用户名: 密码: 验证码:
汽车/行人碰撞运动学及多元关联特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车碰撞行人事故是当今世界上绝大多数国家道路交通事故的重要类型之一,在中国行人交通伤害态势尤为严重,因此开展汽车碰撞行人运动学和动力学的研究具有重大的现实意义。
     本文基于多参数控制动力学仿真试验平台开展如下研究工作:
     (1)基于MADYMO建立了符合中国人体形特征、适用于不同碰撞环境的行人多刚体动力学模型;确定了对汽车/行人碰撞中行人运动姿态及碰撞后运动轨迹具有显著影响的多元关联集,设计了碰撞仿真试验方案;构建了基于PC-CRASH/MADYMO的多参数控制的汽车/行人碰撞动力学仿真平台。
     (2)利用PC-CRASH/MADYMO构建汽车/行人碰撞模型,依托动力学仿真平台再现车人碰撞运动过程,揭示了不同碰撞环境下行人碰撞运动学的多元影响规律及特征。分析了碰撞后行人运动轨迹的不同类型、特征及形成过程;确定了不同碰撞环境下行人运动状态及姿态对应的碰撞车速阈值;提出了行人碰撞运动学特征参数,并利用SPSS定量分析了碰撞持续时间、行人载距、抛射角度及抛射高度4个特征参数随汽车碰撞速度的变化规律。
     (3)引入行人头部上抛距/横偏距和展距参数,依托动力学仿真平台,研究了行人头部碰撞运动学的多元影响规律及特征。深入分析了不同碰撞环境下行人上抛距/横偏距或展距与汽车碰撞速度之间的相关关系,利用SPSS建立了相应的关系方程,并通过实例验证了模型方程用于估算汽车碰撞速度的有效性和实用性。
     (4)基于动力学理论,构建了汽车/行人碰撞抛射速比数学模型;利用抛距模型对车人碰撞仿真模型用于模拟计算抛射速比的有效性进行了验证;依托动力学仿真平台研究了不同碰撞环境下各因素对抛射速比的影响规律及特征,并利用SPSS建立了行人抛射速比与汽车碰撞速度之间的关系方程。
     (5)深入研究了不同碰撞环境下各因素对行人抛距的影响规律及特征。从理论上构建了包含道路环境参数的抛距模型,利用抛距仿真数据构建了适用不同碰撞环境的抛距模型,利用事故案例抛距数据构建了适用于不同汽车前部外形及行人身高碰撞环境的经验模型,并通过与其它抛距模型进行对比,验证了本文建立的抛距模型的有效性。
Vehicle/Pedestrian collisions are a common occurrence, can contribute to the larger portion of the total number of road crashes for most countries in today’s society. Therefore, there will be of great practical significance to conduct the research on pedestrian’s collision safety. Nowadays, pedestrian protection project has presently become the key aim that is paid attention by researchers in the fields of traffic safety and vehicle crash safety.
     The research on vehicle/pedestrian crash safety are presently developed by using various impact tests involving cadaver or pedestrian dummy, leg-form or head-form impactor, and computer simulation technique with in-depth analysis of real world data. Main studies cover the analyses of pedestrian kinematics, pedestrian dynamics, pedestrian injuries biomechanics and pedestrian protection technology in a vehicle/pedestrian collision. Due to the advantages of expeditious, economical, avoidable influence of random factors and test condition, easily simulating and comparing for different collision scenarios, as well as obtaining some parameters data which are very difficultly available through impact tests, computer simulating test has been of great application value and advantage in the research on vehicle/pedestrian crash safety.
     In this paper, the pedestrian is modeled as a multi-body system by using PC-CRASH simulation program and embedded MADYMO module; moreover, the influence laws and factors of pedestrian kinematics and its characteristic parameters under different collision circumstances are in depth studied and comprehensively revealed. The main studies involved in this paper are as follow.
     (1) The kinematics law of a pedestrian in a vehicle/pedestrian collision is fully researched by using computer modeling and simulating method in this paper. Based on the coupling of PC-CRASH and embedded MADYMO, Multi-body models of the vehicle and the pedestrian involved in a vehicle/pedestrian collision are developed and validated. Main factors influencing on pedestrian kinematics in vehicle/pedestrian contacting phase are extensively analyzed; furthermore, the simulating test scheme is constructed from these factors. The kinematics laws of pedestrian such as motion posture and vehicle impact speed threshold in vehicle/pedestrian contacting phase under different collision circumstances are in depth studied by selecting these main influencing factors as independent variables for simulating tests. The pedestrian kinematics simulation is found to be good harmonious and consistent with the case of real world and staged vehicle/pedestrian impacts. The computer modeling and simulating method documented in this paper will be of practical value in analysis of pedestrian kinematics in a vehicle/pedestrian collision.
     (2) The multifactor influence laws of contact location for pedestrian’s head on the impacting vehicle exterior under different collision scenarios are in depth researched based on computer simulating test in this paper. Upward throw and lateral deviation distances are introduced to describe pedestrian’s contact point on the impacting vehicle body surface. The impacting vehicle and pedestrian are respectively modeled as a multi-body system through the coupling of PC-CRASH and MADYMO. The influence laws and factors of upward throw and lateral deviation distances for the impacted pedestrian involved in a vehicle/pedestrian collision are in depth analyzed with simulating by selecting significant factors influencing on contact location for pedestrian’s head on the impacting vehicle exterior as independent variables for simulating tests. At the same time, for various influencing factors, the approximate vehicle impact speed thresholds under different collision circumstances are determined from the available simulating data. On the other hand, the mathematical relationships between post-impact pedestrian’s upward throw/lateral deviation distances and vehicle impact speed under different collision scenarios are derived from regression analyses of the simulating data. The findings have indicated that the derived regression equations may be used to access the lower vehicle impact speed and qualitatively analyze pre-impact pedestrian motion state or speed, which will be of great practicability in reconstruction analysis and technical appraisal of a vehicle/pedestrian collision.
     (3) The relationships comparing vehicle impact speed to pedestrian throw speed are in depth studied; moreover, the multifactor influence laws of projection efficiency under different collision scenarios are completely revealed in this paper. The mathematical models of impact projection efficiency are developed based on the kinematics theory and kinetics theory; moreover, various factors influencing on projection efficiency are determined. Consequently, the simulating test scheme for vehicle/pedestrian collision is design from the above factor analysis. In addition, the multi-body models of the vehicle and the struck pedestrian are developed by using PC-CRASH/MADYMO; moreover, the validity of vehicle/pedestrian impact model for calculating projection efficiency are validated by utilizing theoretical throw models. The influence laws and its effect for various factors on projection efficiency under different collision scenarios are in depth researched and revealed from the available simulating data by using SPSS; moreover, the equations and its curves for the projection efficiency as a function of vehicle impact speed are derived and validated.
     (4) The influence laws and its factors of pedestrian throw distance under different collision scenarios are in depth studied through simulating test for vehicle/pedestrian collision. Furthermore, the relationships between vehicle impact speed and pedestrian throw distance are developed from the simulating data. At the same time, the empirical models for various collision circumstances are derived from the real throw distance data; moreover, these models are compared to the throw models derived by foreign researcher and simulating throw models presented in this paper.
     It would have expected that the results in this paper can not only provide certain referenced value and guidance meaning for the studies on kinematics and dynamics of the struck pedestrian as well as increasingly developing technology appraisal of road crashes, but also make a great progress in the study on vehicle/pedestrian crash safety.
引文
[1]中华人民共和国公安部交通管理局.中华人民共和国道路交通事故统计年报(2000年度-2008年度)[R].北京,2001-2009.
    [2]许洪国,李显生,任有.汽车交通事故技术鉴定:21世纪的知识型新职业[J].北京:公路交通科技,2000,17(2):60-63.
    [3] European Enhanced Vehicle-safety Committee. EEVC Working Group 10 Report: Proposals for methods to evaluate pedestrian protection afforded by passenger cars [R]. 1994.
    [4] European Enhanced Vehicle-safety Committee. EEVC Working Group 17 Report: Improved test methods to evaluate pedestrian protection afforded by passenger cars [R]. December 1998.
    [5] Severy D., Brink H. Auto-Pedestrian Collision Experiments. 660080, Society of Automotive Engineers, Inc., Warrendale, PA, 1966.
    [6] Eltzholz J. Verh?ltnis von Wurfweiten und Anfahrgeschwindigkeiten bei Fu?g?ngerunf?llen. Zeitschrift Information, Heft 69, 1969.
    [7] Schmidt D.N., Nagel D.A. Pedestrian Impact Case Study. Proceedings of the Fifteenth Conference of the Association for Automotive Medicine. 1971: 151-167.
    [8] Kühnel A. Vehicle-Pedestrian Collision Experiments with the Use of a Moving Dummy. Proceedings of the Eighteenth Conference of the American Association of Automotive Medicine (AAAM). 1974-12-0018, 1974: 223-245.
    [9] Schneider H., Beier G. Experiment and Accident: Comparison of Dummy Test Results and Real Pedestrian Accidents. 741177, Society of Automotive Engineers, Inc., Warrendale, PA, 1974.
    [10] Sturtz G., Suren E., Gotzen L., et al. Analyse von Bewegungsablauf, Verletzungsursache, schwere und-folge bei FuBgangerunfallen mit Kindern. Proceedings of the First International IRCOBI Conference on the Biomechanics of Impacts. Lyon, France, 1974.
    [11] Kramer M. Pedestrian Vehicle Accident Simulation through Dummy Tests. 751165, Society of Automotive Engineers, Inc., Warrendale, PA, 1975.
    [12] Stcherbatcheff G., Tarriere C., Duclos P., et al. Simulation of Collisions Between Pedestrians and Vehicles Using Adult and Child Dummies. 751167, Society of Automotive Engineers, Inc., Warrendale, PA, 1975.
    [13] Sturtz G., Suren E. Kinematic of Real Pedestrian and Two-Wheel Rider Accidents and Some Special Aspects of the Pedestrian Accident. Proceedings of the IRCOBI Conference on the Biomechanics of Injury to Pedestrians, Cyclists and Motorcyclists. Lyon, 1976.
    [14] Krieger K., Padgaonkar A., King A. Full-scale experimental simulation of pedestrian-vehicle impacts. 760813, Society for Automotive Engineers, Warrendale, PA, 1976.
    [15] Lucchini E., Weissner R. Influence of bumper Adjustment on the kinematics of an impacted pedestrian. International Research Council on Biomechanics of Impact, 1978.
    [16] Collins J.C. Accident Reconstruction. Charles C, Thomas Publisher, Springfield, Illinois, 1979: 240-242.
    [17] Cesari D., Ramet M., Cavallero C., et al. Experimental study of pedestrian kinematics and injuries. Proceedings of 5th International IRCOBI Conference on the Biomechanics of Impacts, 1980.
    [18] Lucchini E., Weissner R. Differences between the Kinematics and Loadings of Impacted Adults and Children, Results from Dummy Tests. Proceedings of the Fifth International IRCOBI Conference on the Biomechanics of Impacts, Lyon, 1980: 165-179.
    [19] Heger A., Appel H. Reconstruction of pedestrian accidents with dummies and cadavers. Proceedings of 8th International Technical Conference on Experimental Safety Vehicles, 1981.
    [20] Daniel S. The role of the vehicle front end in pedestrian impact protection. Society of Automotive Engineers. 820246, Society for Automotive Engineers, Warrendale, PA, 1982.
    [21] Brun-Cassan F., Vallee H., Tarriere C., et al. Reconstruction of Actual Car-Pedestrian Collisions with Dummy and Cadavers. 830053, Society of Automotive Engineers, Inc., Warrendale, PA, 1983.
    [22] Pritz H.B. Experimental Investigation of Pedestrian Head Impacts on Hoods and Fenders of Production Vehicles. 830055, Society of Automotive Engineers, Inc., Warrendale, PA, 1983.
    [23] Backaitis S., Daniel S., Cesari D., et al. Comparison of Pedestrian Kinematics and Injuries in Staged Impact Tests with Cadavers and Mathematical 2D Simulations. 830186, Society of Automotive Engineers, Inc., Warrendale, PA, 1983.
    [24] Ashton S.J., Cesari D., Van Wijk J. Experimental Reconstruction and Mathematical Modelling of Real World Pedestrian Accidents. 830189, Society of Automotive Engineers, Inc., Warrendale, PA, 1983.
    [25] Cavallero C., Cesari D., Ramet M. Improvement of Pedestrian Safety: Influence of Shape of Passenger Car-Front Structures Upon Pedestrian Kinematics and Injuries: Evaluation Based on 50 Cadaver Tests. 830624, Society of Automotive Engineers, Inc., Warrendale, PA, 1983.
    [26] Niederer P.F., Schlumpf M.R. Influence of Vehicle Front Geometry on Impacted Pedestrian Kinematics. 841663, Society of Automotive Engineers, Inc., Warrendale, PA, 1984.
    [27] Brun-Cassan F., Vincent J.C., Tarriere C., et al. Comparison of Experimental Car-Pedestrian Collisions Performed with Various Modified Side-Impact Dummies and Cadavers. 841664, Society of Automotive Engineers, Inc., Warrendale, PA,1984.
    [28] Cesari D., Cavallero C., Billault P.,et al. Analysis of pedestrian head kinematics based on car-pedestrian test results. Proceedings of 10th International IRCOBI/AAAM Conference on the Biomechanics of Impacts, 1985.
    [29] Janssen EG, Wismans J. Experimental and mathematical simulation of pedestrian-vehicle and cyclist-vehicle accidents. 856113, Society of Automotive Engineers, Inc., Warrendale, PA, 1985.
    [30] Brooks D.L., Wiechel J.F., Collins J.A., et al. Reconstruction of Real World Pedestrian Impact. 860210, Society of Automotive Engineers, Inc., Warrendale, PA, 1986.
    [31] Grandel J., Zeisberger H. Kinematics and Head Injuries in Vehicle/Pedestrian Accidents at Speeds Above 50 kph. Proceedings of the International IRCOBI Conference on the Biomechanics of Impacts, Germany, 1986: 189-204.
    [32] Brooks D., Wiechel J., Sens M., et al. A Comprehensive Review of Pedestrian Impact Reconstruction. 870605, Society of Automotive Engineers, Inc., Warrendale, PA, 1987.
    [33] Harris J. A Study of Test Methods to Evaluate Pedestrian Protection for Cars. Proceedings of 12th ESV, pp. 1217-1225, 1989.
    [34] Aronberg R. Airborne Trajectory Analysis Derivation for Use in Accident Reconstruction. 900367, Society of Automotive Engineers, Inc., Warrendale, PA, 1990.
    [35] Fricke L.B. Vehicle-Pedestrian Accident Reconstruction, Topic 877 of the Traffic Accident Investigation Manual. Northwestern University Traffic Institute, 1990.
    [36] Ishikawa H., Yamazaki K., Ono K. Sasaki, A. Current Situation of Pedestrian Accidents and Research into Pedestrian Protection in Japan. Proceedings of 13th ESV, pp. 281-293, 1991.
    [37] Higuchi K., Akiyama A. The Effect of the Vehicle Structure’s Characteristics on Pedestrian Behavior. Proceedings of 13th ESV, 1991.
    [38] Schneider H, Baier G. Experiment and accident: comparison of dummy tests and real pedestrian accidents, the effects of vehicle frontal design on pedestrian injury in real accidents. 1991-15-0026, Society of Automotive Engineers, Inc., Warrendale, PA, 1991.
    [39] Ishikawa H., Kajzer J., Schroeder G. Computer Simulation of Impact Response of the Human Body in Car-Pedestrian Accidents. 933129, Society of Automotive Engineers, Inc., Warrendale, PA, 1993.
    [40] Pereira M., Ashton S.J. Pedestrian/Pedacycle Crash Tests. USA Accident Reconstruction Journal, Nov/Dec 1993.
    [41] Aronberg R., Snider A.A. Reconstruction of Automobile/Pedestrian Accidents Using CATAPULT. 940924, Society of Automotive Engineers, Inc., Warrendale, PA, 1994.
    [42] Otte D. Influence of the Fronthood Length for the Safety of Pedestrians in Car Accidents and Demands to the Safety of Small Vehicles. 942232, Society of Automotive Engineers, Inc., Warrendale, PA, 1994.
    [43] ITARDA. Report of In-Depth Accident Analysis. 1996 Edition, 1997.
    [44] Eubanks J., Hill P. Pedestrian Accident Reconstruction. Lawyers & Judges Publishing Co., Tucson, Arizona, 1999.
    [45] Fugger T., Randles B, Eubanks J. Comparison of pedestrian accident reconstruction models to experimental test data for wrap trajectories. ImechE Conference Transactions. Paper No. C56/031/2000, 2000.
    [46] National Highway Traffic Safety Administration. Traffic Safety Facts 2000 - Pedestrians. National Center for Statistics and Analysis, Washington D.C., pp. 1-6, 2000.
    [47] Yang J., Lovsund P., Cavallero C., et al. A Human-Body 3D Mathematical Model for Simulation ofCar-Pedestrian Impacts. Journal of Crash Prevention and Injury Control, vol 2, no. 2, 2000: 131-149.
    [48] Bryan C., Randles. Investigation and analysis of real-life pedestrian collisions. 2001-01-0171, Society of Automotive Engineers, Inc., Warrendale, PA, 2001.
    [49] Liu X., Yang J. Development of Child Pedestrian Mathematical Models and Evaluation with Accident Reconstruction. Traffic Injury Prevention, vol 3, no. 4, 2002b: 21-329.
    [50] Liu X., Yang J. Effects of Vehicle Impact Velocity and Front-End Structures on Dynamic Responses of Child Pedestrians. Proc. Int. IRCOBI Conf. Biomechanics of Impact, September 18-20, 2002, Munich, Germany, 2002c.
    [51] Matsui Y, W.A. Konosu A. Comparison of Pedestrian System Safety Tests Using Impactors and Full-Scale Dummy Tests. Automotive Crash Research Side Impact, Rollover and Vehicle Aggressivity, SEA 1671, 2002.
    [52] Tetsuo Makia, Janusz Kajzer, Koji Mizuno, et al. Comparative analysis of vehicle–bicyclist and vehicle–pedestrian accidents in Japan. Accident Analysis and Prevention no. 35, 2003: 927-940.
    [53] Otte D., Krettek C., Brunner H., et al. Scientific Approach and Methodology of a New In-Depth-Investigation Study in Germany so called GIDAS. ESV Conference, Japan, 2003.
    [54] Lex van Rooij, Mark Meissner, Kavi Bhalla, et al. A Comparative Evaluation of Pedestrian Kinematics and Injury Prediction for Adults and Children upon Impact with a Passenger Car. 2004-01-1606, Society of Automotive Engineers, Inc., Warrendale, PA, 2004.
    [55] Niederer P.F., Schlumpf M., Mesqui, F., et al. The Reliability of Anthropometric Test Devices, Cadavers and Mathematical Models as Pedestrian Surrogates. 830184, Society of Automotive Engineers, Inc., Warrendale, PA, 1983.
    [56] Brun-Cassan F., Tarriere C., Fayon A., et al. Comparison of Behaviours for Part 572 and APROD Dummies Tested as Pedestrians Impacted by a Car Under Identical Test Conditioning. 830185, Society of Automotive Engineers, Inc., Warrendale, PA, 1983.
    [57] Ravani B., Brougham D., Mason R.T. Pedestrian Post-Impact Kinematics and Injury Patterns. 811024, Society of Automotive Engineers, Inc., Warrendale, PA, 1981.
    [58] Searle J., Searle A. The Trajectories of Pedestrians, Motorcycles, Motorcyclists, etc., Following a Road Accident. 831622, Society of Automotive Engineers, Inc., Warrendale, PA, 1983.
    [59] Wood D.P. Impact and Movement of Pedestrians in Frontal Collisions with Vehicles. Proceedings of the Institution of Mechanical Engineers, Vol. 202, No. D2, 1988: 101-110.
    [60] Kallieris D., Schmidt G. New Aspects of Pedestrian Protection Loading and Injury Pattern in Simulated Pedestrian Accidents. 881725, Society of Automotive Engineers, Inc., Warrendale, PA, 1988.
    [61] Grosch L., Hochgeschwender J. Experimental Simulation of Car/Pedestrian and Car/Cyclist Collisions and Application of Findings in Safety Features on the Vehicle. 890751, Society of Automotive Engineers, Inc., Warrendale, PA, 1989.
    [62] Ashton S.J. Pedestrian Accident Investigation & Reconstruction. Seminar on Special Problems in Traffic Accident Reconstruction, Institute of Police Technology & Management, University of North Florida, pp. 1-37, 1989.
    [63] Eubanks J.J., Haight W.R. Pedestrian Involved Traffic Collision Reconstruction Methodology. 921591, Society of Automotive Engineers, Inc., Warrendale, PA, 1992.
    [64] Eubanks J.J. Pedestrian Accident Reconstruction. Lawyers & Judges Publishing Company, USA: Tucson, Arizona, 1994.
    [65] Limpert R. Motor Vehicle Accident Reconstruction and Cause Analysis, 4th Edition [M]. The Michie Co., 1980.
    [66] Becke M., Schimmelpfennig K-H. Rutschweite von Fu?g?ngern, Verkehrsunfall und Fahrzeugtechnik, Heft 10-191ff, Heft 12- 39ff, 1981.
    [67] Becke M., Golder U. Rutschversuche mit Zweir?dern auf nasser Stra?e und auf Gras, Verkehrsunfall und Fahrzeugtechnik, Heft 4, 91-97, 1986.
    [68] Otte D., Wansorra N. Kratzspuren von Zweir?dern zur Geschwindigkeitsermittlung - M?glichkeiten und Grenzen, Zeitschrift Verkehrsunfall und Fahrzeugtechnik, Heft 5, 145-149, 1987.
    [69] Rotim F. Elementi sigurnosti cestovnog prometa, Svezak 1, Ekspertize prometnih nezgoda. Znanstveni savjet za promet JAZU, 1989: 348-350.
    [70] Bratten T.A. Development of a Tumble Number for Use in Accident Reconstruction. 890859, Society of Automotive Engineers, Inc., Warrendale, PA, 1989.
    [71] Haight W R., Eubanks J.J. Trajectory Analysis for Collisions Involving Bicycles and Automobiles. 900368, Society of Automotive Engineers, Inc., Warrendale, PA, 1990.
    [72] Wood D.P. Application of a Pedestrian Impact Model to the Determination of Impact Speed. 910814, Society of Automotive Engineers, Inc., Warrendale, PA, 1991.
    [73] Szydlowski W.M., Jenkins P.E. Modeling of a Sliding Phase in Accident Reconstruction. 930655, Society of Automotive Engineers, Inc., Warrendale, PA, 1993.
    [74] Searle J.A. The Physics of Throw Distance in Accident Reconstruction. 930659, Society of Automotive Engineers, Inc., Warrendale, PA, 1993.
    [75] Wood D.P., Simms C.K. Coefficient of Friction in Pedestrian Throw. Impact, vol 9, no. 1, 2000b: 12-15.
    [76] Appel H., Sturtz G., Gotzen L. Influence of Impact Speed and Vehicle Parameter on Injuries of Children and Adults in Pedestrian Accidents. Proceedings of the Second International IRCOBI Conference, pp. 83-100, 1975.
    [77] Sturtz G., Suren E.G., Gotzen L., et al. Biomechanics of Real Child Pedestrian Accidents. 760814, Society of Automotive Engineers, Inc., Warrendale, PA, 1976.
    [78] Burg H. Rekonstruktionsunterlagen aus einer Auswertung realer Unf?lle zwischen Zweirad-und Vierradfahrzeugen, Der Verkehrsunfall, Heft 9, pp. 185-190, 1979.
    [79] Otte D. Bedeutung und Aktualit?t von Wurfweiten, Kratzspuren und Endlagen für die Unfallrekonstruktion, Verkehrsunfall und Fahrzeugtechnik, Heft 11, pp. 294-300, 1989.
    [80] Hill G.S. Calculations of Vehicle Speed from Pedestrian Throw. IMPACT, 1994: 18-20.
    [81] Dettinger J. Methods of Improving the Reconstruction of Pedestrian Accidents - Development Differential, Impact Factor, Longitudinal Forward Trajectory, Position of Glass Splinters. Vol 12, December 1996 and Vol 1, January 1997.
    [82] Evans A K, Smith R. Vehicle speed calculation from pedestrian throw distance. Proc Inst Mech Engrs, vol 213, Part D, pp. 441-447, 1999.
    [83] Andrew Happer, Michael Araszewski, Amrit Toor, et al. Comprehensive Analysis Method for Vehicle/Pedestrian Collisions. 2000-01-0846, Society of Automotive Engineers, Inc., Warrendale, PA, 2000.
    [84] Wood D.P., Simms C.K. A Hybrid Model for Pedestrian Impact and Projection. Journal of Crashworthiness, vol 5, no 4, pp. 393-403, 2000.
    [85] Han I., Brach R.M. Throw Model for Frontal Pedestrian Collisions. 2001-01-0898, Society of Automotive Engineers, Inc., Warrendale, PA, 2001.
    [86] Rau H., Otte D. Car to pedestrian collisions with high speed impact. Journal Verkehrsunfall and Fahrzeugtechnik, 2001.
    [87] Bhalla K., Montazemi P., Crandall J., Yang J., et al. Vehicle Impact Velocity Prediction from Pedestrian Throw Distance: Trade-Offs between Throw Formulae, Crash Simulators, and Detailed Multi-Body Modeling. Proc. Int. IRCOBI Conf. Biomechanics of Impact, September 18-20, 2002, Munich, Germany, 2002.
    [88] Han I., Branch R.M. Impact throw model for vehicle-pedestrian collision reconstruction. Proc Instn Mech Engrs, Vol 216, Part D, pp. 443-453, 2002.
    [89] Wood D.P., Walsh D.G.. Pedestrian forward projection impact, International Journal of Crashworthiness, vol 7, no 3, pp. 285-305, 2002.
    [90] Thomas F. Fugger Jr., Bryan C., et al. Pedestrian Throw Kinematics in Forward Projection Collisions. 2002-01-0019, Society of Automotive Engineers, Inc., Warrendale, PA, 2002.
    [91] Amrit Toor, Michael Araszewski, Ravinder Johal, et al. Revision and Validation of Vehicle/Pedestrian Collision Analysis Method. 2002-01-0550, Society of Automotive Engineers, Inc., Warrendale, PA, 2002.
    [92] Amrit Toor and Michael Araszewski. Theoretical vs. Empirical Solutions for Vehicle/Pedestrian Collisions. 2003-01-0883, Society of Automotive Engineers, Inc., Warrendale, PA, 2003.
    [93] Otte D. Use of Throw Distances of Pedestrians and Bicyclists as Part of a Scientific Accident Reconstruction Method. 2004-01-1216, Society of Automotive Engineers, Inc., Warrendale, PA, 2004.
    [94] Simms C.K., Wood D.P., Walsh D.G. Confidence limits for impact speed estimation from pedestrianprojection distance. International Journal of Crashworthiness, vol 9, no 2, pp. 219-228, 2004.
    [95]中国标准研究中心.GB/T17245-2004成年人人体惯性参数[S].北京:中国标准出版社,2004.
    [96]陆秋明,黄世霖.汽车撞行人模拟计算研究[J].北京:汽车工程,1999,21(3):177-183.
    [97]李一兵,袁泉,陈理.车辆碰撞行人交通事故的不确定因素研究[J].西安:中国公路学报,2004,17(1):82-85.
    [98]李莉.汽车与行人碰撞事故调查分析及仿真研究[D].长沙:湖南大学机械与汽车工程学院,2006.
    [99]林庆峰.汽车碰撞散落物动力学仿真及试验研究[D].长春:吉林大学交通学院,2006.
    [100]申杰,金先龙,郭磊,张晓云.人车碰撞事故的行人初始状态研究[J].上海:上海交通大学学报,2007,41(2):961-964.
    [101]郭磊,金先龙,申杰,张晓云等.人车碰撞事故的行人伤害研究[J].上海:上海交通大学学报,2007,41(2):361-366.
    [102]林庆峰,许洪国.基于PC-CRASH的轿车-行人高速碰撞仿真模型[J].北京:汽车工程,2007,29(7):562-565.
    [103]周巍,袁泉,李一兵.基于数值仿真的人车碰撞事故再现研究[J].计算机仿真,2007,24(11):52-56.
    [104]袁泉,李一兵,郭榕.用于统计与分析的汽车碰撞行人事故深入数据源[J].北京:公路交通科技,2008,25(5):21-24.
    [105]赵志杰,金先龙,张晓云等.面向人体损伤的人车碰撞事故再现[J].振动与冲击,2008,27(5):95-98,143.
    [106]冯晟.车人碰撞事故再现与数值仿真分析[D].上海:上海交通大学机械与动力工程学院,2008.
    [107]陈勇,杨济匡.轿车与儿童行人碰撞事故重建研究[J].长沙:湖南大学学报(自然科学版),2009,36(1):35-40.
    [108]程秀生,周刚,安迪布伦.碰撞仿真技术在人体腿及膝关节与汽车保险杠碰撞研究中的应用[J].北京:公路交通科技,2001,18(3):83-87.
    [109]程秀生,张吉国,周刚,安迪布伦.汽车保险杠参数对人体腿部损伤程度的影响[J].长春:吉林大学学报(工学版),2003,33(2):25-31.
    [110]刘地,李幼德,赵航,朱西产.车辆前部结构对行人头部伤害影响的仿真分析[J].长春:吉林大学学报(工学版),2003,33(4):30-33.
    [111]赵桂范,张晓乾,杜星文.头部撞击发动机罩板的损伤模拟[J].哈尔滨:哈尔滨工业大学学报,2003,35(6):719-722.
    [112]李莉,杨济匡.汽车与行人碰撞的动力学响应仿真研究[J].计算机仿真,2003,20(7):49-51,32.
    [113]张晓云,金先龙,孙奕,亓文果.基于仿真计算的汽车发动机罩改进设计研究[J].系统仿真学报,2003,15(11):1600-1602,1650.
    [114]刘地,李幼德,赵航,朱西产.行人头部伤害与头部碰撞试验方法的相关性分析[J].北京:公路交通科技,2004,21(1):98-101,105.
    [115]赵桂范,吴应娴,杜星文.人-车相撞动力响应研究及汽车保险杠参数评价[J].哈尔滨:哈尔滨工业大学学报,2004,36(4):490-492.
    [116]杨济匡,方海峰.人体下肢有限元动力学分析模型的建立和验证[J].长沙:湖南大学学报(自然科学版),2005,32(5):31-36.
    [117]乔维高,朱西产,王仲范.车辆类型对行人碰撞伤害的影响分析及模拟[J].北京:农业机械学报,2005,36(10):42-45.
    [118]赵桂范,刘纪涛.汽车-行人撞击事故过程仿真研究[J].北京:汽车工程,2006,28(9):820-822.
    [119]申杰.汽车-行人碰撞事故再现研究与应用[D].上海:上海交通大学机械与动力工程学院,2007.
    [120]王景生.行人腿部碰撞安全性与保险杠参数优化的仿真方法研究[D].长春:吉林大学汽车工程学院,2007.
    [121]申杰,金先龙,张晓云,陈忆九.基于中国人体形特征的行人假人缩放方法[J].北京:汽车工程,2007,29(12):1025-1027,1058.
    [122]毛明远,陈忆九,刘宁国等.基于固定参数的汽车与行人碰撞计算机模拟实验[J].法医学杂志,2008,24(2):105-109.
    [123]许伟.车辆碰撞事故中头部生物力学响应和损伤机理分析[D].长沙:湖南大学机械与汽车工程学院,2008.
    [124]黄冬.轿车-行人碰撞中头部和下肢损伤分析以及防护措施的研究[D].上海:上海交通大学机械与动力工程学院,2008.
    [125] Hermann Steffan. PC-CRASH Technical Manual Version 8.1 [M]. Linz, Austria: Dr. Steffan Datentechnik GmbH, 2008.
    [126] Moser A., Steffan H., Kasanicky G. The Pedestrian Model in PC-CRASH - The Introduction of a Multi Body System and its Validation. 1999-01-0445, Society of Automotive Engineers, Inc., Warrendale, PA, 1999.
    [127] Andreas Moser, Heinz Hoschopf, Hermann Steffan, Gustav Kasanicky. Validation of the PC-CRASH Pedestrian Model. 2000-01-0847, Society of Automotive Engineers, Inc., Warrendale, PA, 2000.
    [128] Xu Hongguo, Fan Yanhui. Simulation Research on Form and Kinematics Law of Contact Process for Automobile-Pedestrian Collision Based on the Coupling of PC-CRASH and MADYMO. Proceedings of the First International Conference of Transportation Engineering [C]. USA: ASCE Press, 2007: 2235-2240.
    [129] Fan Yanhui, Xu Hongguo, Liu Xibai. Simulation on Kinematics Law of Pedestrian in Vehicle/Pedestrian Contacting Phase. Proceedings of the 9th International Conference for YoungComputer Scientists [C]. U.K.: IEEE, 2008: 731-736.
    [130]范艳辉,许洪国,董金松.汽车行人碰撞接触中行人运动学规律仿真研究[J].北京:中国安全科学学报,2009,19(1):45-51.
    [131] B. W?rdenweber, H. Sch?fer. Pedestrian Protection. 2004-01-1282, Society of Automotive Engineers, Inc., Warrendale, PA, 2004.
    [132] Rodney Vaughan, John Bain. Acceleration and Speeds of Young Pedestrians: Phase II. 2000-01-0845, Society of Automotive Engineers, Inc., Warrendale, PA, 2000.
    [133] Amrit Toor. Real-world walking speeds of young pedestrians. 2001-01-0897, Society of Automotive Engineers, Inc., Warrendale, PA, 2001.
    [134]冯树民,吴阅辛.信号交叉口行人过街速度分析[J].哈尔滨:哈尔滨工业大学学报,2004,6(1):76-78.
    [135]吴建平,黄岭,赵坚利.北京市道路信号交叉口自行车和行人的行为研究[J].北京:交通运输系统工程与信息,2004,4(2):106-114.
    [136]陈然,董力耘.中国大都市行人交通特征的实测和初步分析[J].上海:上海大学学报(自然科学版),2005,11(1):93-97.
    [137]宋志刚,何旭洪.SPSS16实用教程[M].北京:人民邮电出版社,2008.
    [138]中国标准化与信息分类编码研究所.GB10000-1988中国成年人人体尺寸[S].北京:中国标准出版社,1988.
    [139]中国人口信息网.人口信息快讯:中国男女性平均身高体重数据公布[EB/OL].[2001年第12期].http://www.cpirc.org.cn/rkkx/2001_12.htm.
    [140]美联社.2006年上半年东亚统计年鉴:2006年中国各省(含港台澳地区)男子平均身高(20岁-25岁)[R/OL].[2007-01-20].http://bbs.kofunion.net/read.php.
    [141]中华人民共和国卫生部.全国第四次儿童体格发育调查报告[R/OL].[2006-12-30].http://www.moh.gov.cn.
    [142] Yang J.K. Injury Biomechanics in Car-Pedestrian Collisions: Development, Validation and Application of Human-Body Mathematical Models [D]. Sweden, Gothenburg: Department of Injury Prevention, Chalmers University of Technology, 1997.
    [143] Wojciech Wach. PC-CRASH Program for Simulation of Road Accidents Handbook [M]. Krakow, Poland: Institute of Forensic Research Publishers, 2001.
    [144]孔珑,蔡国琰,田明振,薛祖绳.工程流体力学[M].北京:水利电力出版社,1989.
    [145]中华人民共和国交通部公路司,中国工程建设标准化协会公路工程委员会.JTG B01-2003公路工程技术标准[S].北京:中国标准出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700