用户名: 密码: 验证码:
基于PET机理的Hg~(2+)荧光探针的设计和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汞是最具有毒性和危险性的重金属元素之一,而汞的污染和传播主要是通过火山喷发,采矿,固体废弃物的焚烧和矿物燃料的消耗等途径进行的,尤其值得注意的是,汞可以通过生物富集作用,集中在食物链中,这样会引起危害人类健康的许多疾病。因此,生物体中或环境中汞的检测引起人们的极大关注。
     最近几十年,已经报道多种Hg~(2+)的分析方法,其中荧光光谱法最受关注。荧光探针能将分子间的相互作用转变成荧光信号传递给外界,从而帮助我们认识和理解微观世界的状态、性质、及其变化规律,兼备便捷、专一和灵敏的优点,并能对化学体系和生命体系中的研究对象进行适时原位检测。因此,利用荧光探针来检测环境或生命体内的Hg~(2+),成为超分子化学以及生物医学发展领域中重要的研究课题之一。
     本论文在组内工作的基础上,对原有的探针进行了改进,设计合成了新的Hg~(2+)探针B2。B2在HEPES缓冲溶液中,对Hg~(2+)有较高的选择性,不受其他金属阳离子的干扰。由于醚链末端引入的羧基,增大了B2对Hg~(2+)的络合能力,使得B2不再受阴离子的干扰。B2的检测限为72 nM,对10 ppb级别的Hg~(2+)有较好的响应。B2的酯化形式,具有较好的细胞穿透能力,可以应用于PC12细胞中显微成像,实现了活细胞内Hg~(2+)成像。
     另外,将不同的含硫开链冠醚引入到HOMO能级较BODIPY更低的罗丹明染料上,设计合成了一系列的Hg~(2+)探针:R-A-E,R-A,R-OAc,R-OH。探针对Hg~(2+)有不同的响应程度,其中R-A的选择性最好,抗各种阳离子、阴离子的干扰能力最强,对Hg~(2+)有较强的络合能力,较低的检测限。更重要的是,R-A在较宽的pH范围内,对Hg~(2+)的响应不受质子的干扰。R-A对应的酯化形式,R-A-E,也可以用在PC12细胞和Hela细胞中显微成像,在低浓度下可以在活细胞中对Hg~(2+)进行检测。
Mercury is one of the most toxic and dangerous heavy metal elements.Mercury contamination is widespread and occurs through various processes,e.g.volcanic emissions, mining,solid waste incineration,and the combustion of fossil fuels.Of particular concern,is the concentration in the food chain,and bioaccumulation of mercury in animals.It is frightening that mercury-containing chemicals have been linked with a number of human health problems.Thus,much attention has been focused on developing new methods to monitor Hg~(2+) in biological and environmental samples.
     Recently,much method has been made to detect mercury.Fluorescent spectrometry is the most promising one.Compared with traditional methods for the detection of mercury,the fluorescent probes have attracted much attention over the years for its many inherent merits including high specifity and high sensitivity.This technology has been widely used for the real-time in situ detection of the molecular events both in the chemical and biological systems. Hence,exploring fluorescence sensors for detection of mercury in biological and environmental samples is one of the most important research subjects in supramolecular chemistry and biomedicine.
     Based on the previous work in our group,an improved fluorescent chemosensor for Hg~(2+), B2,was synthesized.In HEPES buffer solution,B2 exhibits selective fluorescence enhancement towards Hg~(2+) over other metal ions.The fluorescence enhancement was unaffected by anions existing in environment and organism because of the introduction of carboxyl-thiol moieties.B2 shows high sensitivity to Hg~(2+) in a concentration of ppb range with detection limit of 77 nM.B2-ester,the membrane-permeable ethyl ester,is able to be hydrolyzed to B2 in vivo,and successfully applied to image intracellular Hg~(2+) in living cells.
     In addition,different acyclic thioesters were intuduced into the fluorophore of rhodamine and a serious of Hg~(2+) sensors,R-A-E,R-A,R-OAe and R-OH were obtained.The four sensors showed fluorescence response towards Hg~(2+) in different degree.R-A shows high selectivity and sensitivity towards Hg~(2+),and the fluorescence enhancement is unaffected by other metal ions and anions.In a wide pH range,the response of R-A towards Hg~(2+) is unaffected by proton.The ethyl ester form of R-A,R-A-E,is successfully applied to image intracellular Hg~(2+) in living PC12 and Hela cells.
引文
[1]Wolfe MF,Schwarzbach S,Sulaiman A.Effects of mercury on wildlife:a comprehensive review[J].Enviromental Toxicology and Chemistry,1998,17(2):146-160.
    [2]Tchounwou P B,Ayensu W K,Ninashvili N et al.Environmental exposure to mercury and its toxicopatholgic implications for public health[J].Environmental Toxicology,2003,18(3):149-175.
    [3]Renzoni A,Zino F,Franchi E.Mercury levels along the food chain and risk for exposed populations[J].Environmental Research,1998,77(2):68-72.
    [4]Boening D W.Ecological effects,transport,and fate of mercury,a general review[J].Chemosphere,2000,40(12):1335-1351.
    [5]Richardson S D,Temes T A.Water Analysis:Emerging Contaminants and Current Issues[J].Analytical Chemistry,2005,77(12):3807-3838.
    [6]安建博,张瑞娟.低剂量汞毒性与人体健康[J].国外医学医学地理分册,2007,28:39-42.
    [7]Burg R V.Inorganic Mercury-Toxicology update[J].Journal of Applied Toxicology,1995,15(6):483-493.
    [8]Clarkson T W,Magos L,Myers G J.The toxicology of mercury-current exposure and clinical manifestations[J].New England Journal of Medicine,2003,349(18):1731-1737.
    [9]Llobet J M,Falco G,Casas C et al.Concentrations of Arsenic,Cadmium,Mercury,and Lead in Common Foods and Estimated Daily Intake by Children,Adolescents,Adults,and Seniors of Catalonia,Spain[J].Journal of Agricultural and Food Chemistry,2003,51(3):838-842.
    [10]Renzoni A,Zino F,Franchi E.Mercury levels along the food chain and risk for exposed populations[J].Environmental Research,1998,77(2):68-72.
    [11]Emons H,Schladot J D,Schwuger M D.Potential for secondary poisoning and biomagnification in marine organisms[J].Chemosphere,1997,35(9):1875-1885.
    [12]Clarkson T W,Magos L,Myers N et al.The toxicology of mercury-current exposures and clinical manifestations[J].New England Journal of Medicine,2003,349(18):1731-1737.
    [13]Li Y F,Chen C Y,Li B et al.Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS[J].Journal of Analytical Atomic Spectrometry,2006,21(1):94-96.
    [14]Walker G S,Ridd M J,Brunskill G J.A comparison of inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry for determination of mercury in Great Barrier Reef sediments[J].Rapid Communications in Mass Spectrometry,1996,10(1):96-99.
    [15]YoonS,Albers A E,Wong A P et al.Screening Mercury Levels in Fish with a Selective Fluorescent Chemosensor[J],Journal of the American Chemical Society,2005,127(46):16030-16031.
    [16]Moon S-Y,Youn N J,Park S M et al.Diametrically Disubstituted Cyclam Derivative Having Hg~(2+)-Selective Fluoroionophoric Behaviors[J].Journal of Organic Chemistry,2005,70(6):2394-2397.
    [17]Ros-Lis J V,Maros M D,Manez R M et al.A regenerative chemodosimeter based on metal-induced dye formation for the highly selective and sensitive optical determination of Hg~(2+) ions[J].Angewandte Chemie International Edition,2005,44(28):4405-4407.
    [18]Wang J,Qian X,Qian J et al.Micelle-induced versatile performance of amphiphilic intramolecular charge-transfer fluorescent molecular sensors[J].Chemistry-A European Journal,2007,13(26):7543-7552.
    [19]Coskun A,Akkaya E.Signal Ratio Amplification via Modulation of Resonance Energy Transfer:Proof of Principle in an Emission Rationmetric Hg(Ⅱ) Sensor[J].Journal of American Chemical Society,2006,128(45):14474-14475.
    [20]Coskun A,Yilmaz M,Akkaya E.Bis(2-pyridyl)-Subsituted Boratriazaindacene as an NIR-Emitting Chemosensor for Hg(Ⅱ)[J].Organic Letters,2007,9(4):607-609.
    [21]Tanaka M,Nakamura M,Ikeda T et al.Synthesis and Metal-Ion Binding Properties of Monoazathiacrown Ethers[J].Journal of Organic Chemistry,2001,66(21):7008-7012.
    [22]Thomas J M,Ting R,Perrin D M.High affinity DNAzyme-based ligands for transition metal cations-a prototype sensor for Hg~(2+)[J].Organic & Biomolecular Chemistry,2004,2(3):307-312.
    [23]Liu J,Lu Y.Rational design of“turn-on”allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity[J].Angewandte Chemie International Edition,2007,46(40):7587-7590.
    [24]Seraphine V W,Ayse 0,Peng C et al.Design of an Emission Ratiometric Biosensor from MerR Family Proteins:A Sensitive and Selective Sensor for Hg~(2+)[J].Journal of American Chemical Society,2007,129(12):3474-3475.
    [25]Peng C,Chuan H.A general strategy to convert the MerR family proteins into highly sensitive and selective fluorescent biosensors for metal ions[J].Journal of American Chemical Society,2004,126(3):728-729.
    [26]Yang Y-K,Yook K-J,and Tae J.A Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for the Rapid Detection of Hg~(2+) Ions in Aqueous Media[J].Journal of American Chemical Society,2005,127(48):16760-16761.
    [27]Ko S-K,Yang Y-K,Tae J et al.In Vivo Monitoring of Mercury Ions Using a Rhodamine-Based Molecular Probe[J].Journal of American Chemical Society,2006,128:14150-14155.
    [28]Yoon S,Albers A E,Wong A P,and Chang C J.Screening Mercury Levels in Fish with a Selective Fluorescent Chemosensor[J].Journal of American Chemical Society,2005,127(46):16030-16031.
    [29]Yoon S,Miller E W,He Q et al.A Bright and Specific Fluorescent Sensor for Mercury in Water,Cells,and Tissue[J].Angewandte Chemie International Edition,2007,46(35):6658-6661.
    [30]Yang H,Zhou Z,Huang K et al.Multisignaling Optical-Electrochemical Sensor for Hg~(2+) Based on a Rhodamine Derivative with a Ferrocene Unit[J].Organic Letters,2007,9(23):4729-4732.
    [31]Suresh M,Shrivastav A,Mishra S.A Rhodamine-Based Chemosensor that Works in the Biological System[J].Organic Letters,2008,10(14):3013-3016.
    [32]Liu W,Xu L,Zhang H et al.Dithiolane linked thiorhodamine dimer for Hg~(2+) recognition in living cells[J].Organic & Biomolecular Chemistry,2009,7(4):660-664.
    [33]Chen X,Nam S-W,Jou M J et al.Hg2+ Selective Fluorescent and Colorimetric Sensor:Its Crystal Structure and Application to Bioimaging[J].Organic Letters,2008,10(22):5235-5238.
    [34]Zhang X,Xiao Y,Qian X.A ratiometric fluorescent probe based on FRET for imaging Hg~(2+) ions in living cells[J].Angewandte Chemie International Edition,2008,47(42):8025-8029.
    [35]Santra M,Ryu D,Chatterjee A et al.A chemodosimeter approach to fluorescent sensing and imaging of inorganic and methylmercury species[J].Chemical Communications,2009(16):2115-2117.
    [36]Zhang J,Campbell R E,Ting A Y et al.Creating New Fluorescent Probes for Cell Biology[J].Nature Reviews Molecular Cell Biology,2002,3:906-918.
    [37]Kojima H,Hirotani M,Nakatsubo N et al.Bioimaging of nitric oxide with fluorescent indicators based on the rhodamine chromophore[J].Analytical Chemistry,2001,73(9):1967-1973.
    [38]Chandran S S,Dickson K A,Raines R T.Latent fluorophore based on the trimethyl lock[J].Journal of the American Chemical Society,2005,127(6):1652-1653.
    [39]Rucker V C,Foister S,Melander C et al.Sequence specific fluorescence detection of double strand DNA[J].Journal of the American Chemical Society,2003,125(19):6008-6008.
    [40]Wu C T.Crown Ether Chemistry[M].Beijing:Academic Press,1992.
    [41]Gokel G W,Leevy W M,Weber M E.Crown ethers:Sensors for ions and molecular scaffolds for materials and biological models[J].Chemical Reviews(Washington,D.C.),2004,104(5):2723-2750.
    [42]Meng X M,Zhu M Z,Guo Q X.A novel highly selective fluorescent chemosensor for Hg(Ⅱ) in fully aqueous media[J].Chinese Chemical Letters,2007(18):1209-1212.
    [43]Ho M-L,Chen K-Y,Wu L-C et al.Diaza-18-crown-6 appended dual 7-hydroxyquinolines;mercury ion recognition in aqueous solution[J].Chemistry Communications,2008(21):2438-2440.
    [44]Shiraishi Y,Sumiya S,Kohno Y et al.A Rhodamine-Cyclen Conjugate as a Highly Sensitive and Selective Fluorescent Chemosensor for Hg(Ⅱ)[J].The Journal of Organic Chemistry,2008,73(21):8571-8574.
    [45]Lee S J,Jung J H,Seo J et al.A Chromogenic Macrocycle Exhibiting Cation-Selective and Anion-Controlled Color Change:An Approach to Understanding Structure-Color Relationships[J].Organic Letters,2006,8(8):1641-1643.
    [46]Nolan E M,and Lippard S J.A“Turn-On”Fluorescent Sensor for the Selective Detection of Mercuric Ion in Aqueous Media[J].Journal of the American Chemical Society,2003,125(47):14270-14271.
    [47]Nolan E M,and Lippard S J.Turn-On and Ratiometric Mercury Sensing in Water with a Red-Emitting Probe[J].Journal of the American Chemical Society,2007,129(18):5910-5918.
    [48]Huang J,Xu Y,Qian X.A Rhodamine-Based Hg~(2+) Sensor with High Selectivity and Sensitivity in Aqueous Solution:A NS_2-Containing Receptor[J].The Journal of Organic Chemistry,2009,74(5):2167-2170.
    [49]Wang J,Qian X.A Series of Polyamide Receptor Based PET Fluorescent Sensor Molecules:Positively Cooperative Hg~(2+) Ion Binding with High Sensitivity[J].Organic Letters,8(17):3721-3724.
    [50]Song F,Watanabe S,Floreancig P E et al.Oxidation-Resistant Fluorogenic Probe for Mercury Based on Alkyne Oxymercuration[J].Journal of the American Chemical Society,2008,130(49):16460-16461.
    [51]Praveen L,Ganga V B,Thirumalai R et al.A New Hg~(2+)-Selective Fluorescent Sensor Based on a 1,3-Alternate Thiacalix[4]arene Anchored with Four 8-Quinolinoloxy Groups[J].Inorganic Chemistry,2007,46(16):6277-6282.
    [52]Dhir A,BhallaV,and Kumar M.Ratiometric Sensing of Hg~(2+) Based on the Calix[4]arene of Partial Cone Conformation Possessing a Dansyl Moiety[J].Organic Letters,2008,10(21):4891-4894.
    [53]Choi M J,Kim M Y and Chang S-K.A new Hg~(2+)-selective chromoionophore based on calix[4]arenediazacrown ether[J].Chemical Communications,2001(17):1664-1665.
    [54]Miyake Y,Togashi H,Tashiro M et al.Mercuryll-Mediated Formation of Thymine-Hg~(11)-Thymine Base Pairs in DNA Duplexes[J].Journal of the American Chemical Society,2006,128(7):2172-2173.
    [55]Wang Z,Zhang D,Zhu D.A sensitive and selective“turn on”fluorescent chemosensor for Hg(Ⅱ) ion based on a new pyrene-thymine dyad[J].Analytica Chimica Acta,2005,549(1-2):10-13.
    [56]de Silva A P,David B F,Allen J M H et al.Combining luminescence,coordination and electron transfer for signalling purposes[J].Coordination Chemistry Reviews,2000,205:41-57.
    [57]Fan J L,Wu Y K,Peng X J.A naphthalimide fluorescent sensor for Zn~(2+) based on photo-induced electron transfer[J].Chemistry Letters,2004,33(10):1392-1393.
    [58]Gunnlaugsson T,Ali H D P,Glynn M et al.Fluorescent photoinduced electron transfer (PET) sensors for anions;From design to potential application[J].Journal of Fluorescence,2005,15(3):287-299.
    [59]Thiagarajan V,Ramamurthy P,Thirumalai D et al.A Novel Colorimetric and Fluorescent Chemosensor for Anions Involving PET and ICT Pathways[J].Organic Letters,2005,7(4):657-660.
    [60]Guo X,Qian X,Jia L.A Highly Selective and Sensitive Fluorescent Chemosensor for Hg~(2+) in Neutral Buffer Aqueous Solution[J].Journal of the American Chemical Society,2004,126(8):2272-2273.
    [61]Nolan E M,and Lippard S J.MS4,a seminaphthofluorescein-based chemosensor for the ratiometric detection of Hg(Ⅱ)[J].Journal of Materials Chemistry,2005,15:2778-2783.
    [62]Nolan E M,Racine M E and Lippard S J.Selective Hg(Ⅱ) Detection in Aqueous Solution with Thiol Derivatized Fluoresceins[J].Inorganic Chemistry,2006,45(6):2742-2749.
    [63]Rurack K.Flipping the light switch‘ON’—the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions[J].Spectrochimica Acta Part A,2001,57:2161-2195.
    [64]Novaira M,Biasutti M A,Silber J J et al.New insights on the photophysical behavior of PR0DAN in anionic and cationic reverse micelles:From which state or states does it emit?[J].Journal of Physical Chemistry B,2007,111(4):748-759.
    [65]Citterio D,Takeda J,Kosugi M et al.pH-independent fluorescent chemosensor for highly selective lithium ion sensing[J].Analytical Chemistry,2007,79(3):1237-1242.
    [66]Wang J,Qian X and Cui J.Detecting Hg~(2+) Ions with an ICT Fluorescent Sensor Molecule:Remarkable Emission Spectra Shift and Unique Selectivity[J].The Journal of Organic Chemistry,71(11):4308-4311.
    [67]Yuan M,Li Y,Li J et al.A Colorimetric and Fluorometric Dual-Modal Assay for Mercury Ion by a Molecule[J].Organic Letters,2007,9(12),2313-2316.
    [68]Moon S-Y,Youn N J,Park S M et al.Diametrically Disubstituted Cyclam Derivative Having Hg~(2+)-Selective Fluoroionophoric Behaviors[J].The Journal of Organic Chemistry,2005,70(6):2394-2397.
    [69]Othman A B,Lee J W,Wu J-S et al.Calix[4]arene-Based,Hg~(2+)-Induced Intramolecular Fluorescence Resonance Energy Transfer Chemosensor[J].The Journal of Organic Chemistry,2007,72(20):7634-7640.
    [70]Wu J-S,Hwang I-C,Kim K S et al Rhodamine-Based Hg~(2+)-Sel ective Chemodosimeter in Aqueous Solution:Fluorescent OFF-ON[J].Organic Letters,2007,9(5):907-910.
    [71]Zhao Y,Lin Z,He C et al.A“Turn-On”Fluorescent Sensor for Selective Hg(Ⅱ) Detection in Aqueous Media Based on Metal-Induced Dye Formation[J].Organic Letters,2006,45(25):10013-10015.
    [72]Shi W and Ma H.Rhodamine B thiolactone:a simple chemosensor for Hg~(2+) in aqueous media[J].Chemical Communications,2008,16:1856-1858.
    [73]Choi M G,Ryu D H,Jeon H L et al.Chemodosimetric Hg~(2+)-Selective Signaling by Mercuration of Dichlorofluorescein Derivatives[J].Organic Letters,2008,10(17):3717-3720.
    [74]Rurack K,Genger U R.Rigidization,preorientation and electronic decoupling-the magic triangle for the design of highly efficient fluorescent sensors and switches[J].Chemistry Society Reviews,2002,31:116-127.
    [75]Nolan E M,and Lippard S J.Tools and Tactics for the Optical Detection of Mercuric Ion[J].Chemical Reviews,2008,108(9):3443-3480.
    [76]Masuhara H,Shioyama H,Saito T et al.Fluorescence quenching mechanism of aromatic hydrocarbons by closed-shell heavy metal ions in aqueous and organic solutions[J].Journal of Physical Chemistry,1984,88(24):5868-5873.
    [77]Lv J,Ouyang C,Yin X et al.Reversible and Highly Selective Fluorescent Sensor for Mercury(II) Based on a Water-Soluble Poly(para-phenylene)s Containing Thymine and Sulfonate Moieties[J],Macromolecular Rapid Communications,2008,29(19):1588-1592.
    [78]Tang Y,He F,Yu M et al.A Reversible and Highly Selective Fluorescent Sensor for Mercury(Ⅱ) Using Poly(thiophene)s that Contain Thymine Moieties[J].Macromolecular Rapid Communications,2006,7(6):389-392.
    [79]Lee H and Lee S S,Thiaoxaaza-Macrocyclic Chromoionophores as Mercury(Ⅱ) Sensors:Snthesis and Color Modulation[J].Organic Letters,2009,11(6):1393-1396.
    [80]Du J,Fan J,Peng X et al.Highly Selective and Anions Controlled Fluorescent Sensor for Hg~(2+) in Aqueous Environment[J].Journal of Fluorescence,2008,18(5):919-924.
    [81]Yu Y,Lin L,Yang K-B et al.p-Dimethylaminobenzaldehyde thiosemicarbazone:A simple novel selective and sensitive fluorescent sensor for mercury(Ⅱ) in aqueous solution[J],Talanta,2006,69(1):103-106.
    [82]Wu D,Huang W,Lin Z et al.Highly Sensitive Multiresponsive Chemosensor for Selective Detection of Hg~(2+) in Natural Water and Different Monitoring Environments[J].Inorganic Chemistry.2008,47(16):7190-7201.
    [83]Compari C,Fisicaro E,and Braibanti A.Cooperativity effects in the protonation of aliphatic polyamines[J].Polyhedron,2002,21(14-15):1503-1511.
    [84]Iyoshi S,Taki M and Yamamoto Y.Rosamine-Based Fluorescent Chemosensor for Selective Detection of Silver(Ⅰ) in an Aqueous Solution[J].Inorganic Chemistry,2008,47(10):3946-3948.
    [85]U.S.EPA Regulatory Impact Analysis of the Clean Air Mercury Rule;EPA-452/R-05-003;U.S.EPA:Research Triangle Park NC,2005.
    [86]Standardization Administration(SA) of the People's Republic of China,Integrated wastewater discharge standard,GB 8978-1996.
    [87]Shortreed M,Kopelman R,Kuhn M et al.Fluorescent Fiber-Optic Calcium Sensor for Physiological Measurements[J].Analytical Chemistry,1996,68(8):1414-1418.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700