural and behavioral characteristics of a commercial humic acid and natural dissolved aquatic organic matter. Chemosphere, 21(10211):1181~1198
    57. Gu B, et al. 1994. Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ Sci Technol, 28:38~46
    58. Hansen A M, Leckie J O, Mandelli E F. etal. Study of copper (Ⅱ) association with dissolved organic matter in Surface waters of three Mexican coastal lagoons. Environ Sci&Tech., 1990, 24(5):683-688.
    
    59. Homann P S, Grigal D F. Molecular weight distribution of soluble organics from laboratory-manipulated surface soils. Soil Sci Soc Am J., 1992, 56:1305-1310.
    
    60. Jardine P M, Weber N L. MeCarthy JF. 1989. Mechanism of dissolved organic carbon adsorption on soil. Soil Sci Soc Am j. 53: 1378-1385
    
    61. John Baham, Sposito G Chemistry of water-soluble, metal-complexing ligands extracted from an anaerobially-digested sewage sludge. J Environ Qual, 1983,12(1):96-100.
    
    62. John Baham, Sposito G Proton and metal complextion by water-solube ligands extracted from anaerobically digested sewage sludge. J Environ Qual, 1986,15(3);239-244
    
    63. J.W.C. Wong, , K.L. Li, L.X. Zhou The sorption of Cd and Zn by different soils in the presence of dissolved organic matter from sludge Geoderma 137 (2007) 310-317
    
    64. Kaiser K, Zech W. 1996. Nitrate, sulfate, and biphosphate retention in acid forest soils affected by natural dissolved organic carbon , j Environ, 25: 1325-1331
    
    65. Kalbita K,etal. 2000. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Sci, 2000,165( 4) :277-304
    
    66. Klaus K. 1998. Fractionation of dissolved organic matter affected by polyvalent metal cations. Org Geochem, 12(28): 849-854
    
    67. Klaus K, MartinK. Zech W etal. 2001. Sorption of dissolved organic carbon in soils: Effect sample storage. Soil-to-solution ratio and temperature. Creoderma。99:317-328
    
    68. Kuiter A T, Mudler W.1993.Water-soluble organic matter in forest soils. Plant Soil,152(2): 215-22
    
    69. Leenheer J A, Huffman E W D. Classification of organic solutes in water by using macro reticular resins. Journal Research US Geol Survey, 1976,4(6): 737-751.
    
    70. Liang B C. Characterization of water extracts of two manures and their adsorption on soils. Soil Sci. Soc. Am. J., 1996, 60: 1758-1763
    
    71. Magee B R, Lion L W, Lemley A T. Transport of dissolved organic macromolecules and their effect on the transport of phenanthrene in porous media. Environ Sci & Tech., 1991, 25(2):323-331.
    
    72. Nelson P N, Dictor M C, Soulas G Availability of organic carbon in soluble and particle-size fractions from a soil profile. Soil Biol.Biochem. 1994, 26:1549-1555.
    
    73. Nodvin S C, Driscoll C T, Likens G E. Simple partitioning of anions an dissolved organic carbon in a forest soil. Soil Sci, 1986, 143: 27-34.
    
    74. Oili Kiikkila, Veikko Kitunen, Aino Smolander Dissolved soil organic matter from surface organic horizons under birch and conifers: Degradation in relation to chemical characteristics. Soil Biology & Biochemistry 38 (2006) 737-746
    
    75. Patrick A.W. van Heesa, David L. Jonesb, etal. The carbon we do not see: the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review. Soil Biology & Biochemistry 37 (2005) 1-13
    76. Quails R G, Geochemical and Biological Properties of Dissolved Organic Matter in the Soil and Stream of a Decidouus Fores Ecosystem: Their Influence on Retention of N and P. Ph.D .diss. Univ. of Georgia, Athens (Diss .Astr. 9003448), 1989
    
    77. Quails R G, Wank WTS, Fluxes of Dissolved Organic Nutrients in a Deciduous Forest. Ecology, 1991,72:254-266
    
    78. RmkensPF, DolfingJ. 1998. Effect of Ca on the solubility and molecular size distribution of DOC and Cu binding in solution sample. Envion Sci1; Technol 32:363-369
    
    79. Sharpley A N, Reddy K R, Managing Agricultural Phosphorus for Protection of Surface Waters: Issues and Options J .Environ.Qual., 1994,23:437-451
    
    80. Temminghoff E J M,Van der Zee S E AT M, De Haan F A M. Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter. Environ Sci&Tech., 1997, 31(4):1109-1115.
    
    81. Tessier A. Campbell P G C, Bisson M. Sequential Extraction Procedure for the Speciation of Paniculate Trace Metals. Analytical Chemistry, 1979,51 (7):844-851
    
    82. William H. McDowell. Dissolved organic matter in soils: future directions and unanswered questions. Geoderma 2003,113 (3): 179-186
    
    83. Xu-Chen Wang, Julie Callahan a, Robert F. Chen Estuarine. Variability in radiocarbon ages of biochemical compound classes of high molecular weight dissolved organic matter in estuaries. Coastal and Shelf Science 68 (2006) 188-194
    
    84. ZsolnayA.1996.Dissolved humus in soil waters. In: Piccolo A ed. Humic Substances in Terrestrial Ecosystems. Amsterdam: Elsevie.171-223
    
    85. Zhou H N, Thompson P L. 1999. Copper-binding ability of dissolved organic matter derived from anaerobically digested biosolids. JEnv iron Qual, 28(3): 939-944
    
    86. Zhou L X, J w C Wong. Behavior of heavy metals in soil: Effect of dissolved organic matter. In: M. Selim and W. L. Kingery (eds.) Geochemical and hydrological reactivity of heavy metals in soils. 2003.245-270

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700