用户名: 密码: 验证码:
罗布麻总黄酮抗血栓作用物质基础及抗人脐静脉血管内皮细胞凋亡作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的建立罗布麻总黄酮(TFF)标准色谱指纹图谱,对TFF进行抗血栓药理作用及体内代谢过程研究,探讨其抗血栓作用的物质基础,通过体外人脐静脉血管内皮细胞(HUVECs)的培养研究TFF及其主要成分金丝桃苷(hyperin)抑制过氧化氢诱导的HUVECs凋亡的作用及其机制。
     方法(1)采用HPLC-DAD法建立TFF标准色谱指纹图谱,确保为后续药理试验和作用机理探讨提供质量均一、稳定可控的供试样品;(2)通过大鼠静脉血栓模型实验,胶原蛋白-肾上腺素诱导小鼠血栓模型实验,小鼠凝血时间测定及凝血酶原时间测定,放免法对大鼠血浆中TXB_2、6-keto-PGF1α含量的测定来研究TFF的抗血栓作用;(3)通过HPLC, LC/MS/MS及UPLC/MS/MS技术,研究TFF在大鼠胃肠内的吸收与转化、研究口服和静注给药TFF后大鼠血浆和血清相关成分及初步药代动力学;(4)建立过氧化氢诱导的HUVECs凋亡模型,采用MTT观察不同浓度TFF和Hyperin对HUVECs增殖的影响,流式细胞仪检测对HUVECs细胞周期变化、凋亡率及ROS释放的影响,AO/EB染色法观察对HUVECs形态学改变的影响,比色法检测对细胞培养液中NO和SOD的活性、MDA和LDH的含量的改变,免疫组化法测定对NF-κB和VEGF的表达的影响,采用双抗夹心ELISA法测定对细胞培养上清液中TF和TFPI的浓度的影响;(5)应用激光共聚焦显微镜,采用新型荧光染料Flou3-AM检测细胞内Ca~(2+)浓度的变化,以罗丹明123作为染料检测线粒体跨膜电位变化,采用RT-PCR检测Caspase-3、Bcl-2、Bax基因表达,Western blot分析Cyt C、Caspase-9和Caspase-3等蛋白的表达,探讨TFF和Hyperin抑制H_2O_2诱导的HUVECs细胞凋亡的机制。
     结果(1)建立了TFF标准指纹图谱,以金丝桃苷为参比峰共确定了17个共有峰,与在相同的色谱条件下测定的罗布麻叶药材图谱有很好的相关性。建立的方法精密度、稳定性及重现性较好,专属性强,可全面控制TFF的质量,确保为后续药理试验和作用机理探讨提供质量均一、稳定可控的供试样品;(2)对静脉血栓形成的影响实验中,TFF具有明显的抑制静脉血栓的作用,其中高、中剂量组血栓干重与湿重与正常对照组相比均有显著性差异(p<0.001),对血栓湿重的抑制率分别为73.0%,83.4%;不同剂量的TFF对胶原-肾上腺素诱导的小鼠血栓性偏瘫或死亡数与正常对照组相比明显减少,均有明显的保护作用,但各给药组比较无显著性差异;对凝血功能的影响实验中,TFF中、高剂量组能显著延长正常小鼠的凝血时间,影响小鼠的凝血功能(p<0.05),能显著延长家兔凝血酶原时间和部分凝血酶原时间(p<0.05),提示TFF可能通过抑制内源性、外源性凝血途径产生抗凝血作用;对大鼠血浆中TXB_2、6-keto-PGF1α含量的影响实验表明,与正常对照组比较TFF中、高剂量组使大鼠血浆中TXB_2含量明显下降,6-keto-PGF1α的含量明显升高(p<0.05或p<0.01);(3)以金丝桃苷、异槲皮苷为考察指标,采用大鼠在体灌流模型,通过HPLC测定灌流TFF前后两成分的含量,计算其在胃肠中的吸收率,结果在大鼠胃中2h的平均吸收率:金丝桃苷为36.92%,异槲皮苷为36.49%,在大鼠肠中2h的平均吸收率:金丝桃苷为47.7%,异槲皮苷为48.25%,表明金丝桃苷和异槲皮苷在大鼠胃肠部均有吸收,但两成分在肠部的吸收比胃部较好;通过检测静脉及口服给药TFF后大鼠血浆中有关物质,结果大鼠静脉给药5分钟和15分钟后大量测到异槲皮苷和金丝桃苷,同时也检测到少量的槲皮素二项结合物(槲皮素的葡萄糖醛酸结合和硫酸酯化结合代谢产物)。口服给药TFF后于15分钟和4小时在血中没有发现异槲皮苷和金丝桃苷,但却发现大量槲皮素的二相代谢产物;通过检测静脉及口服给药TFF后大鼠血清中有关物质,结果两种给药途径血清成分有很大差别,口服给药30min血清中总黄酮的主要成分金丝桃苷和异槲皮苷均未以原型成分出现,提示发生了转化,而静脉给药30min后血清中可见金丝桃苷和异槲皮苷原型成分,以及口服后出现的一些成分,表明静注给药部分发生了转化。并根据相应的质谱图m/z结合文献初步推测可能含有的成份有:槲皮素、槲皮素+葡萄糖醛酸、酸化的三叶豆苷(或紫云英苷)、柽柳素、柽柳素-7-O-葡萄糖醛酸等,转化途径可能有甲基化、葡萄糖醛酸化和硫酸酯化等;初步药代动力学结果显示未经水解的血样中测到的槲皮素浓度很低,而水解后的同一批血样中测到了大量的槲皮素,推测水解后测到的大量的槲皮素是由吸收入体的异槲皮苷和金丝桃苷(槲皮素糖苷成分)或槲皮素代谢物所贡献的。比较水解后口服和静脉给药槲皮素的曲线下面积,得到体内黄酮类化合物总的口服生物利用度为59.8%。(4)终浓度为200μmol/lH_2O_2可明显诱导HUVECs形成包括细胞固缩,染色质凝聚等特征的凋亡模型,为进一步探讨TFF和Hyperin对血管内皮细胞氧化损伤保护作用及其机制提供手段;MTT、FCM等方法测定结果显示,与正常细胞组比,H_2O_2模型组细胞增殖活性下降,细胞凋亡率明显增加,G0/G1期细胞比率增加,S期细胞和G2/M期细胞比率明显降低,可诱导产生大量的ROS,并出现明显的细胞凋亡特征,培养上清液中NO和SOD活性明显下降,MDA和LDH的释放量明显增加,NF-κB的表达明显增加VEGF表达明显下降(P<0.01),不同浓度的TFF和Hyperin作用后,均能明显抑制和改变H_2O_2引起的上述改变(P<0.05或P<0.01)。表明TFF和Hyperin对H_2O_2引起HUVECs损伤具有确切的保护作用,能明显抑制H_2O_2诱导的HUVECs凋亡,其作用机制可能与其确切的抗氧化作用及调节NF-κB和VEGF的表达有关;测定细胞培养上清液中TF和TFPI的浓度实验结果显示,与模型组比较,不同浓度TFF和hyperin能剂量依赖性地抑制H_2O_2刺激引起的TF含量升高,而TFPI的变化与TF相反(P<0.05或P<0.01),这种变化也可能是TFF和Hyperin抗血管内皮细胞损伤和抗血栓形成的机制之一;(5)与正常组比较,H_2O_2作用后的HUVECs胞内Ca~(2+)严重超载,线粒体跨膜电位显著降低(P<0.01);Bax基因表达明显增加,Bcl-2基因表达明显减小,Caspase-3,Caspase-9和Cyt C蛋白表达明显增加(P<0.05或P<0.01),证实H_2O_2通过激活经典的线粒体途径诱导细胞凋亡,与文献报道一致。给予不同浓度的TFF和Hyperin作用后,与H_2O_2模型组比较,可明显抑制H_2O_2所引起的HUVECs细胞内Ca~(2+)浓度升高,能明显促进Bcl-2基因表达,减少Bax基因的表达,从而抑制线粒体的通透性,恢复氧化损伤降低的膜电位(P<0.05或P<0.01),同时能明显降低Cyt C,Caspase-9和Caspase-3蛋白表达(P<0.05或P<0.01),表明TFF和Hyperin可能是通过抑制Ca~(2+)超载,促进Bcl-2表达,减少Bax的表达,抑制Bax由胞浆向线粒体转位,使得线粒体通透性降低,膜电位得到恢复,阻止线粒体Cyt C的释放,阻止了Caspase-9和Caspase-3的激活,从而通过阻断线粒体凋亡通路来抑制H_2O_2诱导的HUVECs细胞凋亡。
     结论(1)建立了TFF标准指纹图谱,为后续药理试验和作用机理探讨提供质量均一、稳定可控的供试样品提供保障;(2)通过抗血栓主要药理学研究,证明TFF具有确切的抗血栓作用;(3)采用HPLC、LC/MS/MS及UPLC/MS/MS技术基本阐明了TFF给药后体内的吸收转化及代谢过程等,初步探讨了TFF发挥药效作用的物质基础;(4)确证了TFF和Hyperin对H_2O_2引起HUVECs损伤具有明显的保护作用,能明显抑制H_2O_2诱导的HUVECs凋亡,其作用机制可能与其确切的抗氧化作用及调节NF-κB和VEGF的表达有关,也可能与细胞培养上清液中TF和TFPI的浓度变化有关;(5)研究证实H_2O_2主要通过激活经典的线粒体途径诱导细胞凋亡,故本文重点探讨了线粒体途径Caspases凋亡信号转导通路,研究表明TFF和Hyperin可能是通过抑制Ca~(2+)超载,促进Bcl-2表达,减少Bax的表达,抑制Bax由胞浆向线粒体转位,使得线粒体通透性降低,膜电位得到恢复,阻止线粒体Cyt C的释放,阻止了Caspase-9和Caspase-3的激活,从而通过阻断线粒体凋亡通路来抑制H_2O_2诱导的HUVECs细胞凋亡。
Objective:To establish a standard HPLC fingerprinting of total flavonoids of Folium Apocyni veneti(TFF). To study anti-thrombi pharmacological action and intracorporal process(substance bases)of TFF, and investigate the protective effects and mechanism of TFF and hyperin on H_2O_2-induced human umbilical vein endothelial cells(HUVECs)insults through cultured in vitro.
     Methods:(1)The standard fingerprint of TFF was established by HPLC-DAD,which can supply samples of controllable quality for further experiments with animals and research mechanism of action. (2) Rat model of venous thrombosis was made to measure the thrombus weight. Mouse model of thrombosis by injecting collagen-adrenaline to the tail vein was applied to observe numbers of dead mice in 5 minutes and recovery mice from hemiplegia in 15 minutes. The clotting time(CT) of mouse, and the prothrombin time (PT) and partial thromboplastin time(PTT) of rabbits were tested by Clotting Method.. The contents of TXB_2、6-keto-PGF1αin rat plasma were detected by radioactive immunization. (3)The gastrointestinal absorption and biotransformation, correlation ingredient of rat plasma and serums and the initiative pharmacokinetics of TFF were investigated by HPLC,LC/MS/MS and UPLC-MS/MS techniques. (4) The cultured HUVECs were used as the experimental model. H_2O_2 was used as the inducer of oxidative stress. Cell viability was measured by MTT assay. Cell apoptosis, cell circles and the level of ROS were detected by flow cytometry(FCM). The cell morphology change was assessed by AO/EB fluorescent staining. The contents of MDA and LDH, the activities of SOD and NO were determined by spectrophotometry. The immunohistochemistry was used to observe the expression of NF-κB and VEGF. The concentration of TF and TFPI were determined by ELISA.(5)Intracellular Ca~(2+) and the mitochondria transmembrane potential variance (ΔΨm) were measured with Flou3-AM and Rh123 fluorescent staining respectively by LSCM. The gene expression of Bcl-2, Bax and caspase 3 were analysized by RT-PCR. The protein expression of cytochrome C, caspase-9 and caspase-3 were analysized by western blotting to further investigatation of the mechanism of TFF and hyperin in inhibiting HUVECs apoptosis induced by H_2O_2.
     Results:(1)The chromatographic fingerprinting of TFF was established which showed 17 charavcteristic peaks from 7 patches of total flavonoids products. The similarity from different lots was 0.95~1.00 by the software of“Computer-aided Similarity Evaluation”and showed high similitude in peak numbers and the retention time. Moreover, comparison of the HPLC profiles of total flavonoids and the Folium Apocyni veneti indicated that they were closely related to each other. The chromatographic fingerprinting with high specificity can be used to control its quality and assure to supply samples of controllable quality for further experiments with animals and research mechanism of action. (2)The study indicated that TFF had obvious restriction to venous thrombosis in the test of phlebothrombosis. Compared with the control group , the high and middle dose group of TFF had notable difference in dry weight and wet weight of thrombosis (p<0.001) and the restrain rate of thrombus wet weigh were 73.0% and 83.4% respectively. The hemiplegy and death rate was decreased in mouse by injecting collagen-adrenaline to the tail vein with different dosage TFF compared with control group, but has no notable difference. The high and middle dose group can obviously prolong the clotting time(CT) of mouse (p<0.05), can prolong the prothrombin time (PT) and partial thromboplastin time(PTT) of rabbits, which show TFF has anticoagulant action through the restrain to intrinsic and extrinsic coagulation pathway. The high and middle dose group can decline the content of TXB2 and increase the 6-keto-PGF1α(p<0.05 or p<0.01 vs control group) in the detection of TXB2、6-keto-PGF1αin rat plasma by radioactive immunization. (3)The absorptivity of hyperin and isoquercitrin in gastrointestinal was counted through detecting the content of hyperin and isoquercitrin in former and behind of perfusion TFF by HPLC. The results showed that the average absorptivity in stomach of hyperin and isoquercitrin were 36.92% and 36.49%, while in intetines were 47.7% and 48.25% respectively. All these indicated that hyperin and isoquercitrin have good bsorptivity in intetines. The detective results of correlation ingredient of rat plasma indicated that hyperin, isoquercitrin, glucuronic acid complex compound of quercetin and sulphating complex compoundof quercetin (the phaseⅡmetabolites of the quercetin) can be detected in vivo after ig and iv TFF. Hyperin, isoquercitrin and measly phaseⅡmetabolites of the quercetin can be detected after iv TFF 5 and 15 min. However, only substantive phaseⅡmetabolites of the quercetin can be detected after ig TFF 4 h and 15 min. The detective results of correlation ingredient of rat serums indicated that the prototype ingredient(hyperin and isoquercitrin) can not be detected after ig TFF 30 min, while can be detected after iv TFF 30 min. The results indicated biotransformation have happened after ig TFF. The potential inclusive substance included quercetin, quercetin+glucuronic acid , astragalin, tamarisktwig, tamarisktwig-7-O-glucuronic acid and so on through initiative speculate based mass spectrum by UPLC-MS analysis. The biotransformation pathways in vivo perhaps comprised of methylation reaction, sulphating reaction and metabolic product association reaction with glucuronic acid etc. Preliminary pharmacokinetics study showed that quercetin concentration were low in no hydrolyzing blood sample,while were high in hydrolyzing blood sample, which confered that quercetin was obtained by absorption of hyperin and isoquercitrin after hydrolysis.The oral bioavailability of flavonoid was 59.8% through area under concentration (AUC). (4) The apoptosis model of human umbilicus vascular endothelial cell (HUVECs) with cell volume reduction, cytoplasm shrinkage, condensation and fragmentation of chromatin can be induced by 200μmol/l H_2O_2. It offered a good instrument for further study the protective effect and mechanism of TFF and hyperin on H_2O_2-induced HUVECs injury. Compared with the normal group, H_2O_2 can obviously increase the release of ROS, decrease cell viability, induce cell apoptosis, increase contents of LDH and MDA, decrease the activities of SOD and NO of the cultured medium, reduce the percentage of cells of S phase and G2/M phase, down-regulate the expression VEGF, up-regulated the expression of NF-κB, (P<0.01). Compared with the H_2O_2 model group, different concentrations of TFF and hyperin were shown to alike distinctly attenuate these responses elicited by H_2O_2(P<0.05或P<0.01). The mechanism may be related to its exact antioxidant effects and regulate the expression of NF-κB and VEGF. At the same time, the concentration determination of TF and TFPI indicated that different concentrations of TFF and hyperin can remarkably inhibit the increase of TF content, while the change of TFPI content was reversed with TF. The concentration change of TF and TFPI was may be a mechanism of TFF and hyperin inhibit the H_2O_2-induced apoptosis of HUVECs.(5) Compared with the normal group, the intracellular Ca~(2+) influx content was severely overloaded , while mitochondria membrane potential△Ψm was obviously decreased (P<0.01), Bcl-2 down regulation and Bax up-regulation, the protein expression of caspase-3, caspase-9 and Cyt C remarkably increased (P<0.05 or P<0.01). The study indicated that HUVECs apoptosis by H_2O_2 induced was carried out mainly by activating the mitochondrial pathway, according to the literature reporting. Compared with the H_2O_2 model group, different concentrations of TFF and hyperin were shown to distinctly inhibit the increase of intracellular Ca~(2+)content , Bcl-2 up-regulation and Bax down-regulation, depress the mitochondrion permeability, increase the mitochondria membrane potential△Ψm (P<0.05 or P<0.01). At the same time, the protein expression of caspase-3, caspase-9 and Cyt C remarkably decreased (P<0.05 or P<0.01). The investigation indicated that the mechanism of TFF and hyperin in inhibiting the HUVECs apoptosis by H_2O_2 induced may be related to inhibit the increase of intracellular Ca~(2+)content, Bcl-2 up-regulation and Bax down-regulation, depress the mitochondrion permeability, increase the mitochondria membrane potential△Ψm, prevent mitochondria to release cytochrome C, prevent the activation of Caspase-9 and Caspase-3 and inhibite the HUVECs apoptosis by H_2O_2 induced by preventing the mitochondria caspases signal transduction pathway.
     Conclusions:(1) The standard fingerprint of TFF was established which can ensure to supply samples of controllable and uniform quality for further experiments with animals and research mechanism of action of TFF. (2) In results, TFF exerted remarkable effects against thrombosis by the major pharmacology research of resist thrombosis. (3)The absorption, biotransformation and its chief metabolites were initiatively illuminated by HPLC /MS/MS and UPLC/MS/MS analysis. The substance bases of pharmacological action were discussed.(4) The study first indicated that TFF and hyperin had a potent protective effect on damage in cultured HUVECs, and obviously inhibit the H_2O_2-induced apoptosis of HUVECs.The mechanism may be related to its exact antioxidant effects and the regulative expression of NF-κB and VEGF, or may be related to the concentration changes of TF and TFPI.(5) The study indicated that HUVECs apoptosis by H_2O_2 induced was carried out mainly by activating the mitochondrial pathway. So, the research focal point was the mitochondria caspases signal transduction pathway. The dissociative Ca~(2+) was one of prerequisite to activate caspase-3, while homeostatic destroying of Ca~(2+) could directly cause mitochondria to release cytochrome C and some apoptosis factor. Cyt-C released from mitochondria can combine with apoptosis enzyme promoter and then activate Apaf-1 by deoxidation triphosadenine. Eventually, the activated Apaf-1 binding to procaspase-9 would start a series of caspases cascade reaction, thus activates typical mitochondria apoptosis pathway. The investigation indicated that different doses of TFF and hyperin were shown to distinctly inhibit the increase of intracellular Ca~(2+)content , Bcl-2 up-regulation and Bax down-regulation, depress the mitochondrion permeability, increase the mitochondria membrane potential△Ψm, prevent mitochondria to release cytochrome C, prevent the activation of Caspase-9 and Caspase-3 and inhibit the H_2O_2 induced HUVECs apoptosis by preventing the mitochondria caspases signal transduction pathway.
引文
1.蒋宁一,陈贵兵.血栓形成与细胞凋亡显像的研究进展.国外医学放射医学核医学分册,2003,27(6):248~251.
    2.汪海.以内皮细胞为靶标的新型抗血栓天然药物的研究.世界科学技术-中药现代化,2001,3(6):37~41.
    3. Gross PL, Aird WC. The endothelium and thrombosis. Semin thromb hemos,2000; 26(5): 463-478.
    4.Reil TD, Moore WS, Kashyap VS. The effects of thrombosis, thrombectomy and thrombolysis on endothelial function. Eur. J. Vas. Endovasc Surg, 2000, 199 (2):162-168.
    5.常小荣.血管内皮细胞和心血管系统疾病.中国康复,2004;19(6):122-124.
    6.郭渝成张为陈莉,等.微血栓形成与内皮细胞损伤间关系的临床及实验研究中国微循环,2002;6(6):141-143.
    7.丁春荣,孙兆贵,李洁.血管内皮细胞与血瘀证关系研究.山东中医药大学学报,2006;30(6):499-501.
    8.王奇,陈云波,赖世隆,等.血瘀证血管内皮细胞损伤的抗凝与纤溶障碍研究.广州中医药大学学报,2001;18(2): 97-99.
    9.侯晋军.中药罗布麻叶有效部位制备工艺及其剂型研究.山西医科大学研究生论文, 2005.
    10.程秀丽,中药罗布麻叶中黄酮类化合物提取分离研究.山西医科大学研究生论文,2005.
    11.燕红.罗布麻有效部位大鼠实验性动脉粥样硬化作用研究.山西医科大学研究生论文, 2004.
    12.刘雪松,毛春芹,叶定江.等.三棱总黄酮抗血小板聚集及抗血栓作用研究.中草药,1999;30(6):41.
    13.茅彩萍,顾振纶,韩蓉,等.葛根总黄酮对高糖致血管内皮细胞损伤的保护作用及其机制.中国药理学通报,2005,21(10):1255-1259.
    14.常翠青,陈吉棣.山楂叶总黄酮对血管内皮细胞氧化损伤的保护作用.中国公共卫生,2002;18(4):390-392.
    15.Liu Ying-hua, Huang Guo-wei, Chang Hong, et al. Antioxidation of soybean isoflavone in vascular endothelial cells with oxidative damage. Chinese Journal of Clinical Rehabilitation,2006;10(11):170-172.
    16.宋瑞霞,甘肃黄芪黄酮类化合物对血管内皮细胞保护作用,兰州大学研究生论文,2007. 17.中国药典[S].一部. 2005:147.
    18.程秀丽,张素琼,李青山.罗布麻叶中黄酮类化合物研究[J] .中药材,2007,30(9):1086~1088.
    19.张素琼,燕虹,李青山.罗布麻叶有效部位降血脂及抗动脉粥样硬化的研究[J] .中西医结合心脑血管病杂志,2007,5(9):831~833
    20.侯晋军,韩利文,李青山,等.罗布麻叶化学成分和药理活性研究进展[J] .中草药,2006,10(10):附7~附9
    21.韩利文,候晋军,李青山. HPLC法比较不同种属和产地罗布麻叶中金丝桃苷的含量[J].中国现代应用药学杂志. 2006, 5(23):392-394.
    22.周雯,李红茹,李淑芬,等.雷公藤超临界CO2提取物的HPLC指纹图谱建立[J] .中国中药杂志,2007,32(8):707~709.
    23.陈奇,中药药理研究方法学.北京:人民卫生出版社,1996,599~601.
    24.孙靖辉,尚坤,苏宪英.复方红豆杉片抗血栓作用的实验研究.长春中医学院学报,2006, 22(1): 57-58.
    25.李家增,贺石林,王鸿利主编.血栓病学.北京;科学出版社,1998:476~84
    26.陆兔林,叶定江,毛春芹等.三棱总黄酮抗血小板聚集及抗血栓研究.中草药,1999;30(6):439~41
    27.钟正贤,陈学芬,周桂芬.广西产藤茶总黄酮的药理研究.广西科学,1999;6(3):216~8
    28.陈奇,中药药理研究方法学.北京:人民卫生出版社,1996,599~601
    29.刘瑜,董小犁.血栓动物模型的建立.首都医科大学学报,2002,23(3):277~80.
    30.唐刚华,唐小兰,姜国辉.川芎哚及其类似物对血小板聚集和实验性血栓形成的影响.中国药理学通报,2001;17(3):333~5
    31.张予阳,孙文静,张敏芬等.4-氯-7-羟基黄酮衍生物对家兔血小板聚集的影响.中国药理学通报。2000;16(1):2301
    32.Jayaprakash V, Menezes RJ, Javle MM, et al. Regular aspirin use and esophageal cancer risk. International Journal of Cancer, 2006, 119(1):202-207.
    33.秦瑄.岩白菜素大鼠在体肠吸收动力学的研究[J].华西药学杂志2007,38(6):1013-1016
    34.刘太明,蒋学华.HPLC同时测定肠循环液中黄芩苷、黄芩素和酚红的浓度[J].华西药学杂志.2005,20(5):390-392
    35.崔升森,赵春顺,何仲贵,等.吲达帕胺大鼠在体胃、小肠的吸收动力学研究[J].沈阳药科大学学报,2002,19(3) :161-164.
    36.吕鹏,黄晓舞,吕秋军.黄酮类化合物吸收、分布和代谢的研究进展[J].中国中药杂志. 2007, 32(19):1961-1963
    37.林文慧,朱春燕,陈卫,石峰.葛根黄酮在大鼠肠道的吸收动力学研究[J].中国中药杂志. 2008, 33(2): 164-167
    38.郭歆,曹伟,程泽能,黄志壮,李焕德.齐墩果酸大鼠肠吸收动力学[J].中南药学.2007,5(3): 216-219
    39.YU LX, LIPKA E, CRISON JR, et al. Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorption[J].Adv Drug Del Rev, 1996, 19 (3) : 359一376.
    40.SCHURGERS N, BIJDENDIJK J, TUKKER JJ, et al. Comparison of four experimental techniques for studying drug absorption kinetics in the anesthetized rat in situ [ J ].J Pharrn Sci, 1986, 75 (2);117一119.
    41.Kerr JFR ,Harmont BV, Apoptosis:Its significance in cancer and cancer thetapy,Cancer. 1994,73(8):2013-2026
    42.Gross PL, Aird WC. The endothelium and thrombosis. Semin Thromb Hemost, 2000; 26(5): 463-478.
    43.Reil TD, Moore WS, Kashyap VS. The effects of thrombosis, thrombectomy and thrombolysis on endothelial function. Eur. J. Vasc. Endovasc Surg, 2000;199(2) 162-168.
    44.Warren MC, Bump EA, Medeiros D, et al. Oxidative stress induced apoptosis of endothelial cells. Free Radic Res, 2000; 29(6):537-547.
    45.Guang HM, Zhang XM, Li YQ, et al. Protection of vascular endothelial cells from hydrogen peroxide-induced oxidant injury by pyenosides saponins of Gynostemma pento-phyllum . Acta Pharmacol Sin, 2005; 40(3):200-204.
    46.血管内皮细胞的氧化性损伤机理.心血管病学进展,2002,23(4):235-238
    47.Darzynkiewicz Z Brumo S,Del Bino G,et al. Features of apoptotic cells measured by flow cytometry[J].Am J Pathol,1990,136(3);593-608.
    48.Afanasyev VN, Korol BA, Matylevich NP, et al.The use of flow cytometry for the investigation of cell death[J]. Cytometry. 1993,14(6);603-609
    49.Kinlay S,Libby P,Ganz P. Endothelial function and coronary artery disease[J].Curr Opin Lipidol, 2001,2(4):383-9
    50.曹仁贤.血管内皮细胞凋亡研究进展.国外医学生理病理科学与临床分册1997,17(1):75
    51.Pollman MJ,Hall JL,Gibbons GH,et al. Determinants of vascular smooth muscle cell apoptosis after balloon angioplasty injury.Influence of redox state and cell phenotype. Circ Res,1999;84:113-121
    52.Ward PA. Mechanisms of endothelial cell killing by H2O2 or products of activated neutrophils. Am J Med,1991,91(30C):89s-94s
    53.Valen G, Sonden A, Vaage J, et al. Hydrogen peroxide induces endothelial cell atypia and cytoskeleton depolymerization. Frenn radic Biol Med. 1999;26(11-12):1480-8
    54.Kali, Christopjer G, Todayuki O,et al.H2O2-mediated permeability role of MAPK and accludin:Am J physiol cell physiol.2000;279:c21-c30
    55.Fujita H,Morita I, Murota S. Hydrogen peroxide induced apoptosis of endothelial cellsconcomitantly with cycloheximide. J Atheroscler Thromb.2000;7(4):209-15
    56.Viles,Gonzalez JF.Fuster V.Badimon JJ.Links between inflammation and thrombogenicity in atherosclerosis.Curr MoI Med 2006;6(5):489-499
    57.Gorzyca W,Gong JP,Ardeh B,et a1.The cell cycle related differences in susceptibility of HL-60 cell to apoptosis induced by variouanti-tumor agents.Cancer Res. 2003,53 (16):3186-3196
    58.Ding WX,Shen HM,Ong CN.Critical role of reactive oxygen species and mitoehondrial permeability transition in microcysti-induced rapid apoptosis in rat hepatoeytes.Hepatology. 200l(32):547-555
    59.Steppich BA.Ott I.Tissue factor in acute coronary syndromes.Hamostaseologie 2006;26(2):147-153.
    60.Tilley R.Mackman N.Tissue factor in hemostasis and thrombosis.Semin Thromb Hemost 2006;32(11):5-10
    61.Croce K. Libby P. Intertwining of thrombo sis and inflammation in atherosclerosis.Curr Opin HematoI 2007; 14(11 ):55-61
    62. Steppich BA.Ott I.Tissue factor in acute co ronary syndromes.Hamostaseologie, 2006;26 (2):147-153
    63.Klement P,Rak J Emerging anticOaguIants: mechanism of action and future potentia1.Vnitr Lek 2006:52 SuppI 1:119-122
    64.Laterre PF.W ittebole X.Collienne C.Pharmacological inhibition of tissue factor.Semin Thromb Hemost 2006;32(1 ):71-76
    65.Ushigome H ,Sano H ,Okamoto M ,et al . The role of tissue factor in renal ischemic reperfusion injury of t he rat [J ] . J S urg Res ,2002 ,102 (2) : 102-109.
    66.Marut suka K, Hatakeyama K, Yamashita A , et al . A drenomedullin augment s t he release and production of tissue factor pat hway inhibitor in human aortic endot helial cells [J ] .Cardiovascular Res ,2003 ,57 (1) : 232-237.
    67.Uren RT,Dewson G,Bonzon C,et a1.Mitochondrial release of proapoptotie proteins:electrostatic interactions can hold cytochrome c but not Smac/DIABLO to mitochondrial membranes.J Biol Chem. 2005,280(3):2266-2274
    68.Siegel RM. Caspase at the crossroads of immune-cell life and death. Nat Rev Immunol 2006; 6(4):308-17
    69.Hail N Jr, Carter BZ, Konopleva M, Andreeff M. Apoptosis effector mechanisms :A requiem performed in different keys. Apoptosis. 2006 Mar 13; [Epub ahead of print]
    70.BurattaM,Castigli E,Seiacealuga M,et al.Loss of cardiolipin in palmitate-treated GL15 glioblastoma cells faors cytochrome C release from mitochondria leading to apoptosis.J Neurochem,2008,5(2):342.
    71.Tagliarino C,Pink JJ,Dubyak GR,Nieminen AL,Boothman DA.Calcium is a key signling molecule in-lapachone-mediated cell death[J].J Biol Chem. 200l(276):19150-19159
    72.Duchen MR.Mitochondria and Ca2+ in cell physiology and pathophysiology[J].Cell Calcium. 2000(28): 339-348
    73.VANDER KK, ROOKUS MA, PETERSE HL, et al. P53 protein overexpression in relation to risk factors for breast cancer.Eridemiol. 1996, 144(10):924
    74.YANG LJ, WANG WL. Establishment of the hepatoma cells which express Bax protein stably and highly and observation of its apoptotic phenomena[J]. Di- si Junyi Daxue Xuebao(J Fourth Mil Med Univ). 2002, 23(5): 455- 458.
    75.周五一,杨燕,周杰.凋亡相关基因bax,bcl-2在大鼠急性胰腺炎中表达的研究[J].中国现代医学杂志. 2002,12(11):14-16.
    76.ZHOU WY, YANG Y, ZHUO J. Expression of bax, bcl-2 in rats with experimental acute pancreatitis [J]. China Journal of Modern Medicine. 2002, 12(11): 14-16
    77.OLTVAI ZN, MILLIMAN CL, KORSMEYER SJ, et al. Bcl-2 heterodimerizes in vivo with a conserved homolog, bax, that accelerates programmed cell death. Cell. 1993, 74: 609- 619
    78.KRAJEWSHI S, KRAJEWSKA M, SHABAIK A, et al. Immunohisto chemical determination of in vivo distribution of bax,adominant inhibitor of bcl-2. Am J Pathol. 1994, 145 (6):1323- 1336.
    79.Matzo I,Brenner C,Zamzami N.The permeability transition pore complex:a target for apoptosis regulation by caspases and bcl-2-related proteins.J Exp Med.1998,187(8):1261-1271
    80.Wei MC,Zong WX,Cheng EH,et a1.Proapoptotic BAX and BAK:a requisite gateway to mitochondrial dysfunction and death.Science. 2001,292(5517):727-730
    81.Wedgwood S,Dettman RW,Black SH.ET 1 stimulate pulmonary,arterial smooth muscle cell proliferation via induction of reactlve oxygen species:Am J Physiol.2001,281(5):1058-1067
    1.张庆斌,刘伏元.血管内皮细胞和原发性高血压[J].心血管病学进展,2005,26(5):481-484.
    2.俞鹏,陈晓虎.血管内皮细胞功能及其与原发性高血压的关[J].中华实用中西医杂志, 2006, 19(19):2272-2273.
    3.陈明,胡申江.高血压病血管内皮功能障碍及治疗[J].心血管病学进展,2005,26(3):222-226.
    4.Scarabelli,T.M., Stephanou,A.,Pasini,E.,2002.Different signaling pathways induce apoptosis in endothelial cells and cardiac myocytes during ischemia/reperfusion injury. Circ. Res.2002, 90, 745–748.
    5.刘丽芳,卢海刚.钙拮抗剂与血管内皮功能障碍[J].实用心脑肺血管病杂志, 2005, 13 (5): 312-314.
    6.王林华,陈明.原发性高血压与内皮功能研究进展[J].心血管病学进展,2006,27(1):60-63.
    7.胡泽平,王邦宁.血管内皮功能不全与高血压研究进展[J].医学综述,2007,13(4):255-257.
    8.Koning G, Schiffelers R, Wauben M, Kok R, Mastrobattista E,Molema G, et al. Targeting of angiogenic endothelial cells at sites of inflammation by dexamethansone phosphate containing RGD peptide liposomes inhibits experimental arthritis. Arthritis Rheum 2006; 54(4):1198-208.
    9.Jun-ichi Arai, Yasuhisa Endo Vascular endothelial cells and smooth muscle cells mediate carbacholinduced hepatocyte proliferation via muscarinic receptors and IP3/PKC signaling cascades Ryoichi Yoshimura,Cell Biology International ,2009,1:8.
    10.Datta YH, Ewenstein BM. Regulated secretion in endothelial cells: biology and clinical implications. Thromb Haemost 2001,86:1148-1155.
    11.Ping C, Xiaoling D, Jin Z, Jiahong D, Jiming D, Lin Z. Hepatic sinusoidal endothelial cells promote hepatocyte proliferation early after partial hepatectomy in rats. Arch Med Res .2006; 37: 576-583.
    12.Cross C.E,A.van der,Vliet C.A,et al. Reactive oxygen species and the lung.Lancet, 1994,344:930-938.
    13.Witzum J. L.The oxidative hypothesis of atherosclerosis.Lancet .1994, 344:793-795.
    14.Laura Castro and Bruce A. Freeman. Reactive Oxygen Species in Human Health and Disease.Nutrition 2001,17 :161-173.
    15.袁红洁.氧自由基对血管内皮细胞周期及其凋亡水平的影响.南京医科大学学报,1999,19:396-397.
    16.BerlinerJ.A.,HeineckeJ.W. The role of oxidized lipoproteins in atherogenesis.Free Radic Biol Med,1996,20:702-707.
    17.Escargueil-Blanc.I,Meilbac o. Pieraggi,et al. Oxidized LDLs induce massive apoptosis of cultured human endothelial cells through calcium-dependent pathway. Prevention by aurintricaboxylic acid .Arterioscler. Thromb Vase Biol,1997,17:332-339.
    18.Kinlay S. Ganx P.Role of endothelial dysfunction in coronary atery disease and implications for therapy .Am J Cardiol,1997,80(9A):111.
    19.Diana A. Antioxidant defences against reactive oxygen species causing genetic and other damage.Mutation Research ,1996 ,350:103-108.
    20.Halliwell B., Aruoma O.L.DNA damage by oxygen derived species.Its mechanism and measurement in mammalian system .FEBS Lett ,1991 ,281:9-19.
    21.Andrenodi S.P.,Liechty E.A.,Mallett C., et al. Exogenous adenine nucleotides replete endothelial cell adenosine triphosphate after oxidant injury by adenosine uptake . J Lab Clin Med ,1990,115:304-308.
    22.吕永达.主编.高原医学与生理学.天津:天津科技翻译出版公司,1995,114-164.
    23.温志大,郝景坤.编著.高原临床外科学.成都:四川科技出版社,1989,312-316.
    24.Jane C. Reperfusion injury to endothelial cells Following cold ischemic storage of rat liver .Hepatology,1989,10:292-297.
    25.Carine M.,Thierry A.,Jose R.Endothelia cell responses to hypoxia:intiation of a cascade of cellular interactions. Biochimica et Biophysica Acta,2000.1497:l-10.
    26. Hae-Young S.,Florian K,Torsten G.,etal. Differenitial regulation of xanthine and NAD(P)H oxidase by hypoxia in human umbilical vein endothelial cells.Role of nitric oxide and adenosine.Cardiovascular Research,2003 ,58:638-646.
    27.Xueying Zhao,Zhenlun Gu,Anoja S.Attele,etal.Effects of quercetin on the release of endothelin ,prostacyclin and tissue plasminogen activator from human endothelial cells in culture.Journal of Ethnopharmacology ,1999,67:279-291.
    28.Yasuhisa A.,Hideo A., Masato S.,etal. Human umbilical vein endothelial cells show Ca2+ mobilization as well as Ca2+ influx Upon hypoxia. Jurnal of celluar Biochemistry , 2000, 78: 458-464.
    29.Frenette PS., Wagner DD. Adhesion molecules-Part 1.N Eng J Med .1996,334:1526-1529.
    30.Kolluru, G.K., Tamilarasan, K.P., Geetha, P.S., etal. Cadmium induced endothelial dysfunction: consequence of defective migratory Pattern of endothelial cells in association with poor nitric oxide availability under cadmium challenge. Cell Biology International, 2006, 30: 427–438.
    31.Wolf, M.B., Baynes, J.W. Cadmium and mercury cause an oxidative stressinduced endothelial dysfunction. Biometals ,2007,20:73–81.
    32.Majumder, S., Muley, A., Kolluru, G.K.,et al. Medmium reduces nitric oxide production by impairing phosphorylation of endothelial nitric oxide synthase. Biochemistry and Cell Biology, 2008,86:1-10.
    33.Zhiwu Dong, Li Wang, Jiping Xu .Promotion of autophagy and inhibition of apoptosis by low concentrations of cadmium in vascular endothelial cells Toxicology in Vitro ,2009,23: 105–110.
    34.Kaeng W.Lee, Andrew D. Blann, Gregory Y.H. Lip. Inter-relationships of indices of endothelial damage/dysfunction [circulaton endothelial cells, von Willebrand factor and flow-mediated dilatation] to tissue factor and interleukin-6 in acute coronary syndromes . International Journal of Cardiology, 2006,111(2):302-308.
    35.Aun Yeong Chong, Gregory Y.H.Lip, Bethan Freestone,Andrew D.Blann. Increased circulation endothelial cells in acute heart failure:Comparasion with von Willebrand factor and soluble E-selection. European Journal of Heart Failure,2006,8(2):167-172.
    36.K.Wojtkielewicz, M. Urban, M.Kowalaeski, J. Peczynska,B.Tu-P7:121Soluble thrombom- dulin (STM)-A molecular marker of endothelial cell injury in children and adolescents with type 1 diabetes. Atherosclerosis Supplements,2006,7(3):211.
    37.Diego Mezzano. Rodrigo Tagle, Edgar Pais, Olga Panes,et al.Endothelial Cell Markers in Chronic Uremia: Relationship with Hemostatic Defects and Severity of Renal Failure. Thrombosis Research,1997,88(6):465-472.
    38 . K .Wojtkielewiez.,M.Urban,M.Kowalewski.,et al. soluble thrombomodulin (STM) a molecular marker of endothelial cell injury in children and adolescents with type diabetes.Poster session P7 Basic science (1st part)2006,211
    39.Paolo Simioni, Olivier Morboeuf , Giulio Tognin, et al. Soluble endothelial protein C receptor levels and venous thromboembolism in carriers of two dysfunctional protein C wariants . Thrombosis Research ,2006,117(5):523-528.
    40.Jose A., Ferenadez, Steven R. Lentz ,Denis M.Dwyre ,et al. A novel ELISA for mouse activated protein C in plasma, Journal of Immunological Methods ,2006,314(1):174-181.
    41.Kim A. Davis, Sue E. Samson, John X .Wilson K.Hypotonic shock stimulates ascorbate release from coronary artery endothelial cells by a Ca2+- independent pathway. European Journal of Pharmacology,2006,548(1-3):36-44.
    42.Saskia C. Peters, H. Michael Piper. Reoxygenation-induced Ca2+ rise is mediated via Ca2+ influx and Ca2+ release from the endoplasmic retichlum in cardiac endothelial cells.Cardiovascular Research ,2007,73(1):164-171.
    43.Adams D J, Barakeh J, Laskey R, Van Breemen C. Ion channels and regulation of intracellular calcium in vaschlar endothelial cells. EASEB J.1989,3:2389-2400.
    44.林琳,郑永芳,屈金河,等.肿瘤坏死因子-α激活ECV-304钙激活钾通道及G蛋白的增强效应,中国医学科学院学报,2000,22(3):232-236.
    45.Lipscomb, E.A. and Mercurio, A.M. Mobilization and activation of a signaling competent alpha6beta4integrin underlies its contribution to carcinoma progression. Cancer Metast. Rev. 2005, 24, 413–423.
    46.Zhao, J., Miao, J., Zhao, B. and Zhang, S. Upregulating of Fas, integrin beta4 and P53 and depressing of PC-PLC activity and ROS level in VEC apoptosis by safrole oxide. FEBS Lett. 2005,579, 5809–5813.
    47.Morena, A., Riccioni, S., Marchetti, A.,et al. Expression of the beta 4 integrin subunit induces monocytic differentiation of 32D/v-Abl cells. Blood 2002,100, 96–106.
    48. Nikolopoulos, S.N., Blaikie, P., Yoshioka, T., et al. Integrin beta4 signaling promotes tumor angiogenesis. Cancer Cell,2004, 6, 471–483.
    49.Luberto, C., Yoo, D.S., Suidan, H.S.et al. Differential effects of sphingomyelin hydrolysis and resynthesis on the activation of NF-kappa B in normal and SV40-transformed human fibroblasts. J. Biol. Chem. 2000,275, 14760–14766.
    50.Cheng, Y., Zhao, Q., Liu, X., et al. Phosphatidylcholine-specific phospholipase C, p53 and ROS in the association of apoptosis and senescence in vascular endothelial cells. FEBS Lett. 2005, 580, 4911–4915.
    51.Wu, X., Lu, H., Zhou, L.,et al. Changes of phosphatidylcholine-specific phospholipase C in hepatocarcinogenesis and in the proliferation and differentiation of rat liver cancer cells. Cell Biol. Int. 1997,21:375–381.
    52.Xia Liua, Deling Yinc, Yun Zhang, et al. Vascular endothelial cell senescence mediated byintegrin b4 in vitro ,FEBS Letters, 2007,581: 5337–5342
    53.鲍光宏,于德洁,林琳,等.ECV-304内皮细胞株的钙激活非选择性阳离子通道及肿瘤坏死因子-α的抑制作用.中国医学科学院学报,2000, 22 (5):449-495.
    54. Dirac, A.M. and Bernards, R. Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53. J. Biol.Chem. 2003,278:11731–11734.
    55.Chen, J. and Goligorsky, M.S. Premature senescence of endothelial cells: Methusaleh’s dilemma. Am. J. Physiol. Heart Circ. Physiol. 2006,290:H1729–H1739.
    56. Haendeler, J. Nitric oxide and endothelial cell aging. Eur.J. Clin. Pharmacol.2006, 62 ( Suppl .13):137–140.
    57.Debidda, M., Williams, D.A. and Zheng, Y. Rac1 GTPase regulates cell genomic stability and senescence. J. Biol. Chem. 2006,281:38519–38528.
    58.Johnson, T.M., Yu, Z.X., Ferrans, V.J.et al. Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc. Natl. Acad. Sci.USA 1996,93:11848–11852.
    59.Blann AD, Lip GYH. The endothelium in atherothrombotic diseases: assessment of function, mechanisms and clinical implications. Blood Coag Fibrinolys,1998,9:297-306.
    60.Fenster B E, Tsao PS ,Rockson SG. Endothelial dysfunction :clinical strategies for treating oxidant stress. Am Heart J ,2003,146(2):218-226.
    61.赵保路.氧自由基和天然抗氧化剂.北京:科学出版社,1999,96-117.
    62.Behrendt,D. Ganz, P. Endothelial function.From vascular biology to clinical applications. Am. J. Cardiol.2002, 90:401–408.
    63.Minamino, T., Miyauchi, H., Yoshida, T.et al. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction, Circulation 2002,105: 1541–1544.
    64.邱幸凡著.络脉理论与临床.西安:陕西科学技术出版社,1991∶21-23.
    65.顾卫,杨东,吴海科,等.脑血栓血瘀证患者血浆组织型纤溶酶原激活剂、纤溶酶原激活剂抑制物和α-颗粒膜蛋白含量变化的研究.中西医结合实用临床急救,1998,5(2):52-53.
    66.蔡钦朝,汪琼华,吴云智.血瘀证患者血管内皮内分泌功能的观察.安徽中医学院学报,1998,17(2):61-63.
    67.陈国利,孙兆贵,王雷,等.血瘀证与血管内皮游离钙浓度关系的实验研究.山东中医药大学学报, 2006,l(1):55.
    68.蔡钦朝,王琼华,吴云志.血瘀证患者血管内皮分泌功能的观察.安徽中医学院学报,2005,17(2):61.
    69. Uren RT,Dewson G,Bonzon C,et a1.Mitochondrial release of proapoptotie proteins:electrostatic interactions can hold cytochrome c but not Smac/DIABLO to mitochondrialmembranes.J Biol Chem. 2005,280(3):2266-2274
    70.许丹焰.P-选择素在心血管疾病中的研究进展.国外医学生理病理科学与临床分册, 1997, 17(3):252-255.
    71.王艳华.内皮细胞免疫功能研究进展.国外医学免疫学分册,1997,20(5):226-229.
    72.陈云波,王奇,赖世隆.血瘀证兔模型血清对培养的血管内皮细胞形态结构的影响.中医研究,2001,14(6):13-16.
    73.李晓明,施赛珠,牛惠志,等.肾脏病血瘀证患者血浆内皮素α颗粒膜蛋白140含量测定的意义.中国中医基础医学杂志,1996,2(5):35-36.
    74.林桂永,王子健.冠心病血瘀证气血辨证与内皮细胞损伤的关系.中西医结合心脑血管病,2005,3(10):856-858.
    75.王奇,陈云波,赖世隆,等.血府逐瘀汤对血瘀证兔血清损伤的血管内皮细胞的形态学影响.广州中医药大学学报,200l,18(2):106.
    76.侯孟君,陈云波,王奇,等.血瘀证兔模型血管内皮细胞中一氧化氮合酶的基因表达及其分泌一氧化氮的变化.广州中医药大学学报,2001,18(1):53-57.
    77.Wang, T., Fu, F., Han, B.,et al. Mechanism of Hydroxysafflor yellow A on protecting ischemic myocardium. J. Mol. Cell. Cardiol,2006,40 (6):957.
    78.He, H., Yang, X., Shi, M. et al. Protective effects of hydroxysafflor yellow A on acute and chronic congestive cardiac failure mediated by reducing ET-1, NOS and oxidative stress in rats. J. Pharm. Pharmacol. 2008,60:115–123.
    79.Tian,J., Jang, W., Wang, Z. et al. Effects of safflower flavone on local cerebral ischemia and thrombosis formation in rats. Chin. Tradit. Herb. Drugs ,2003,34:741–743.
    80. Bruns, C.J.Solorzano, C.C., Harbison, M.T. et al. Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma. Cancer Res,2000, 60: 2926–2935.
    81.李朝武,刘新泳,张蕊,等.川芎嗪对血管内皮细胞增殖与损伤保护作用的研究.山东大学学报,2003,41(4):404.
    82.林蓉,刘俊田,李旭,等.川芎嗪对血管内皮细胞损伤的保护作用.中国药理学与毒理学杂志,2000,14(6):425.
    83.梁德,姚珍松,杨志东,等.川芎嗪对家兔血管内皮细胞修复的影响.广州中医药大学学报,200l,18(2):155.
    84.徐东波,张军平,张文志,等.丹参注射液对血管内皮细胞氧化损伤保护作用的实验研究.天津医科大学学报,200l,7(1):21.
    85.闰彦芳,张壮,孙塑伦,等.三七总皂苷及主要成分对血管内皮细胞缺氧损伤的保护作用.中国实验方剂学杂志,2002,8(1):34.
    86.叶希韵,王耀发.山楂叶总黄酮对血管内皮细胞氧化损伤的保护作用.中国现代应用药学杂志,2002,19(4):265.
    87.吴健字,李仪奎,符胜光,等.补阳还五汤药物血清对自由基损伤的血管内皮细胞的保护作用.中药药理与临床,1999,15(2):3.
    88.王桂敏,吴秀青.首乌延寿丹抗血管内皮细胞老化实验研究.中医药刊,2002,20(3):314.
    89.卞慧敏,张旭,龚婕宁,等.六味地黄汤药物血清抗血管内皮细胞凋亡的作用中药药理与临床,2002,18(5):9.
    90.李卫青,谢梦洲,魏平,等.复方丹参滴丸对缺血性心脏病患者血浆NO、ET及血流变的影响.山西中医,2000,15(4):25.
    91.孙宜萍,杨建芬,李蔚.红花注射液对高血压病血管内皮保护作用的临床观察,上海中医杂志,2002,25(1):50.
    92.吴德芹,张旭.麦冬药物血清对VEC血管调节物质的影响.中医药学报,2004,32(2):56-58.
    93.李先涛,赖世隆,梁伟雄,等.气活血对急性缺血性中风气虚血瘀证血管内皮细胞功能的影响.广州中医药大学学报,997,14(4):217-221.
    94.血管内皮细胞的氧化性损伤机理.心血管病学进展,2002,23(4):235-238
    95.李凤文,张立石,刘红,等.水蛭、丹参及其复方对血瘀大鼠血管内皮细胞保护作用的研究.中国中药杂志,2001,26(10):703-706.
    96.陈利国,屈援,葛红颖,等.补阳还五汤对血瘀证大鼠血管内皮细胞粘附分子表达的影响.中草药,2005,36(5):706-709.
    97.Pwter L.,Willian C.The endothelium and thrombosis. Semin Thromb Hemost , 2000, 26: 463-478.
    98.Ragni M., Golino P., Cirillo P. Endogenous tissue factor pathway inhibitor modulates thrombus formation in an in vivo model of rabbit carotid artery stenosis and endothelial injury.Ciruculation ,2000,102:113-124.
    99.Golino P, Ragni M, Cimmino G, et al. Role of tissue factor pathwayinhibitor in the regulation of tissue factor 2 dependent blood coagulation[J].Cardiovasc Drug Rev, 2002, 20(1) : 67 .
    100.Chen D Giannopoulos K, Shiels PG, et al. Inhibition of intravascularthrombosis in murine endotoxemia by targeted expression of hirudin and tissuefactor pathway inhibitor analogs to activated endothelium[J]. Blood,2004, 104(5):1344-1349.
    101.R.G. Knowles, S. Moncada, Biochem. J. 298 (1994) 249–258.
    102.leming, J. Bauersachs, R. Busse, J. Vasc. Res. 34 (1997) 165–174.
    103.Zili, W. Zhengguo, Z. Peifang, et al., Med. J. China PLA 23 (4) (1998) 245–248.
    104.常翠青,陈吉棣.山植对人血管内皮细胞的作用[J].营养学报,2001,23(1):58-61.
    105.叶希韵,王推发.山椿叶总黄酮对血管内皮细胞氧化损伤的保护作用[J].中国现代应用药学杂志,2002,19(4):265-268.
    106.李凤文,张立石.水蛭、丹参及其复方对血裹大鼠血管内皮细胞保护作用的研究[J].中国中药杂志,2001,26(10):703-706.
    107.李凤文,刘晓颖.脉复康对高脂血症家兔血管内皮功能的影响[J].中国中医基础医学杂志,2003,9(1):33-36.
    108.金明华,吴伟康,秦鉴,等.四逆汤抗血管内皮脂质过氧化损伤作用[J].中国临床康复,2003,7(15):2164-2165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700