用户名: 密码: 验证码:
甲醇—乙醇—水—离子液体体系汽液平衡的测定及热力学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体是一类不同于传统分子溶剂的液态离子化合物,独特的阴、阳离子结构和组成使其性质介于“分子溶剂”和“无机电解质”之间。离子液体的“溶剂”特性表现为对多数极性溶剂的良好溶解性;其“电解质”特性表现为可以在极性溶剂中产生盐效应。极低的蒸汽压和良好的热稳定性性质,意味着使用安全和易再生利用;室温下为液态意味着加料和储运方便、不会结晶析出。因此,离子液体可以作为一类新型的分离介质用于清洁生产和节能减排领域。
     离子液体工业化应用的前提是对其主要热力学性质的全面获得和相关性质计算模型的建立,以便为工艺的设计提供理论支持。为了筛选出合适的离子液体型溶盐萃取剂,用于精馏分离乙醇中的水和甲醇,本文将测定一系列含离子液体-甲醇-乙醇-水体系的汽液平衡数据,通过评价离子液体与溶剂之间的相互作用力,筛选出合适的离子液体;另外,含离子液体汽液平衡数据的测定也为离子液体热力学模型的建立和发展奠定了基础。因此,本文旨在建立一个可以实现离子液体热力学性质(密度、沸点温度、临界性质和饱和蒸汽压)之间相互预测的基团贡献-状态方程模型,这样就可以根据有限的实验数据来预测大量未知体系的热力学性质。
     本论文的主要研究内容和研究成果如下:
     (1)设计并合成了如下五种亲水性离子液体,即:三乙基甲基铵磷酸二甲酯盐([N1222][DMP]),1-甲基咪唑盐酸盐([MIm][Cl]),单(2-羟乙基)铵四氟硼酸盐([HMEA][BF4]),二(2-羟乙基)铵四氟硼酸盐([HDEA][BF4])和三(2-羟乙基)铵四氟硼酸盐([HTEA][BF4])。采用1H NMR和13C NMR鉴定了五种离子液体的结构和纯度(x≥99.4%);使用热分析法(TG、DSC和DTA)分析了离子液体的熔点和热稳定性,五种离子液体的熔点均在75℃以下,热分解温度除[MIm][Cl]外均在200℃以上,[MIm][Cl]的热分解温度约为144-150℃。综上所述,所合成的五种离子液体的纯度较高、热稳定性好、且与甲醇、乙醇和水的溶解性好,可望用作萃取精馏的萃取剂。
     (2)使用非分析的拟静态沸点仪法,首次测定了一系列不同温度范围和离子液体含量时,由上述五种离子液体(ILs)和甲醇、乙醇、水组成的15个二元体系{溶剂+IL},以及7个三元体系{溶剂+溶剂+IL}的饱和蒸汽压数据(T-p-x);使用非电解质的三参数NRTL模型,较好的关联了二元、三元体系的蒸汽压数据,关联的平均绝对相对偏差分别为1.43%和0.92%;基于关联的二元NRTL模型参数,预测了相应三元体系的蒸汽压数据,平均绝对相对偏差和均方根偏差分别为AARD(p)=1.41%和RMSD(p)=1.67%。关联和预测结果良好,从而检验了NRTL模型对含离子液体体系汽液平衡数据的适用性。
     (3)对于五种离子液体(ILs)和甲醇、乙醇、水组成的15个二元体系{溶剂+IL},分析了温度、离子液体种类和浓度对三种溶剂活度系数的影响。结果表明:(Ⅰ)离子液体均能有效地降低溶剂甲醇、乙醇和水的饱和蒸汽压,降低的程度与离子液体的种类和溶剂的极性大小有关;(Ⅱ)随着温度升高,溶剂的活度系数逐渐趋近于1;(Ⅲ)乙醇和三种羟乙基铵类离子液体组成的3个二元体系对拉乌尔定律呈正偏差(户1.0),而其它12个二元体系对拉乌尔定律均呈负偏差(γ<1.0),且IL的摩尔浓度越大,溶液的非理想性越强;最大正偏差体系为{乙醇+[HTEA][BF4]}最大负偏差体系为{水+[N1222][DMP]},表明不同的离子液体对不同溶剂的相互作用力不同;(Ⅳ)对于指定的IL,在相同温度和IL摩尔浓度条件下,三种溶剂的活度系数大小顺序为:水<甲醇<乙醇,表明IL与水的相互作用最强,甲醇次之,乙醇最弱。
     (4)基于二元NRTL模型参数,预测了[N1222][DMP]对共沸体系{水+乙醇}和沸点相近体系{甲醇+乙醇}等压汽液平衡的影响。结果表明:[N1222][DMP]的加入可以提高乙醇相对于水或甲醇的挥发度,当IL含量为w≥30%时,{水+乙醇}的共沸点被完全消除,甲醇则逐渐由轻组分变为重组分,这样当加盐萃取精馏分离乙醇-甲醇-水溶液时,乙醇作为轻组分在塔顶冷凝馏出,而水和甲醇一起作为重组分从塔釜排出,从而达到高效分离乙醇的目的;通过比较5种离子液体对共沸体系{水+乙醇}等压汽液平衡的影响发现,在富含水区域,只有[MIm][Cl]对乙醇呈现“盐析”效应,说明[MIm][Cl]对水的亲和力较大;在富含乙醇区域,五种离子液体对乙醇均为“盐析”效应,其大小顺序为:[HTEA][BF4]> [HDEA][BF4]>[N1222][DMP]≥[MIm][Cl]>[HMEA][BF4],说明[HTEA][BF4]对共沸体系{水+乙醇}的分离效果最好。
     (5)基于基团贡献概念,结合Pate1-Teja状态方程,建立了一个适用于离子液体热力学性质预测的基团贡献-状态方程模型,即GC-PT模型。该模型通过关联大量常温、常压下的离子液体密度数据,优化得到了47种基团(包括7种新的离子基团)的基团贡献增量参数(△Tb,△Tc,△pc和△Vc),关联的平均绝对相对偏差为AARD=4.4%;本文确定的基团参数可同时适用于GC-PT模型和Valderrama密度经验式(VSD、VSY和LGM),且GC-PT模型的计算误差最小;而且,GC-PT模型可以较好地预测离子液体在不同温度和压力下的密度性质,从而验证了所得基团参数的合理性和GC-PT模型的适用性。
     (6)利用GC-PT状态方程预测了5种咪唑类离子液体在不同温度下的饱和蒸汽压,并与实验数据以及文献估算值进行了比较分析。结果表明:预测结果与实验数据之间相差1-3个数量级,预测误差小于克劳修斯-克拉佩龙方程和COSMO-RS模型,且预测结果的规律性优于实验数据。另外,还预测了298.15K时6种离子液体的蒸汽压,发现蒸汽压均小于10-7kPa,说明室温下离子液体的蒸汽压可以忽略不计。综上所述,GC-PT模型可以合理预测离子液体的密度、沸点温度、临界性质和饱和蒸汽压等不同热力学性质。
Ionic Liquids (ILs) are one kind of novel ionic compounds, whose properties are between that of "molecular solvent" and "inorganic electrolyte". With respect to the "solvent" property, ILs exhibit excellent solubility with most of the polar solvents; With regard to the "electrolyte" property, ILs represent the ability of generating the salt effect in the polar solvents. Besides, the negligible vapor pressure and the good thermal stability of ILs indicat their safety in operation and ease of regeneration. The liquid feature of ILs at ambient temperature means their convenience in storage and transportation in a process industry. Therefore, ILs can be used as a new kind of solvents in the field of cleaner production and process development toward energy saving and emission reduction.
     The prerequisite for the industrial application of ILs is that their thermodynamic properties and thermodynamic models are available so as to facilitate the design of the process technology. In order for screening some suitable ILs as salt extraction solvents for the distillation separation of ethanol from its mixture with water and methanol, a series of vapor-liquid equilibrium (VLE) data for systems containing methanol, ethanol, water, and an ionic liquid (IL) were measured, the affinity between different ILs and solvents was analyzed, and some candidate ILs were recommended accordingly. In addition, the experimental data also lay the foundation for the development of thermodynamic models. The main objective of this thesis is to develop a group contribution based thermodynamic model so as to achieve a cross prediction of some thermodynamic properties, e.g. density, boiling temperature, critical properties and vapor pressure and so forth, on the basis of limited available experimental data of pure ILs.
     The major work and innovative results of this thesis are as follows:
     (1) Five hydrophilic ILs have been designed and synthesized, namely, triethylmethylammonium dimethylphosphate ([N1222][DMP]), 1-methylimidazolium hydrochloride ([MIm][C1]), mono(2-hydroxyethyl) ammonium tetrafluoroborate ([HMEA][BF4]), di(2-hydroxyethyl) ammonium tetrafluoroborate ([HDEA][BF4]), and tri(2-hydroxyethyl) ammonium tetrafluoroborate ([HTEA][BF4]). The structures of five ILs are confirmed by 1H NMR and 13C NMR, and the corresponding purities of ILs are estimated as x≥99.4%; the melting points and thermal stability are characterized by the thermal analysis (namely, TQ DSC and DTA). All five ILs have the melting points below 75℃, and the decomposition temperatures above 200℃, with the exception of [MIm][C1], whose decomposition temperature is approximately 144~150℃. In summary, the five ILs synthesized are of high purity, good thermal stability, and good solubility with polar solvents like methanol, ethanol and water, and applicability as potential entrainers in the extractive distillation process.
     (2) Vapor pressure data were first measured using a non-analytical quasi-static ebulliometer for 15 binary systems and 7 ternary systems containing methanol, ethanol, water, and one of the five ILs described above at varying temperatures and IL contents. The NRTL model of nonelectrolyte solution with three parameters version was employed to correlate the vapor pressure data. The correlated deviations for IL-containing binary and ternary systems in terms of an overall average absolute relative deviation (AARD) were 1.43% and 0.92%, respectively, and the binary parameters can be used to predict the vapor pressures of the corresponding ternary systems with an overall AARD of 1.41%. The excellent correlated and predicted results justify the applicability of the NRTL model for the representation of VLE data of IL-containing systems.
     (3) Based on the experimental data above for 15 binary systems containing methanol, ethanol, water, and one of the five ILs, the effect of temperature, ILs type and their concentrations on the activity coefficients of different solvents were analyzed. The results showed that (Ⅰ) all ILs studied can depress the vapor pressure of three solvents studied but to different contents depending on the nature of ILs and the polarity of solvents; (Ⅱ) for all solvents studied, their activity coefficients always increase with temperature and approach unity eventually; (III) three binary systems containing ethanol and one of three hydroxyethyl ammonium-based ILs, namely, [HMEA][BF4], [HDEA][BF4], and [HTEA][BF4], show a positive deviation from the Raoult's law (γ>1.0), while the other 12 binary systems show a negative one (γ<1.0); the higher the IL concentration is, the higher the nonideality of the solution is; the binary systems with the largest positive and negative deviation were observed for{ethanol+[HTEA][BF4]} and {water+[N1222][DMP]}, respectively, suggesting the different affinity between different ILs and the solvents; (IV) for a specified IL at the same temperature and IL concentration, the activity coefficients of three solvents are in order of water     (4) Isobaric vapor-liquid equilibria (VLE) for the azeotrope mixture {water+ethanol} and close boiling mixture{methanol+ethanol} in the presence of [N1222][DMP] at 101.33 kPa were predicted by the NRTL model on the basis of fitted NRTL binary parameters, respectively. The results indicate that the relative volatiles of ethanol to water or methanol were both enhanced with the addition of [N1222][DMP], especially when the IL content was up to w≥30%, the azeotrope of{water+ethanol} was even removed completely, and the methanol component in {methanol+ethanol} mixture was gradually reversed from a light component to a heavy one in the ethanol-rich region due to the salt effect of [N1222][DMP]. Therefore, the hardly separating mixture of {water+ethanol+methanol} can be sufficiently facilitated at a specified content of IL, whereby both methanol and water are separated from the bottom of the distillation tower. By comparing the effect of the five ILs on the isobaric VLE of {water+ ethanol}, we observed that only [MIm][C1] showed a notable salting-out effect on ethanol in the water-rich region, indicating the largest affinity between IL [MIm][Cl] and water, while in the ethanol-rich region, all ILs showed a salting-out effect on ethanol and followed the order of [HTEA][BF4]>[HDEA][BF4]>[N1222][DMP]≥[MIm][C1]> [HMEA][BF4], suggesting that [HTEA][BF4] can most sufficiently facilitate the distillation separation for the azeotrope mixture of {water+ethanol}.
     (5) A new group contribution (GC) equation of state (EOS) model, viz the GC-PT model, was proposed for the prediction of thermodynamic properties of pure ILs based on combination of the GC concept with the cubic Patel-Teja EOS. A series of 47 group contribution increments (viz.ΔTb,ΔTc,Δpc, andΔVc), including 7 new ionic groups, were obtained through correlating a large number of density data of varying types of ILs at ambient temperatures and atmospheric pressure, and the resulting correlative deviation in terms of AARD was 4.4%; The group increments thus determined were applicable for both the GC-PT model and the Valderrama density correlations (namely, VSD, VSY, and LGM), and the minimum calculated deviation was observed for the GC-PT model. In addition, the GC-PT model along with the group increments given above can be used to predict the densities of different kinds of ILs at varying temperatures and pressures, which justified the reasonability of the group increments and the applicability of the GC-PT model.
     (6) The vapor pressures of 5 imidazolium-based ILs at different temperatures were predicted by the GC-PT model and compared with the corresponding experimental data and the estimated values taken from the references. The results indicate that the predicted results by the GC-PT model are generally of 1-3 order-of-magnitude difference with the experimental values, which, however, are superior to that predicted by the COSMO-RS model and the Clausius-Clapeyron equation. Further, the predicted results by the GC-PT model show a better regularity than the experimental ones. In addition, the vapor pressures of 6 ILs at T=298.15K were also predicted by the GC-PT model, the resulting vapor pressures of the ILs are all lower than 10-7 kPa at ambient temperature, which are extremely low and can be deemed as nonvolatile. It can be concluded that the GC-PT model proposed in this work can reasonably predicted the thermodynamic properties of different ILs, such as the density, the normal boiling temperature, the critical properties and the vapor pressures.
引文
[1]Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis [J]. Chem. Rev.,1999,99(8):2071-2084
    [2]何鸣元,戴立益.离子液体与绿色化学[J].化学教学,2002,6:1-3
    [3]Walden P. Molecular weights and electrical conductivity of several fused salts [J]. Bull. Acad. Sci. (St. Petersburg),1914:405-422
    [4]Hurley F N, Wier T P. The Electrodeposition of Aluminum from Nonaqueous Solutions at Room Temperature [J]. J. Electrochem. Soc.,1951,98(5):207-212
    [5]Hurley F H, Wier Jr T P. Electrodeposition of metals from fused quaternary ammonium salts [J]. J. Electrochem. Soc.,1951,98(5):203-206
    [6]Wilkes J S, Zaworotko M J. Air and Water Stable l-Ethyl-3-Methylimidazolium Based Ionic Liquids [J]. J. Chem. Soc. Ghem. Commun.,1992,13:965-967
    [7]Holbrey J, Seddon K. Ionic liquids [J]. Clean Prod. Proc.,1999,1(4):223-236
    [8]Freemantle M. BASF's Smart Ionic Liquid [N]. Chem. Eng. News,2003(13):9
    [9]顾彦龙,石峰,邓友全.室温离子液体:一类新型的软介质和功能材料[J].科学通报,2004,49(6):515-521
    [10]邓友全.离子液体介质与材料研究进展[J].中国科学院院刊,2005,20(4):297-300
    [11]王均凤,张锁江,陈慧萍,等.离子液体的性质及其在催化反应中的应用[J].过程工程学报,2003,3(2):177-185
    [12]Maki-Arvela P, Anugwom I, Virtanen P, et al. Dissolution of lignocellulosic materials and its constituents using ionic liquids-A review [J]. Ind. Crop. Prod.,2010, 32(3):175-201
    [13]Keskin S, Kayrak-Talay D, Akman U, et al. A review of ionic liquids towards supercritical fluid applications [J]. J. Supercrit. Fluid.,2007,43(1):150-180
    [14]Berthod A, Ruiz-Angel M J, Carda-Broch S. Ionic liquids in separation techniques [J]. J. Chromatogr. A,2008,1184(1-2):6-18
    [15]Zhao H, Xia S, Ma P. Use of ionic liquids as 'green' solvents for extractions [J]. J. Chem. Technol. Biotechnol.,2005,80(10):1089-1096
    [16]Wu W, Han B, Gao H, et al. Desulfurization of flue gas:SO2 absorption by an ionic liquid [J]. Angew. Chem.,2004,116(18):2469-2471
    [17]Hasib-Ur-Rahman M, Siaj M, Larachi F. Ionic liquids for CO2 capture-Development and progress [J]. Chemical Engineering and Processing:Process Intensification,2010, 49(4):313-322
    [18]Welton T. Ionic liquids in catalysis [J]. Coord. Chem. Rev.,2004, 248(21-24):2459-2477
    [19]Wasserscheid P, Keim W. Ionic Liquids—New "Solutions" for Transition Metal Catalysis [J]. Angew. Chem. Int. Ed.,2000,39(21):3772-3789
    [20]Zhao C, Burrell G, Torriero A a J, et al. Electrochemistry of room temperature protic ionic liquids [J]. J. Phys. Chem. B,2008,112(23):6923-6936
    [21]Greaves T, Weerawardena A, Krodkiewska I, et al. Protic ionic liquids: Physicochemical properties and behavior as amphiphile self-assembly solvents [J]. J. Phys. Chem. B,2008,112(3):896-905
    [22]Greaves T, Drummond C. Protic ionic liquids:properties and applications [J]. Chem. Rev.,2008,108(1):206-237
    [23]Belieres J, Angell C. Protic Ionic Liquids:Preparation, Characterization, and Proton Free Energy Level Representation [J]. J. Phys. Chem. B,2007,111(18):4926-4937
    [24]Greaves T L, Weerawardena A, Fong C, et al. Protic Ionic Liquids:Solvents with Tunable Phase Behavior and Physicochemical Properties [J]. J. Phys. Chem. B,2006, 110(45):22479-22487
    [25]Esperanca J M S S, Lopes J N C, Tariq M, et al. Volatility of Aprotic Ionic Liquids—A Review [J]. J. Chem. Eng. Data,2010,55(1):3-12
    [26]Angell C A, Byrne N, Belieres J-P. Parallel developments in aprotic and protic ionic liquids-physical chemistry and applications [J]. Acc. Chem. Res.,2007,40:1228-1236
    [27]Ding J, Armstrong D. Chiral ionic liquids:synthesis and applications [J]. Chirality, 2005,17(5):281-292
    [28]Giernoth R. Task-Specific Ionic Liquids [J]. Angew. Chem. Int. Ed.,2010, 49(16):2834-2839
    [29]Ahrens S, Peritz A, Strassner T. Tunable Aryl Alkyl Ionic Liquids (TAAILs):The Next Generation of Ionic Liquids [J]. Angew. Chem. Int. Ed.,,2009,48:7908-7910
    [30]Ohno H, Fukumoto K. Amino acid ionic liquids [J]. Acc. Chem. Res,2007, 40(11):1122-1129
    [31]Yim T, Lee H Y, Kim H J, et al. Synthesis and Properties of Pyrrolidinium and Piperidinium Bis(trifluoromethanesulfonyl)imide Ionic Liquids with Allyl Substituents [J]. Bull. Korean Chem. Soc,2007,28:1567
    [32]Tariq M, Serro A P, Mata J L, et al. High-temperature surface tension and density measurements of 1-alkyl-3-methylimidazolium bistriflamide ionic liquids [J]. Fluid Phase Equilib.,2010,294(1-2):131-138
    [33]Kanakubo M, Nanjo H, Nishida T, et al. Density, viscosity, and electrical conductivity of N-methoxymethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide [J]. Fluid Phase Equilib.,2011,302(1-2):10-13
    [34]Tariq M, Carvalho P J, Coutinho J a P, et al. Viscosity of (C2-C14) 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquids in an extended temperature range [J]. Fluid Phase Equilib.,2011,301(1):22-32
    [35]Zhang S, Sun N, He X, et al. Physical Properties of Ionic Liquids:Database and Evaluation [J]. J. Phys. Chem. Ref. Data,2006,35(4):1475-1517
    [36]Kuhlmann E, Himmler S, Giebelhaus H, et al. Imidazolium dialkylphosphates—a class of versatile, halogen-free and hydrolytically stable ionic liquids [J]. Green Chem.,2007, 9(3):233-242
    [37]Holbrey J, Reichert W, Swatloski R, et al. Efficient, halide free synthesis of new, low cost ionic liquids:1,3-dialkylimidazolium salts containing methyl-and ethyl-sulfate anions [J]. Green Chem.,2002,4(5):407-413
    [38]Hirao M, Sugimoto H, Ohno H. Preparation of novel room-temperature molten salts by neutralization of amines [J]. J. Electrochem. Soc.,2000,147(11):4168-4172
    [39]Sun S, Wei Y, Fang D, et al. Estimation of properties of the ionic liquid BMIZn3Cl7[J]. Fluid Phase Equilib.,2008,273(1-2):27-30
    [40]Zhang Q, Wei Y. Study on properties of ionic liquid based on ZnCl2 with 1-butyl-3-methylimidazolium chloride [J]. J. Chem. Thermodyn.,2008,40(4):640-644
    [41]Tong J, Liu Q, Xu W, et al. Estimation of physicochemical properties of ionic liquids 1-alkyl-3-methylimidazolium chloroaluminate [J]. J. Phys. Chem. B,2008, 112(14):4381-4386
    [42]Sun N, He X, Dong K, et al. Prediction of the melting points for two kinds of room temperature ionic liquids [J]. Fluid Phase Equilib.,2006,246(1-2):137-142
    [43]蒋栋,王媛媛,刘洁,等.咪唑类离子液体结构与熔点的构效关系及其基本规律[J].化学通报,2007,70(005):371-375
    [44]Fredlake C P, Crosthwaite J M, Hert D G, et al. Thermophysical properties of imidazolium-based ionic liquids [J]. J. Chem. Eng. Data,2004,49(4):954-964
    [45]Huddleston J G, Visser A E, Reichert W M, et al. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation [J]. Green Chem.,2001,3(4):156-164
    [46]Ye C, Shreeve J M. Rapid and Accurate Estimation of Densities of Room-Temperature Ionic Liquids and Salts [J]. J. Phys. Chem. A,2007,111(8):1456-1461
    [47]Ye C, Shreeve J N M. Syntheses of Very Dense Halogenated Liquids [J]. J. Org. Chem., 2004,69(19):6511-6513
    [48]Carvalho P J, Regueira T, Santos L M N B F, et al. Effect of Water on the Viscosities and Densities of 1-Butyl-3-methylimidazolium Dicyanamide and 1-Butyl-3-methylimidazolium Tricyanomethane at Atmospheric Pressure [J]. J. Chem. Eng. Data,2010,55(2):645-652
    [49]Kim K S, Shin B K, Lee H. Physical and electrochemical properties of 1-butyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium iodide, and 1-butyl-3-methylimidazolium tetrafluoroborate [J]. Korean J. Chem. Eng.,2004, 21(5):1010-1014
    [50]Jacquemin J, Ge R, Nancarrow P, et al. Prediction of Ionic Liquid Properties. Ⅰ. Volumetric Properties as a Function of Temperature at 0.1 MPa [J]. J. Chem. Eng. Data, 2008,53(3):716-726
    [51]杨家振,张庆国,黄明,等.稀散金属室温离子液体BMⅡnCl4,的性质研究[J].高等学校化学学报,2005,26(10):1873-1876
    [52]刘光启,马连湘,刘杰.化学化工物性数据手册(有机卷)[M].北京:化学工业出版社.2004.576,595-597
    [53]Janssen C H C, Kroon M C, Metz S J, et al. Extraction of Sodium Chloride from Water and Solubility of Water in Hydrophobic Trialkylammonium Alkanoate-Based Ionic Liquids [J]. J. Chem. Eng. Data,2010,55:3391-3394
    [54]Fuller J, Carlin R T, De Long H C, et al. Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate:model for room temperature molten salts [J]. J. Chem. Soc., Chem. Commun.,1994(3):299-300
    [55]Bonhote P, Dias A P, Papageorgiou N, et al. Hydrophobic, highly conductive ambient-temperature molten salts [J]. Inorg. Chem.,1996,35(5):1168-1178
    [56]Guo L, Pan X, Zhang C, et al. Novel hydrophobic cyclic sulfonium-based ionic liquids as potential electrolyte [J]. J. Mol. Liq.,2011,158(2):75-79
    [57]Tan K, Li C, Meng H, et al. Improvement of Hydrophobicity of Ionic Liquids by Partial Chlorination and Fluorination of the Cation [J]. Chin. J. Chem.2009,27(1):174-178
    [58]Hayashi S, Saha S, Hamaguchi H. A new class of magnetic fluids:bmim [FeCl4] and nbmim [FeCl4] ionic liquids [J]. Magnetics, IEEE Transactions on,2005,42(1):12-14
    [59]Zhou Z, Matsumoto H, Tatsumi K. Low-Viscous, Low-Melting, Hydrophobic Ionic Liquids:1-Alkyl-3-methylimidazolium Trifluoromethyltrifluoroborate [J]. Chem. Lett., 2004,33(6):680-681
    [60]Kagimoto J, Taguchi S, Fukumoto K, et al. Hydrophobic and low-density amino acid ionic liquids [J]. J. Mol. Liq.,2010,153(2-3):133-138
    [61]Xiu-Li Z, Chang-Bao Z. Study on desulfurization of gasoline with ionic liquid FeCl3-[bmim]Cl [J]. Chemical Engineer,2008,11
    [62]Ko N, Lee J, Huh E, et al. Extractive desulfurization using Fe-containing ionic liquids [J]. Energy Fuels,2008,22(3):1687-1690
    [63]何义,余江,陈灵波.铁基离子液体湿法氧化硫化氢的反应性能[J].化工学报,2010(4):963-968
    [64]Carmichael A J, Seddon K R. Polarity study of some 1-alkyl-3-methylimidazolium ambient-temperature ionic liquids with the solvatochromic dye, Nile Red [J]. J. Phys. Org. Chem.,2000,13:591-595
    [65]Aki S N V K, Brennecke J F, Samanta A. How polar are room-temperature ionic liquids? [J]. Chem. Commun.,2001:413-414
    [66]Reichardt C H-G R E. Erweiterung, Korrektur und Neudefinition der E T-L sungs-mittepolarit sskala mit Hilfe eines Lipophilen Penta-tert-butyl-substituierten Pyridinium-N-phenolat-betainfarbstoffes [J]. Liebigs Ann. Chem.,1983,5:721-743
    [67]Poole C. Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids [J]. J. Chromatogr. A,2004, 1037(1-2):49-82
    [68]Carda-Broch S, Berthod A, Armstrong D W. Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid [J]. Anal. Bioanal. Chem.,2003,375(2):191-199
    [69]Muldoon M J, Gordon C M, Dunkin I R. Investigations of solvent-solute interactions in room temperature ionic liquids using solvatochromic dyes [J]. J. Chem. Soc., Perkin Trans.2,2001(4):433-435
    [70]Park S, Kazlauskas R J. Improved preparation and use of room-temperature ionic liquids in lipase-catalyzed enantio-and regioselective acylations [J]. J. Org. Chem.,2001, 66(25):8395-8401
    [71]Weingartner H. Understanding Ionic Liquids at the Molecular Level:Facts, Problems, and Controversies [J]. Angew. Chem. Int. Ed.,2008,47(4):654-670
    [72]Wakai C, Oleinikova A, Ott M, et al. How polar are ionic liquids? Determination of the static dielectric constant of an imidazolium-based ionic liquid by microwave dielectric spectroscopy [J]. J. Phys. Chem. B,2005,109(36):17028-17030
    [73]Reichardt C. Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes [J]. Green Chem.,2005, 7(5):339-351
    [74]Koddermann T, Wertz C, Heintz A, et al. The association of water in ionic liquids:a reliable measure of polarity [J]. Angew. Chem. Int. Ed.,2006,45(22):3697-3702
    [75]陈钟秀,顾飞燕,胡望明.化工热力学(第二版)[M].北京:化学工业出版社.2006.6-9,163-180,294-297
    [76]周星风,兰贵金.动态法测定等温汽液平衡的装置[J].石油化工,1989,18(2):112-116
    [77]罗美,郑典模,邱祖民.沸点法测定汽液平衡[J].江西科学,2001,19(4):225-229
    [78]Anthony J L, Maginn E J, Brennecke J F. Solution Thermodynamics of Imidazolium-Based Ionic Liquids and Water [J]. J. Phys. Chem. B,2001, 105(44):10942-10949
    [79]Gmehling J, Krummen M. Separation of aromatic hydrocarbons from non-aromatic hydrocarbons, comprises using a selective solvent selected from liquid onium salts [P]. Patent DE10154052-A1,2001-November 2
    [80]Seiler M, Jork C, Kavarnou A, et al. Separation of azeotropic mixtures using hyperbranched polymers or ionic liquids [J]. AIChE J.,2004,50(10):2439-2454
    [81]Lei Z, Arlt W, Wasserscheid P. Separation of 1-hexene and n-hexane with ionic liquids [J]. Fluid Phase Equilib.,2006,241(1-2):290-299
    [82]Jork C, Seiler M, Beste Y, et al. Influence of ionic liquids on the phase behavior of aqueous azeotropic systems [J]. J. Chem. Eng. Data,2004,49(4):852-857
    [83]Doker M, Gmehling J. Measurement and prediction of vapor-liquid equilibria of ternary systems containing ionic liquids [J]. Fluid Phase Equilib.,2005,227(2):255-266
    [84]Kato R, Gmehling J. Measurement and correlation of vapor-liquid equilibria of binary systems containing the ionic liquids [EMIM][(CF3SO2)2N], [BMIM][(CF3SO2)2N], [MMIM][(CH3)2PO4] and oxygenated organic compounds respectively water [J]. Fluid Phase Equilib.,2005,231(1):38-43
    [85]Verevkin S P, Safarov J, Bich E, et al. Thermodynamic properties of mixtures containing ionic liquids Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with 1-methyl-3-butyl-imidazolium bis(trifluoromethyl-sulfonyl)imide [J]. Fluid Phase Equilib.,2005,236(1-2):222-228
    [86]史奇冰,郑逢春,李春喜,等.用NRTL方程计算含离子液体体系的汽液平衡[J].化工学报,2005(5):751-756
    [87]Zhang L, Deng D, Han J, et al. Isobaric Vapor-Liquid Equilibria for Water+ 2-Propanol+1-Butyl-3-methylimidazolium Tetrafluoroborate [J]. J. Chem. Eng. Data, 2007,52(1):199-205
    [88]Orchilles A V, Miguel P J, Vercher E, et al. Isobaric Vapor-Liquid Equilibria for 1-Propanol+Water+1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa [J]. J. Chem. Eng. Data,2008,53(10):2426-2431
    [89]Li Q, Xing F, Lei Z, et al. Isobaric Vapor-Liquid Equilibrium for Isopropanol+Water+ 1-Ethyl-3-methylimidazolium Tetrafluoroborate [J]. J. Chem. Eng. Data,2008, 53(1):275-279
    [90]Orchilles A, Miguel P, Vercher E, et al. Isobaric Vapor-Liquid Equilibria for Ethyl Acetate+Ethanol+1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa [J]. J. Chem. Eng. Data,2007,52(6):2325-2330
    [91]Zhang D, Deng Y, Li C, et al. Separation of Ethyl Acetate-Ethanol Azeotropic Mixture Using Hydrophilic Ionic Liquids [J]. Ind. Eng. Chem. Res.,2008,47(6):1995-2001
    [92]Li Q, Zhang J, Lei Z, et al. Selection of Ionic Liquids as Entrainers for the Separation of Ethyl Acetate and Ethanol [J]. Ind. Eng. Chem. Res.,2009,48(19):9006-9012
    [93]Zhao J, Li C, Wang Z. Vapor pressure measurement and prediction for ethanol+ methanol and ethanol+water systems containing ionic liquids [J]. J. Chem. Eng. Data, 2006,51(5):1755-1760
    [94]Zhao J, Jiang X, Li C, et al. Vapor pressure measurement for binary and ternary systems containing a phosphoric ionic liquid [J]. Fluid Phase Equilib.,2006,247(1-2):190-198
    [95]Jiang X, Wang J, Li C, et al. Vapour pressure measurement for binary and ternary systems containing water methanol ethanol and an ionic liquid 1-ethyl-3-ethylimidazolium diethylphosphate [J]. J. Chem. Thermodyn.,2007, 39(6):841-846
    [96]Wang J F, Li C X, Wang Z H, et al. Vapor pressure measurement for water, methanol, ethanol, and their binary mixtures in the presence of an ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate [J]. Fluid Phase Equilib.,2007, 255(2):186-192
    [97]Wang J, Li C, Wang Z. Measurement and prediction of vapor pressure of binary and ternary systems containing 1-ethyl-3-methylimidazolium ethyl sulfate [J]. J. Chem. Eng. Data,2007,52(4):1307-1312
    [98]Wang J, Li X, Meng H, et al. Boiling temperature measurement for water, methanol, ethanol and their binary mixtures in the presence of a hydrochloric or acetic salt of mono-, di- or tri-ethanolamine at 101.3 kPa [J]. J. Chem. Thermodyn.,2009, 41(2):167-170
    [99]Ge Y, Zhang L, Yuan X, et al. Selection of ionic liquids as entrainers for separation of (water+ethanol) [J]. J. Chem. Thermodyn.,2008,40(8):1248-1252
    [100]Zhang L, Ge Y, Ji D, et al. Experimental Measurement and Modeling of Vapor-Liquid Equilibrium for Ternary Systems Containing Ionic Liquids:A Case Study for the System Water+Ethanol+1-Hexyl-3-methylimidazolium Chloride [J]. J. Chem. Eng. Data,2009,54(8):2322-2329
    [101]Calvar N, Gonzalez B, Gomez E, et al. Study of the behaviour of the azeotropic mixture ethanol-water with imidazolium-based ionic liquids [J]. Fluid Phase Equilib.,2007, 259(1):51-56
    [102]Calvar N, Gonzalez B, Gomez E, et al. Vapor-Liquid Equilibria for the Ternary System Ethanol+Water+1-Ethyl-3-methylimidazolium Ethylsulfate and the Corresponding Binary Systems Containing the Ionic Liquid at 101.3 kPa [J]. J. Chem. Eng. Data,2008, 53:820-825
    [103]Calvar N, Gomez E, Gonzalez B, et al. Experimental Vapor-Liquid Equilibria for the Ternary System Ethanol+Water+1-Ethyl-3-methylpyridinium Ethylsulfate and the Corresponding Binary Systems at 101.3 kPa:Study of the Effect of the Cation [J]. J. Chem. Eng. Data,2010,55:2786-2791
    [104]Calvar N, Gonzalez B, Gomez E, et al. Vapor-Liquid Equilibria for the Ternary System Ethanol+Water+1-Butyl-3-methylimidazolium Chloride and the Corresponding Binary Systems at 101.3 kPa [J]. J. Chem. Eng. Data,2006,51(6):2178-2181
    [105]Calvar N, Gonzalez B, Gomez E, et al. Vapor-Liquid Equilibria for the Ternary System Ethanol+Water+1-Butyl-3-methylimidazolium Methylsulfate and the Corresponding Binary Systems at 101.3 kPa [J]. J. Chem. Eng. Data,2009,54:1004-1008
    [106]Geng W, Zhang L, Deng D, et al. Experimental Measurement and Modeling of Vapor-Liquid Equilibrium for Ternary System Water+Ethanol+ 1-Butyl-3-methylimidazolium Chloride [J]. J. Chem. Eng. Data,2010,55:1679-1683
    [107]Orchilles A V, Miguel P J, Vercher E, et al. Using 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate as an Entrainer for the Extractive Distillation of Ethanol+ Water Mixtures [J]. J. Chem. Eng. Data,2010,55:1669-1674
    [108]Patel N C, Teja A S. A new cubic equation of state for fluids and fluid mixtures [J]. Chem. Eng. Sci.,1982,37(3):463-473
    [109]Renon H, Prausnitz J. Local compositions in thermodynamic excess functions for liquid mixtures [J]. AIChE J.,1968,14(1):135-144
    [110]Derr E L, Deal C H, International Symposium on Distillation.1969.34
    [111]Abrams D, Prausnitz J. Statistical thermodynamics of liquid mixtures:a new expression for the excess Gibbs energy of partly or completely miscible systems [J]. AIChE J., 1975,21(1):116-128
    [112]Fredenslund A, Jones R, Prausnitz J. Group Contibution Estimation of Activity Coefficients in Nonideal Solutions [J]. AIChE J.,1975,21:1086
    [113]Tomida D, Kumagai A, Kenmochi S, et al. Viscosity of 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-octyl-3-methylimidazolium hexafluorophosphate at high pressure [J]. J. Chem. Eng. Data,2007,52(2):577-579
    [114]Sanmamed Y A, Gonzalez-Salgado D, Troncoso J, et al. Experimental methodology for precise determination of density of RTILs as a function of temperature and pressure using vibrating tube densimeters [J]. J. Chem. Thermodyn.,2010,42(4):553-563
    [115]Dymond J, Malhotra R. The Tait equation:100 years on [J]. Int. J. Thermophys.,1988, 9(6):941-951
    [116]Machida H, Sato Y, Smith Jr R L. Pressure-volume-temperature (pVT) measurements of ionic liquids ([bmim+][PF6-],[bmim+][BF4-],[bmim+][OcSO4-]) and analysis with the Sanchez-Lacombe equation of state [J]. Fluid Phase Equilib.,2008,264(1-2):147-155
    [117]Gu Z, Brennecke J F. Volume expansivities and isothermal compressibilities of imidazolium and pyridinium-based ionic liquids [J]. J. Chem. Eng. Data,2002, 47(2):339-345
    [118]Gomes De Azevedo R, Esperanca J, Szydlowski J, et al. Thermophysical and thermodynamic properties of ionic liquids over an extended pressure range:[bmim][NTf2] and [hmim][NTf2] [J]. J. Chem. Thermodyn.,2005,37(9):888-899
    [119]Gardas R L, Freire M G, Carvalho P J, et al. PpT Measurements of Imidazolium-Based Ionic Liquids [J]. J. Chem. Eng. Data,2007,52(5):1881-1888
    [120]Yaws C L. Chemical properties handbook [M]. Beijing:Beijing McGraw-Hill Book Co. 1999.185
    [121]Gardas R L, Coutinho J a P. Extension of the Ye and Shreeve group contribution method for density estimation of ionic liquids in a wide range of temperatures and pressures [J]. Fluid Phase Equilib.,2008,263(1):26-32
    [122]Valderrama J O, Robles P A. Critical Properties, Normal Boiling Temperatures, and Acentric Factors of Fifty Ionic Liquids [J]. Ind. Eng. Chem. Res.,2007, 46(4):1338-1344
    [123]Valderrama J O, Sanga W W, Lazzus J A. Critical Properties, Normal Boiling Temperature, and Acentric Factor of Another 200 Ionic Liquids [J]. Ind. Eng. Chem. Res.,2008,47(4):1318-1330
    [124]Valderrama J O, Rojas R E. Critical Properties of Ionic Liquids. Revisited [J]. Ind. Eng. Chem. Res.,2009,48(14):6890-6900
    [125]Palomar J, Ferro V R, Torrecilla J S, et al. Density and Molar Volume Predictions Using COSMO-RS for Ionic Liquids. An Approach to Solvent Design [J]. Ind. Eng. Chem. Res.,2007,46(18):6041-6048
    [126]Trohalaki S, Pachter R, Drake G, et al. Quantitative Structure-Property Relationships for Melting Points and Densities of Ionic Liquids [J]. Energy Fuels,2005, 19(l):279-284
    [127]Valderrama J O, Reategui A, Rojas R E. Density of Ionic Liquids Using Group Contribution and Artificial Neural Networks [J]. Ind. Eng. Chem. Res.,2009, 48(6):3254-3259
    [128]Shariati A, Peters C J. High-pressure phase behavior of systems with ionic liquids: measurements and modeling of the binary system fluoroform+ 1-ethyl-3-methylimidazolium hexafluorophosphate [J]. J. Supercrit. Fluid.,2003, 25(2):109-117
    [129]Goharshadi E, Moosavi M. Thermodynamic properties of some ionic liquids using a simple equation of state [J]. J. Mol. Liq.,2008,142(1-3):41-44
    [130]Esperanca J, Guedes H, Blesic M, et al. Densities and derived thermodynamic properties of ionic liquids.3. Phosphonium-based ionic liquids over an extended pressure range [J]. J. Chem. Eng. Data,2006,51(1):237-242
    [131]Jacquemin J, Nancarrow P, Rooney D W, et al. Prediction of Ionic Liquid Properties. II. Volumetric Properties as a Function of Temperature and Pressure [J]. J. Chem. Eng. Data,2008,53(9):2133-2143
    [132]Qiao Y, Ma Y, Huo Y, et al. A group contribution method to estimate the densities of ionic liquids [J]. J. Chem. Thermodyn.,2010,42:852-855
    [133]Wang J, Li C, Shen C, et al. Towards understanding the effect of electrostatic interactions on the density of ionic liquids [J]. Fluid Phase Equilib.,2009,279(2):87-91
    [134]Wang J, Li Z, Li C, et al. Density Prediction of Ionic Liquids at Different Temperatures and Pressures Using a Group Contribution Equation of State Based on Electrolyte Perturbation Theory [J]. Ind. Eng. Chem. Res.,2010,49(9):4420-4425
    [135]Rebelo L P N, Canongia Lopes J N, Esperanca J M S S, et al. On the Critical Temperature, Normal Boiling Point, and Vapor Pressure of Ionic Liquids [J]. J. Phys. Chem. B,2005,109(13):6040-6043
    [136]Weiss V C, Heggen B, MuLler-Plathe F. Critical Parameters and Surface Tension of the Room Temperature Ionic Liquid [bmim][PF6]:A Corresponding-States Analysis of Experimental and New Simulation Data [J]. The Journal of Physical Chemistry C,2010, 114(8):3599-3608
    [137]Weiss V C. Guggenheim's Rule and the Enthalpy of Vaporization of Simple and Polar Fluids, Molten Salts, and Room Temperature Ionic Liquids [J]. J. Phys. Chem. B,2010, 114(28):9183-9194
    [138]Carvalho P J, Neves C M S S, Coutinho J a P. Surface Tensions of Bis(trifluoromethylsulfonyl)imide Anion-Based Ionic Liquids [J]. J. Chem. Eng. Data, 2010,55:3807-3812
    [139]Tong J, Song B, Wang C-X, et al. Prediction of the Physicochemical Properties of Valine Ionic Liquids [Cnmim][Val] (n= 2,3,4,5,6) by Semiempirical Methods [J]. Ind. Eng. Chem. Res.,2011,50:2418-2423
    [140]Zaitsau D, Kabo G, Strechan A, et al. Experimental vapor pressures of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides and a correlation scheme for estimation of vaporization enthalpies of ionic liquids [J]. J. Phys. Chem. A, 2006,110(22):7303-7306
    [141]Ghatee M H, Moosavi F, Zolghadr A R, et al. Critical-Point Temperature of Ionic Liquids from Surface Tension at Liquid-Vapor Equilibrium and the Correlation with the Interaction Energy [J]. Ind. Eng. Chem. Res.,2010,49(24):12696-12701
    [142]Paulechka Y U, Kabo G J, Blokhin A V, et al. Thermodynamic Properties of 1-Butyl-3-methylimidazolium Hexafluorophosphate in the Ideal Gas State [J]. J. Chem. Eng. Data,2003,48(3):457-462
    [143]Kabo G J, Blokhin A V, Paulechka Y U, et al. Thermodynamic properties of 1-butyl-3-methylimidazolium hexafluorophosphate in the condensed state [J]. J. Chem. Eng. Data,2004,49(3):453-461
    [144]Paulechka Y, Zaitsau D, Kabo G, et al. Vapor pressure and thermal stability of ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide [J]. Thermochim. Acta,2005,439(1-2):158-160
    [145]Zaitsau D H, Verevkin S P, Paulechka Y U, et al. Comprehensive study of vapor pressures and enthalpies of vaporization of cyclohexyl esters [J]. J. Chem. Eng. Data, 2003,48(6):1393-1400
    [146]Earle M, Esperanca J, Gilea M, et al. The distillation and volatility of ionic liquids [J]. Nature,2006,439(7078):831-834
    [147]Emel'yanenko V N, Verevkin S P, Heintz A. The gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide from combustion calorimetry, vapor pressure measurements, and ab initio calculations [J]. J. Am. Chem. Soc,2007, 129(13):3930-3937
    [148]Bier M, Dietrich S. Vapour pressure of ionic liquids [J]. Mol. Phys.,2010, 108(2):211-214
    [149]Ludwig R, Kragl U. Do we understand the volatility of ionic liquids? [J]. Angew. Chem. Int. Ed.,2007,46(35):6582-6584
    [150]Armstrong J, Hurst C, Jones R, et al. Vapourisation of ionic liquids [J]. Phys. Chem. Chem. Phys.,2007,9:982-990
    [151]Wasserscheid P. Volatile times for ionic liquids [J]. Nature,2006,439(7078):797
    [152]Diedenhofen M, Klamt A, Marsh K, et al. Prediction of the vapor pressure and vaporization enthalpy of 1-n-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ionic liquids [J]. Phys. Chem. Chem. Phys.,2007, 9(33):4653-4656
    [153]Wang P, Anderko A. Modeling chemical equilibria, phase behavior, and transport properties in ionic liquid systems [J]. Fluid Phase Equilib.,2011,302(1-2):74-82
    [154]Finkelstein M, Dunkl F S, Ross S D. Nonaqueous electrolytic capacitor electrolyte [P], US 4,189,761,1980-February 19
    [155]Walker A J. Ionic liquids containing protonated primary, secondary or tertiary ammonium ions [P]. U.K., Pat. Appl., GB.2,412,912 A,2007-July
    [156]Zhao Y, Zhang X, Zeng S, et al. Density, Viscosity, and Performances of Carbon Dioxide Capture in 16 Absorbents of Amine+Ionic Liquid+H2O, Ionic Liquid+H2O, and Amine+H2O Systems [J]. J. Chem. Eng. Data,2010,55:3513-3519
    [157]Ohno H, Yoshizawa M. Ion conductive characteristics of ionic liquids prepared by neutralization of alkylimidazoles [J]. Solid State Ionics,2002,154-155:303-309
    [158]Moreau C, Finiels A, Vanoye L. Dehydration of fructose and sucrose into 5-hydroxymethylfurfural in the presence of 1-H-3-methyl imidazolium chloride acting both as solvent and catalyst [J]. J. Mol. Catal. A:Chem.,2006,253(1-2):165-169
    [159]Seddon K. Ionic liquids:A taste of the future [J]. Nature Materials,2003,2(6):363-365
    [160]Yan C, Han M, Wan H, et al. QSAR correlation of the melting points for imidazolium bromides and imidazolium chlorides ionic liquids [J]. Fluid Phase Equilib.,2010, 292(1-2):104-109
    [161]Zhu J, Bai L, Chen B, et al. Thermodynamical properties of phase change materials based on ionic liquids [J]. Chem. Eng. J.,2009,147(1):58-62
    [162]Li H, Han S, Teng Y. Bubble points measurement for system chloroform-ethanol-benzene by inclined ebulliometer [J]. Fluid Phase Equilib.,1995, 113(1-2):185-195
    [163]Xu Y, Li H, Wang C, et al. Bubble points measurement for (triethyl orthoformate+ diethyl malonate) [J]. J. Chem. Thermodyn.,2004,36(11):971-976
    [164]Sun H, Fang W, Guo Y, et al. Investigation of bubble-point vapor pressures for mixtures of an endothermic hydrocarbon fuel with ethanol [J]. Fuel,2005,84(7-8):825-831
    [165]Poling B E, Thomson G H, Friend D G, et al. Perry's chemical engineers' handbook,8 ed., Section 2. Physical and Chemical Data [M]. New York:McGraw-Hill Companies, Inc.1984.2-72
    [166]Sauermann P, Holzapfel K, Oprzynski J, et al. The ppT properties of ethanol+hexane [J]. Fluid Phase Equilib.,1995,112:249-272
    [167]Valderrama J O, Reategui A, Sanga W W. Thermodynamic Consistency Test of Vapor-Liquid Equilibrium Data for Mixtures Containing Ionic Liquids [J]. Ind. Eng. Chem. Res.,2008,47(21):8416-8422
    [168]Press W H, Flannery B P, Teukolsky S A, et al. Numerical Recipes in FORTRAN:The Art of Scientific Computing [M].2nd ed. Cambridge, England:Cambridge University Press.1992.679
    [169]Gmehling J, Onken U. Vapor-liquid Equilibrium data Collection [M]. Vol.1, Part 1. Frankfurt:DECHEMA.1977.53,154
    [170]Gmehling J, Onken U. Vapor-liquid Equilibrium data Collection [M]. Vol.1, Part 2a. Frankfurt:DECHEMA.1977.60
    [171]Gardas R L, Coutinho J a P. Group contribution methods for the prediction of thermophysical and transport properties of ionic liquids [J]. AIChE J.,2009, 55(5):1274-1290
    [172]Alvarez V, Valderrama J. A Modified Lydersen-Joback-Reid Method to Estimate the Critical Properties of Biomolecules [J]. Alimentaria,2004,254:55-66
    [173]Valderrama J O. The State of the Cubic Equations of State [J]. Ind. Eng. Chem. Res., 2003,42(8):1603-1618
    [174]刘光启,马连湘,刘杰.化学化工物性数据手册(无机卷)[M].北京:化学工业出 版社.2004.1-587
    [175]Harrod W B, Pienta N J. Solvent polarity scales.1. Determination of ET and π* values for phosphonium and ammonium melts [J]. J. Phys. Org. Chem.,1990,3(8):534-544
    [176]Reichardt C. Solvatochromic dyes as solvent polarity indicators [J]. Chem. Rev.,1994, 94(8):2319-2358
    [177]Lee B I, Kesler M G. A generalized thermodynamic correlation based on three-parameter corresponding states [J]. AIChE J.,1975,21(3):510-527
    [178]Zhang S J, Lu X M, Zhou Q, et al. Ionic Liquids. Physicochemical Properties [M].1st ed. Oxford:Elsevier.2009.1-478
    [179]IUPAC Ionic Liquids Thermo Database [DB/OL], http://ilthermo.boulder.nist.gov/ILThermo/mainmenu.uix, Accessed August 2010
    [180]张锁江,孙宁,吕兴梅,等.离子液体的周期性变化规律及导向图[J].中国科学:B辑,2006,36(1):23-35
    [181]戴子浠.有机物国际命名[M].北京:中国石化出版社.2004.
    [182]Prausnitz J M, Lichtenthaler R N, De Azevedo E G, ed. Molecular Thermodynamics of Fluid-Phase Equilibria.3rd ed. [M]. X-H Lu and Liu H-L. Chemical Industry Press: Beijing.2006,215
    [183]Seddon K, Stark A, Torres M. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids [J]. Pure Appl. Chem.,2000,72(12):2275-2287
    [184]Ohlin C, Dyson P, Laurenczy G. Carbon monoxide solubility in ionic liquids: determination, prediction and relevance to hydroformylation [J]. Chem. Commun., 2004,2004(9):1070-1071
    [185]Vila J, Gines P, Rilo E, et al. Great increase of the electrical conductivity of ionic liquids in aqueous solutions [J]. Fluid Phase Equilib.,2006,247(1-2):32-39
    [186]Rilo E, Pico J, Garcia-Garabal S, et al. Density and surface tension in binary mixtures of CnMIM-BF4 ionic liquids with water and ethanol [J]. Fluid Phase Equilib.,2009, 285(1-2):83-89
    [187]Nishida T, Tashiro Y, Yamamoto M. Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte [J]. J. Fluorine Chem., 2003,120(2):135-141
    [188]Klomfar J, Souckova M, Patek J. Buoyancy density measurements for 1-alkyl-3-methylimidazolium based ionic liquids with tetrafluoroborate anion [J]. Fluid Phase Equilib.,2009,282(l):31-37
    [189]Zhou Z, Matsumoto H, Tatsumi K. Structure and properties of new ionic liquids based on alkyl-and alkenyltrifluoroborates [J]. ChemPhysChem,2005,6(7):1324-1332
    [190]Schreiner C, Zugmann S, Hartl R, et al. Fractional Walden Rule for Ionic Liquids: Examples from Recent Measurements and a Critique of the So-Called Ideal KC1 Line for the Walden Plot [J]. J. Chem. Eng. Data,2009,55(5):1784-1788
    [191]Zhang S, Li X, Chen H, et al. Determination of physical properties for the binary system of 1-ethyl-3-methylimidazolium tetrafluoroborate+H2O [J]. J. Chem. Eng. Data,2004, 49(4):760-764
    [192]Kato R, Gmehling J. Activity coefficients at infinite dilution of various solutes in the ionic liquids [MMIM]+[CH3SO4]-,[MMIM]+[CH3OC2H4SO4]-,[MMIM]+[(CH3)2PO4]-, [C5H5NC2H5]+[(CF3SO2)2N]- and [C5H5NH]+[C2H5OC2H4OSO3]-[J]. Fluid Phase Equilib.,2004,226:37-44
    [193]Pereiro A, Santamarta F, Tojo E, et al. Temperature dependence of physical properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate [J]. J. Chem. Eng. Data,2006, 51(3):952-954
    [194]Shekaari H, Armanfar E. Physical Properties of Aqueous Solutions of Ionic Liquid, 1-Propyl-3-methylimidazolium Methyl Sulfate, at T=(298.15 to 328.15) K [J]. J. Chem. Eng. Data,2009,55(2):765-772
    [195]Tariq M, Forte P a S, Gomes M F, et al. Densities and refractive indices of imidazolium-and phosphonium-based ionic liquids:Effect of temperature, alkyl chain length, and anion [J]. J. Chem. Thermodyn.,2009,41(6):790-798
    [196]Pereiro A B, Verdia P, Tojo E, et al. Physical properties of 1-butyl-3-methylimidazolium methyl sulfate as a function of temperature [J]. J. Chem. Eng. Data,2007, 52(2):377-380
    [197]Shiflett M, Harmer M, Junk C, et al. Solubility and diffusivity of difluoromethane in room-temperature ionic liquids [J]. J. Chem. Eng. Data,2006,51(2):483-495
    [198]Nieto De Castro C A, Langa E, Morais A L, et al. Studies on the density, heat capacity, surface tension and infinite dilution diffusion with the ionic liquids [C4mim][NTf2], [C4mim][dca], [C2mim][EtOSO3] and [Aliquat][dca] [J]. Fluid Phase Equilib.,2010, 294(1-2):157-179
    [199]Carvalho P J, Alvarez V H, Marrucho IM, et al. High pressure phase behavior of carbon dioxide in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-butyl-3-methylimidazolium dicyanamide ionic liquids [J]. J. Supercrit. Fluid.,2009, 50(2):105-111
    [200]Bejan D, Ignat'ev N, Willner H. New ionic liquids with the bis[bis(pentafluoroethyl)phosphinyl]imide anion, [(C2F5)2P(O)]2N, Synthesis and characterization [J]. J. Fluorine Chem.,2010,131(3):325-332
    [201]Krummen M, Wasserscheid P, Gmehling J. Measurement of activity coefficients at infinite dilution in ionic liquids using the dilutor technique [J]. J. Chem. Eng. Data, 2002,47(6):1411-1417
    [202]Sadeghi R, Shekaari H, Hosseini R. Effect of alkyl chain length and temperature on the thermodynamic properties of ionic liquids 1-alkyl-3-methylimidazolium bromide in aqueous and non-aqueous solutions at different temperatures [J]. J. Chem. Thermodyn., 2009,41(2):273-289
    [203]Xiao D, Rajian J R, Cady A, et al. Nanostructural Organization and Anion Effects on the Temperature Dependence of the Optical Kerr Effect Spectra of Ionic Liquids [J]. J. Phys. Chem. B,2007,111(18):4669-4677
    [204]Tome L I N, Carvalho P J, Freire M G, et al. Measurements and Correlation of High-Pressure Densities of Imidazolium-Based Ionic Liquids [J]. J. Chem. Eng. Data, 2008,53(8):1914-1921
    [205]Gomes De Azevedo R, Esperanca J M S S, Najdanovic-Visak V, et al. Thermophysical and thermodynamic properties of 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate over an extended pressure range [J]. J. Chem. Eng. Data,2005,50(3):997-1008
    [206]Gardas R L, Freire M G, Carvalho P J, et al. High-Pressure Densities and Derived Thermodynamic Properties of Imidazolium-Based Ionic Liquids [J]. J. Chem. Eng. Data, 2006,52(l):80-88
    [207]Kilaru P, Baker G, Scovazzo P. Density and surface tension measurements of imidazolium-, quaternary phosphonium-, and ammonium-based room-temperature ionic liquids:data and correlations [J]. J. Chem. Eng. Data,2007,52(6):2306-2314
    [208]Awad W H, Gilman J W, Nyden M, et al. Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites [J]. Thermochim. Acta, 2004,409(1):3-11
    [209]Ngo H, Lecompte K, Hargens L, et al. Thermal properties of imidazolium ionic liquids [J]. Thermochim. Acta,2000,357:97-102
    [210]Macfarlane D, Forsyth S, Golding J, et al. Ionic liquids based on imidazolium, ammonium and pyrrolidinium salts of the dicyanamide anion [J]. Green Chem.,2002, 4(5):444-448
    [211]Crosthwaite J, Muldoon M, Dixon J, et al. Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids [J]. J. Chem. Thermodyn.,2005,37(6):559-568

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700