用户名: 密码: 验证码:
稳压元件对气缸高速运动平稳性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气动自动化系统是实现传动与控制的主要方式之一,其中由稳压元件、换向阀和气缸等所组成的气动控制回路更是工业自动化中常用的回路。对于一些采用大缸径气缸推动负载高速运行的装备,如何从控制回路上稳定气缸的输入压力成为保证设备正常运行的关键之一。针对这一实际的需求,论文从稳压元件出口压力的变化规律出发,研究一种经济、有效的气动控制回路来保证气缸高速平稳运行。论文的研究成果对大负载高速运动气缸的运动平稳性控制具有一定的实际意义和应用价值。
     论文中设计了一种流量补偿—缓冲气罐控制回路,在该控制回路中在稳压元件上并联了一个电磁开关阀对其进行流量补偿,同时在稳压元件和换向阀之间增加一个缓冲气罐。论文从理论和实验两方面对涉及的问题进行了研究。主要研究内容包括:(1)建立了流量补偿—缓冲气罐控制回路方案的数学模型;(2)建立了流量补偿—缓冲气罐控制回路的仿真模型,其中压力控制方案仿真出的稳压元件出口压力曲线可以为流量补偿时间的确定提供依据;(3)针对流量补偿—缓冲气罐控制回路,对采用不同的方案时稳压元件出口压力进行了试验研究。
     研究表明,所提出的流量补偿—缓冲气罐控制回路,能使稳压元件出口压力的相对变化率由原来的22.5%下降到4%,气缸平均速度也提高了27.1%,保证了气缸的高速运动平稳性。
The pneumatic automatic system is one of the main methods to realize transmission and control. The pneumatic control circuit, which is consisted of the pressure regulator component, the direction valve and the cylinder, is the most commonly used circuit in the industrial automation. In the applications, where the devices need to run in high speed to push a load, the cylinder with big diameter is needed. Therefore, how to stabilize the input pressure of the cylinder by improving the control circuit is become critical in assuring the normal movement of the devices. To meet this actual requirement, by studying the regular rule of the pressure about the pressure regulator, an economical and effective pneumatic control circuit is studied to maintain the stable movement of the cylinder in high speed in the paper. The research of the paper will be practical and applicable in the control of the stable movement in high speed about the cylinder with heavy load.
     In the paper, a control circuit which is called "the flow compensation adds buffer tank" is proposed. In the circuit, an electromagnetic valve is connected in parallel to the pressure regulator. The switch of the valve can realize the flow compensation, and at the same time, a buffer tank is add between the direction valve and the regulator. The related theoretical and experimental research is then conducted in the paper. The main researches include: (1) the mathematical model of "the flow compensation adds buffer tank" is builded; (2) the simulation model of "the flow compensation adds buffer tank" is then studied. The output pressure curve of the pressure regulator by simulation in the pressure scheme can be a reference for the setting of the flow compensation time; (3) according to the different schemes, the experimental study about the control loop of "the flow compensation adds buffer tank" is conducted.
     The results showed that, by applying "the flow compensation adds buffer tank" control circuit, the outlet pressure declined from the original 22.5 % to 4 %, and the average speed of the cylinder increased 27.1 %. So the stable movement of the cylinder in high is ensured.
引文
[1]SMC(中国)有限公司.现代实用气动技术[M].北京:机械工业出版社,2003
    [2](得)得泊特,斯托尔著,李宝仁译.气动技术—低成本综合自动化[M].北京:机械工业出版社,1999
    [3]陈启复.气动技术现状与展望[J].液压气动与密封,1992(1):12-18
    [4]Schneider R T.Automate With Air[J].Hydraulics & Pneumatics,1995,48(5):4
    [5]SENOO Mitsuru,Zhang Huping.Current conditions and issues of energysaving in pneumatic system[J].中国气动技术发展研讨会论文集,2003:135-147
    [6]李小宁.气动技术发展的趋势[M].机械制造与自动化,2003(2):1-4
    [7](德)Werner Deppert/kurt Stoll著,李宝仁译.气动技术—低成本综合自动化[M].第一版.北京:机械工业出版社,1999
    [8]吴振顺.气压传动与控制[M].哈尔滨:哈尔滨工业大学出版社,1992
    [9]赵彤.从SMC看世界气动技术发展(下)[M].液压与气动,1993(5):5-8
    [10]阎继厚.气动控制工程[M].北京:中国铁道出版社,1985:12
    [11]路甬祥.液压气动技术手册[M].北京:机械工业出版社,2002:1
    [12]王祖温,包钢,王建宇.精密减压阀振动现象的仿真分析[J].机床与液压,2001(2):34-35
    [13]尤裕荣,曾维亮.逆向卸荷式气体减压阀的动态特性真[J].火箭推进,2006,32(3):24-30
    [14]沈涌滨.火箭气体减压器建模及动态特性仿真研究[D].国防科学技术大学工学硕士学位论文.2004
    [15]郭翠霞.先导膜片式气动减压阀激振因素的理论分析及试验研究[D].南京理工大学工学硕士学位论文,2006
    [16]A.Amini,I.Owen.A Practical Solution to the Problem of Noise and Vibration in a Pressure-Reducing Valve[J].Experimental Themal and Fluid Science,1995(10):136-141
    [17]陈晓琴.减压阀充填过程动态特性仿真[J].导弹与航天运载技术,2006(5):45-49
    [18]黄明新,黄巍,黄旭.气动先导式金属膜片减压阀的丌发研究[J].液压与气动,2000(2):63-66
    [19]李志鹏,刘明兰等.先导式减压稳压阀结构与性能优化设计[J].中国农村水利水电,2004(10):73-74
    [20]朴龙奎.气动减压阀的动态分析[M].第三次全国减压阀学术讨论会论文,1984
    [21]张斌.减压阀静态偏差和稳定性的控制[J].推进技术,1998,19(2):63-66
    [22]倪兆明.压力阀的动态特性分析及其噪声、振动防止措施[J].机床与液压,1979(4):60-62
    [23]贾铭新.双极减压阀静态、动态特性的理论分析与试验研究[D].哈尔滨船舶工程学院学术交流会论文(GF36877),1981
    [24]李国桢.气动减压阀动态特性分析与试验研究[D].学会学术交流论文,1989
    [25][苏]A N塔纳塔尔著,张守田译.自动装置元件及其动态特性[M].北京:国防工业出版社,1982:2
    [26]吴政.减压阀流量压力特性分析与探讨[J].阀门,2002(2):17-18
    [27]尤裕荣.气体瞬态力对减压阀动态特性的影响分析[J].机床与液压,2005(5):86-87
    [28]Manabu Sano.Chaotic Behavior in Unstable Phenomenon on Dynamics of Pneumatic Regulator[J].3~(rd)International Symposium on Fluid Power Transmission Control,1999(9):432-436
    [29]吴峰,张河新,李建朝,韩建海.C8051F单片机在气动调压阀中的应用与研究[J].液压气动与密封,2006(1):18-20
    [30]唐仲一,符欲梅等.PWM气动调压阀数学模型的建立、仿真及实验研究[J].重庆钢铁高等专科学校学报,1997,12(2):23-28
    [31]吴峰,张河新,李建朝,韩建海.脉宽调制在气动减压阀中的应用[J].液压与气动,2006(4):55-57
    [32]FU Yu mei,TANG Zhong yi,WANG Yong chao.Research on modeling and simulation of the PWM pneumatic pressure control valve[J].Hydraulics Pneumatics & Seals,1998,61(1):22-24
    [33]Ming Chang Shih,Ming An Ma.Position control of a pneumatic cylinder using fuzzy PWM control method[J].Mechatronies,1998(8):241-253
    [34]王宣银,陈奕泽,刘荣,梁冬泰.超高压气动比例减压阀的设计与仿真研究[J].浙江大学学报,2005,39(5):614-617
    [35]Sorli M,Fligliolini G,Pastorelli S.Dynamic model and experimental investigation of a pneumatic proportional pressure valve[J].Mechatronies,2004,9(1):78-86
    [36]肖玉生,张洪良.新型高精度调压阀特性分析[J].液压与气动,2002(4):40-42
    [37]黄俊,李小宁.气缸起动冲击现象机理及影响因素实验分析[J].液压与气动,2007(1):8-10
    [38]陈金兵,赵彤.高频气缸的研究[J].机床与液压,2003(1):103-105
    [39]郭世军.直线气缸的位置控制研究[D].兰州理工大学工学硕士学位论文,2007
    [40]罗小辉,傅晓云,李宝仁.一种高速气缸模型的仿真研究[J].机床与液压,2006(8):150-151
    [41]Jozef Barycki,etal.Performances of high-speed pneumatic drive with self-acting impulse valve[J].Mechanism and Machine Theory,2004(39):657-663
    [42]王祖温,王海涛,包钢,李哲.供气压力波动自适应缓冲高速气缸的研究[J].机械工程学报,2003,39(7):51-55
    [43]Yukio Kawakami.Study on built-in cushion with relief valve for pneumatic cylinder[J].Proeeedings of the Third International Symposium on Fluid Power Transmission and Control,1999:359-364
    [44]王祖温,叶骞,李军.遗传算法在气动系统优化中的应用[J].机械工程学报,2002,38(5):36-40
    [45]潘孝斌,李小宁.某高速气动机构缓冲控制研究[J].液压与气动,2007(1):40-41
    [46]阎继厚,气动控制工程[M].北京:中国铁道出版社,1984
    [47][美]G.伊曼纽尔著,周其兴等译.气体动力学的理论与应用[M].北京:宇航出版社,1992
    [48]熊光椤.控制系统的数字仿真[M].北京:清华大学出版社,1982:1-4
    [49]尹妍萍,李天石.比例减压阀数学模型辨识[J].机床与液压,2001(13):40-41
    [50]韩慧男.系统仿真[M].上海:上海交通大学出版社,1986:45-47
    [51]D.麦克洛伊.流体动力控制分析与设计[M].机械工业出版社,1981
    [52]冯玉,金侠杰,李庆.基于AMESim/Matlab的电液伺服控制系统的仿真研究[J].机床与液压,2004(10):57-58
    [53]Blanchi Gian Marco,Pelloni Piero,Osbat Giovanni,Parotto Marco,Gioia Rita,Di Falfari Stefania,Brusiani Federico.The role of simulation in the development of a fast-actuation solenoid C.R.injection system[J].American Society of Mechanical Engineers.Internal Combustion Engine Division,2004(8):277-284
    [54]Somiotti Aldo,Repiei Gian francesco Maria.Development of an electrohydraulic brake system minimizing cost[J].WSEA Transactions on Systems,2005(8):60-61
    [55]薛定宇,陈阳泉.基于MATLAB/simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002:4
    [56]石辛民,郝整清.基于MATLAB的实用数值计算[M].北京:北京交通大学出版社,2006:2
    [57]邱晓林,李天柁.基于MATLAB的动态模型与系统仿真工具- Simulink3.0/4.0[M].西安:西安交通大学出版社,2003
    [58]赵大磊,于志远.气动减压阀的静动态特性计算[J].战术导弹控制技术,2005(2):40-42
    [59]李宝仁,李壮云.一种气动压力控制阀的仿真和试验[J].机械与液压,1997(2):48-50
    [60]贾光政,王宣银,陈足先.基于MATLAB/SIMULINK的高压气动控制元件的仿真设计[J].液压与气动,2003(11):21-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700