用户名: 密码: 验证码:
金属带式无级变速器传动特性及其综合控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于某企业的“轿车无级变速器(CVT)电液控制系统及其产业化关键技术研发”及“20万台轿车无级自动速器(CVT)产能扩建技术改造项目”,本文围绕某国产无级变速器及其匹配的经济型轿车,针对CVT产业化关键技术及商品车的软件优化进行了深入研究。在分析了大量台架、道路试验数据的基础上,为待解决的问题寻找到了最适用的解决方案。文中所作的主要工作内容如下:
     1、从金属片与带轮之间的摩擦力入手,分析了金属带滑移机理。基于金属环与金属片之间的相对运动,分析了推力和张紧力的分布趋势,并对金属环和金属片进行了受力分析,计算得到了金属片以及金属环在整个运行区间上的受力分布情况、主从动带轮夹紧力平衡关系,为速比和夹紧力控制提供了理论依据。
     2、针对测试过程中出现的由于金属带偏置量设置不当导致的金属带断带问题进行了分析,结合金属带对偏置量的敏感系数和车辆的综合使用工况,首次提出了敏感度综合因数法,对金属带偏置量的设置进行了优化,断带问题在后续的实车测试过程中没有再现;
     3、为满足CVT软件V型开发模式的需要,搭建了硬件在环测试系统。试验分析了夹紧力平衡关系和速比变化率的影响参数,首次建立了速比变化率仿真计算模型,并将模型辨识、理论分析和试验标定等方法相结合,建立了CVT动力学模型、液压系统模型以及整车动力学模型。仿真计算和试验数据对比后,两者具有较好的一致性。
     4、针对售后市场反馈的驾驶性能不良问题,对试验数据进行了分析。鉴于驱动功率增量对驾驶性能的影响,提出了基于驱动功率增量的发动机转速控制优化方案,并将其与手动标定数据、最佳燃油经济曲线方案进行了对比,仿真结果显示,该优化方案不仅提升了车辆的响应速度,而且减少了驾驶员操作、速比变化和发动机转速变化的频繁度,使得车辆的平稳性得以改善。针对该方案的实车测试结果也显示,驾驶性能得到了明显改善。该方案的优势在于,消除了发动机特性在整个工作范围内不具备线性规律的缺陷,加强了发动机与整车匹配的关联作用,突破了孤立研究CVT匹配理论的缺陷,为整车动力总成联合标定、速比匹配提供了理论依据。
     5、针对传统安全系数夹紧力控制法存在过度夹紧问题,试验分析了夹紧力谐波输入下的速比响应特性以及滑移率对传动效率的影响。结果表明,速比对夹紧力谐波输入的跟踪分为两段,且相位相差180°。根据这一特性,设计了基于滑移率的夹紧力控制器。实车测试表明,该方法有效地降低了系统夹紧力、提高了传动效率。
     6、基于速比偏差的PID闭环控制法存在的问题,提出了速比控制必须要综合考虑速比变化率和对系统的流量需求,并开发了新的速比控制算法。将控制软件移植到实车上进行试验,结果显示控制效果良好。
     本文中所有的理论研究和试验分析,都紧扣生产和试验过程中出现的问题,并针对这些问题提出了实用有效的解决方案。分析论述了一些以往被忽视或未被提及的因素,有金属带偏置综合影响因数、速比变化率计算模型及其关键参数、驾驶性能影响因素,提出了一些行之有效的方法,满足了企业产业化所需,有速比PID控制法的改进,基于滑移率的夹紧力控制方法以及基于驱动功率增量的动力总成控制方案。
Based on the projects of one company,'Research on key technology of electrichydraulic system of CVT for passengers car' and ‘Building of CVT mass productioncapacity200,000sets per year', research in this paper is focusing on the key technology formass production and the software improvement, the research object is one local producedCVT and its target local produced car. Based on the analysis of test data recorded during testrig experiment and road experiment, the applicable solutions for the occurred problem werefound. The main content is showed as follows.
     1Starting from the friction force between element and pulley surface, the slipmechanism is analyzed. The force distribution outline within the whole running circle is gotby analyzing the relative movement between element and ring. Then the detailed forcecalculation is carried out, by which the push force in between elements and the tension forcein the ring are got, also the torque capacity and the balance between primary clamping forceand secondary clamping force, which provides one theoretical basis for control strategy.
     2Aiming at the belt breakage caused by the mis-setted AS value of belt misalignment,by combining the misalignment sensitivity and comprehensive working condition of car, thefirst time comprehensive sensitivity factor is brought forwarded. Then by this method, theAS value is optimized and it is proved to be one feasible solution, and the belt breakagecaused by the same reason never reoccurs after this solution.
     3Based on the need of application control software (ASW) developing, the HIL (hardware in loop) testing rig is setted up. With the test data of clamping force balance and thedidt factor, the first time didt simulation model is established. Then with the combination ofmodel identification, mathematic analysis and test calibration methods, the CVT dynamicmodel, hydraulic model and the vehicle dynamic model are founded, which are consistentwith testing results after comparing.
     4With the feedback regarding drivability of CVT car from market, road test is carriedout, the main factors that affect drivability is analyzed. Out from the great influence by thedrive power increment, the optimized target engine speed control strategy is broughtforwarded, after compare with another two methods, it is proved can greatly improve thedrivability and the response speed, also it can reduce the manipulation times and thevariation of engine speed and CVT ratio to make the vehicle more stable. The obviousadvantage of this method is, it eliminates the non-linear response of engine within in the whole operating area, enhanced the cooperation between engine and CVT, which conqueredthe disadvantage of soley CVT control. Besides that, it provided the theoretical basis forthe CVT control and also the joint calibration of power system.
     5To prevent the over clamping caused by the traditional safety clamping control, thetracing characteristic of speed ratio towards sine harmonic pressure input is tested. The testresult shows that the tracing characteristic can be divided into two sections, phase180°difference is between them. According to such characteristic, the clamping force controller isdesigned, which is proved to be an effective method for reducing the clamping force andincreasing the efficiency.
     The disadvantages of traditional ratio error PID controller are explained, to get rid ofsuch disadvantages, one new controller is introduced in, which is one comprehensiveconsidering result of hydraulic flow and didt calculation. Then implemented it into car fortesting, the effect is evaluated well.
     All the analyzing and research are aiming at the problems occurred during massproduction and testing, try to find applicable solutions for such problems. Someunmentioned or neglected factors before are stated, such as the comprehensive misalignmentfactors, the didt model and its affect parameters, drivability factors, some applicable methodwere introduced in, such as slip clamping force control, improved ratio controller andreserved drive power based control method. All the above mentioned methods have beenevaluated to be feasible and effective.
引文
[1]产销快讯,中国汽车工业协会,2012.
    [2]2012-2016年中国无级变速器市场预测与投资前景价值战略研究报告,北京中研纵横经济信息中心,2011.
    [3]周云山,于秀敏.汽车电控系统理论与设计[M].北京:北京理工大学出版社,1999.
    [4]程乃士.汽车金属带式无级变速器-CVT原理和设计[M]机械工业出版社,2007.
    [5] Van der Sluis, Francis et al.Fuel economy potential of the pushbelt CVT.Fisita2006congress, Yokohama2006.
    [6] Van der Sluis, Francis, Van Dongen. Tom,Van Spijk, Gert-Jan FuelConsumption Potention of The Pushbelt CVT. FISITA2006,P218.
    [7] Ohashi et al.,“Development of high-efficiency CVT for luxury compactvehicle”, SAE paper2005-01-1019, SAE2005.
    [8] Francis van der Sluis. A New Pump for CVT Applications. SAE TechnicalPaper2003-01-3207.
    [9] Ing,G. Van Spijk, Dr.ir.B.Veenhuizen. An upshift in CVT-efficiency-Thedesign of the next generation of continuous vatiable transimission with a pushbelt. VDI BERCHTENR.1393,1998.
    [10] Tohru Ide. Effect of belt loss and oil pump loss on the fuel economy of avehicle with a metal V-belt CVT.2000-05-0130.
    [11]余群明,周健,黄伟,喻伟雄,王耀南.基于CVT的混联式电动汽车动力切换平稳性研究[J].汽车工程.2007(03).
    [12]白中浩,曹立波,王耀南.基于CVT的混合动力汽车建模与仿真[J].计算机仿真.2007(06).
    [13] Gerbert B G. Some notes on V-belt drives. ASME Journal of MechanicalDesign,1981,103(1):8-18.
    [14] Gerbert B G. Pressure distribution and belt deformation in V-belt drive.ASME Journal of Engineering for Industry,1975,97(3):976-982.
    [15] Gerbert B G. Skew V-belt pulleys. In: Proceedings of InternationalConference on Continuously Variable Power Transmission.Yolahama,Janpan,1996:1-8.
    [16] Kobayashi, D., Mabuchi, Y., and Katoh, Y.,"A Study on the Torque Capacityof a Metal Pushing V-Belt for CVTs," SAE Technical Paper980822,1998,doi:10.4271/980822.
    [17] Heera Lee and Hyunsoo Kim. Analysis of Primary and Secondary Thrusts forA Metal Belt CVT Part1: New Formula for Speed Ratio-Torque-ThrustRelationship Considering Band Tension and Block Compression. SAETECHNICAL PAPER SERIES2000-01-0841.
    [18] Kitagawa T, Fujii T,Kanehara S. A Study of a Metal Pushing V-Belt TypeCVT-Part4: Forces act on metal blocks when the speed tatio is changing).SAE Transactions, paper No.950671,1995:1344-1353.
    [19] Kato, Y., Yamashita, H., and Kono, Y.,"A Study on the Torque Capacity ofBelt CVTs for2.0-Liter and3.5-Liter Front-Drive Cars," SAE TechnicalPaper2004-01-0478,2004, doi:10.4271/2004-01-0478.
    [20] Shimizu, H., Kobayashi, D., Kawashima, J., and Kato, Y.,"Development of3-D Simulation for Analyzing the Dynamic Behavior of a Metal PushingV-Belt for Cvts," SAE Technical Paper2000-01-0828,2000,doi:10.4271/2000-01-0828.
    [21] Lee, H. and Kim, H.,"Analysis of Primary and Secondary Thrusts for A MetalBelt CVT Part1: New Formula for Speed Ratio-Torque-Thrust RelationshipConsidering Band Tension and Block Compression," SAE Technical Paper2000-01-0841,2000, doi:10.4271/2000-01-0841.
    [22] Minoru K, Junji K, Atsushi T, et al, Mechanism of metal pushing belt. JSAEReview,1995,16:137-143.
    [23] Hyunsoo K,Jaeshin L. Analysis of belt behavior and slip characteristic for ametal V-belt CVT. In:MPT91JSME International Conference on Motion andPower Transmission.Hiroshima, Japan,1991:98-103.
    [24] Ishikawa, T., Murakami, Y., Yauchibara, R., and Sano, A.,"The Effect ofBelt-Drive CVT Fluid on the Friction Coefficient Between MetalComponents," SAE Technical Paper972921,1997, doi:10.4271/972921.
    [25] Fujii, T., Kurokawa, T., and Kanehara, S.,"A Study of a Metal PushingV-Belt Type CVT-Part1: Relation Between Transmitted Torque and PulleyThrust," SAE Technical Paper930666,1993, doi:10.4271/930666.
    [26] S.Akehurst,N.D.Vaughan,D.A.Parker,D.Simner,介眉.金属推型V带无级变速箱损耗机理仿真部分3:带的滑动损失[J].传动技术.2006(02).
    [27] S.Akehurst,N.D.Vaughan,D.A.Parker,D.Simner.金属推型V带无级变速箱损耗机理仿真部分2:带轮变形损失和总扭矩损失的论证[J].传动技术.2006(01).
    [28] S.Akehurst,D.A.Perrer,S.Schaaf,谷雨. Milner无级变速器的动力学模型——基础运动学[J].传动技术.2010(01).
    [29] Brandsma, A., van Lith, J,. Hendriks, E. Push belt CVT developments for highpower applications. Proc. of CVT99, Eindhoven University of Technology1999, pp.142-147.
    [30]王红岩.金属带式无级变速器装置带轮工作面形状与带轴向偏离的分析[J].吉林工业大学学报,1997,27(4):16~21.
    [31]杨亚联,秦大同,王红岩,孙冬野. CVT无级变速传动钢带的轴向偏移分析[J].重庆大学学报(自然科学版).1999(06).
    [32] Vahabzadeh, H. and Linzell, S.,"Modeling, Simulation, and ControlImplementation for a Split-Torque, Geared Neutral, Infinitely VariableTransmission," SAE Technical Paper910409,1991, doi:10.4271/910409.
    [33]皮秋生. CVT硬件在环仿真试验平台研究[D].湖南大学2008.
    [34]车晓镭.汽车动力总成电控单元硬件在环测试系统研究[D].吉林大学2011.
    [35]范睿,吴光强,罗君赟.自动变速器半实物仿真试验台CAN总线接口设计[J].山东理工大学学报(自然科学版).2006(03).
    [36]张伯英.金属带式无级变速器传动机理与控制的研究[D].吉林大学2002.
    [37]刘金刚.金属带式无级变速器电液控制系统关键技术的研究[D].湖南大学2008.
    [38]周云山,刘金刚,邹乃威,蔡源春.无级变速传动装置夹紧力控制系统建模、辨识及实验验证[J].中国机械工程.2007(19).
    [39]胡建军,秦大同,刘振军.金属带式无级变速传动速比变化特性研究[J].汽车工程.2003(01).
    [40] T.Ide,H.Ucheiyama, and R.Kataoka, Experimental investigation on shiftspeed characteristic of a metal V-belt CVT, in Proceeding of the InternationalConference on Continuously Variable Power Transimissions, September1996,pp.59-64.
    [41] Michael Henry Smith. Vehicle power train Modeling and Ratio Optimizationfor a Continuously Variable Transmission, Georgia Institute Technology,1998.
    [42]张树培.金属带式无级变速器耦合问题研究[D].吉林大学2011.
    [43] Xuexun, G., Qi, S., and Chang, F.,"Intelligent Control of Metal-belt CVTBased on Fuzzy Logic," SAE Technical Paper2009-01-1535,2009,doi:10.4271/2009-01-1535.
    [44] Yasuoka, M., Uchida, M., Katakura, S., and Yoshino, T.,"An IntegratedControl Algorithm for an SI Engine and a CVT," SAE Technical Paper1999-01-0752,1999, doi:10.4271/1999-01-0752.
    [45] K.Engelsdorf, K.-H.Senger, and M.-P.Bolz, Electronic CVT control for powertrain optimization, in Proceeding of the International Conference onContinuously Variable Power Transimissions, September1996,pp71-76.
    [46] Lee, H., Kim, C., Kim, T., and Kim, H.,"CVT Ratio Control Algorithm byConsidering Powertrain Response Lag," SAE Technical Paper2004-01-1636,2004, doi:10.4271/2004-01-1636.
    [47] Dipak Patel, Jeff Ely, Mike Overson, CVT drive research study[C]. SAE2005-01-1459.
    [48]罗勇.金属带式无级变速传动系统匹配控制研究[D].重庆大学2011.
    [49] Jantos, J.,"Control of the Transmission Ratio Derivative in Passenger CarPowertrain with CVT," SAE Technical Paper2001-01-1159,2001,doi:10.4271/2001-01-1159.
    [50] Dipak Patel. CVT cyber bulletin board study[C]. SAE2006-01-1311.
    [51] Togai, K. and Tamaki, H.,"Human Driving Behavior Analysis and ModelRepresentation with Expertise Acquiring Process for Controller RapidPrototyping," SAE Technical Paper2011-01-0051,2011,doi:10.4271/2011-01-0051.
    [52] Osamura, K., Itoyama, H., and Iwano, H.,"Study of an Integrated DieselEngine-CVT Control Algorithm for Improving Drivability and ExhaustEmission Performance," SAE Technical Paper2001-01-3452,2001,doi:10.4271/2001-01-3452.
    [53] Zhang, J., LU, X., Wang, L., Chen, S. et al.,"A Study on the Drivability ofHybrid Electric Vehicle," SAE Technical Paper2008-01-1572,2008,doi:10.4271/2008-01-1572.
    [54] Abuasaker, S. and Sorniotti, A.,"Drivability Analysis of Heavy GoodsVehicles," SAE Int. J. Commer. Veh.3(1):195-215,2010,doi:10.4271/2010-01-1981.
    [55] de Assis, E., Kurauchi, R., Carloti, M., Ribeiro, J. et al.,"DrivabilityImprovements on Electronic Diesel Engines," SAE Technical Paper2003-01-3656,2003, doi:10.4271/2003-01-3656.
    [56] Abe, T., Minami, H., Atago, T., Fujiwara, Y. et al.,"Nissan's New“High-Drivability” Vibration Control System," SAE Technical Paper891157,1989, doi:10.4271/891157.
    [57]余志生.汽车理论[M].机械工业出版社,1981.
    [58] Liu S, Paden B. A Survey of Today’s CVT controls. In: Proceedings of the36th IEEE Conference on Decision and Control. San Diego, Canada,1997:4738-4743.
    [59] Dipak Patel, Jeff Ely, Mike Overson, CVT drive research study[C]. SAE2005-01-1459.
    [60] Vaughan N D, Gubell M, Burrows C R. The effect of hydraulic circuit designand control on efficiency of continuously variable transmission. SAETransactions, paper No.961797:1652-1659.
    [61] Vroemen B G, Veldpaus E E. Hydraulic circuit design for CVT control. IN:Inernational Congress on Continuously Variable Power Transmission.Eindhoven, Netherlands,1999:111-116.
    [62] Liu S, Paden B. A Survey of Today’s CVT controls. In: Proceedings of the36th IEEE Conference on Decision and Control. San Diego, Canada,1997:4738-4743.
    [63] Nishiyama, H., Murota, K., Hirotsu, S., Amano, K. et al.,"Vane Pump forNew Generation CVT," SAE Technical Paper2007-01-1456,2007,doi:10.4271/2007-01-1456.
    [64] Sakaguchi, S., Kimura, E., and Yamamoto, K.,"Development of anEngine-CVT Integrated Control System," SAE Technical Paper1999-01-0754,1999, doi:10.4271/1999-01-0754.
    [65]宋锦春,姚利松,程乃士等.汽车金属带式无级变速器液压控制原理及数学模型.东北大学学报(自然科学版),1999,20(3):297-282.
    [66]付铁军,周云山,张宝生.金属带式无级变速器电液控制系统的试验研究.汽车工程,2003,34(4):71-75.
    [67]杨新桦.金属带式无级变速器控制系统和控制策略研究[D].华中科技大学2010.
    [68]张飞铁.无级变速器器湿式离合器起步系统研究[D].湖南大学2008.
    [69]付铁军,王建华,周云山,李飞强.金属带式无级变速器夹紧力控制的研究[J].汽车技术.2006(02).
    [70] Hartmut Faust,Manfred Homm,Franz Bitzer. CVT夹紧系统优化[J].传动技术.2004(04).
    [71] Guebeli M, MIcklem J D, Burrows C R. Maximum transmission efficiency ofa steel belt continuously variable transmission. Transaction of the ASME,1993,115(4):1044-1048.
    [72] van der Sluis, F., van Dongen, T., van Spijk, G., van der velde, A. et al.,"Efficiency Optimization of the Pushbelt CVT," SAE Technical Paper2007-01-1457,2007, doi:10.4271/2007-01-1457.
    [73] van der Noll, E., van der Sluis, F., van Dongen, T., and van der Velde, A.,"Innovative Self-optimising Clamping Force Strategy for the Pushbelt CVT,"SAE Int. J. Engines2(1):1489-1498,2009, doi:10.4271/2009-01-1537.
    [74] Guebeli M, MIcklem J D, Burrows C R. Maximum transmission efficiency ofa steel belt continuously variable transmission. Transaction of the ASME,1993,115(4):1044-1048.
    [75] Nishizawa, H., Yamaguchi, H., Suzuki, H., Osawa, M. et al.,"FrictionCharacteristics Analysis for Clamping Force Setup in Metal V-Belt TypeCVT," SAE Technical Paper2005-01-1462,2005, doi:10.4271/2005-01-1462.
    [76] B.Bonsen, T.W.G.L.Klaassen, K.G.O.van de Meerakker, P.A.Veenhuizen andM.Steinbuch,“Measurement and control of slip in a continuously variabletransmission”, in Mechatronics2004,Sydney,Australia,2004.
    [77] R.J. Pulles, B. Bonsen, M. Steinbuch and P. A. Veenhuizen,“Slip controllerdesign and implementation in a Continuously Variable Transmission”,American Control Conference, Portland, Oregon,2005.
    [78] Saito, T. and Miyamoto, K.,"Prediction of CVT Transmission Efficiency byMetal V-Belt and Pulley Behavior with Feedback Control," SAE TechnicalPaper2010-01-0855,2010, doi:10.4271/2010-01-0855.
    [79] Thomas, J., Constans, B., Gresser, E., Maillard, M. et al.,"Testing the TorqueCapacity of CVT Fluids," SAE Technical Paper2004-01-2007,2004,doi:10.4271/2004-01-2007.
    [80]张树培,张友坤,王庆年,张雷.坡道行驶工况下CVT传动比控制[J].江苏大学学报(自然科学版).2010(03).
    [81]张艳玲,王耀南,薛殿伦.模糊自适应PID控制器在CVT速比控制中的应用[J].自动化技术与应用.2005(02).
    [82] EGGERT, U., Dipl-Ing,., and SCHNEIDER, H.,"Control strategies for achain drive CVT," SAE Technical Paper841302,1984, doi:10.4271/841302.
    [83]薛殿伦,张友坤,郑联珠,张伯英.金属带式无级变速器的速比控制[J].农业机械学报.2003(03).
    [84] o, J., Ishizu, T., Sudou, H., and Hino, A.,"Adaptive Cruise Control SystemUsing CVT Gear Ratio Control," SAE Technical Paper2001-01-3244,2001,doi:10.4271/2001-01-3244.
    [85]薛殿伦,陈伟生,冯显武.金属带式无级变速器速比匹配与控制研究[J].中国公路学报.2009(02).
    [86] Kim, T., Kim, H., Yi, J., and Cho, H.,"Ratio Control of Metal Belt CVT,"SAE Technical Paper2000-01-0842,2000, doi:10.4271/2000-01-0842.
    [87]周萍,聂晋,孙跃东.基于模糊PID控制的CVT速比仿真研究[J].机械传动.2011(08).
    [88]邹乃威.无级变速混合动力汽车动力耦合及速比控制研究[D].吉林大学2009.
    [89]付铁军.金属带式无级变速器智能控制技术研究[D].吉林大学2004.
    [90]王立公,王红岩,秦大同,张伯英,裘熙定.金属带式无级变速器速比控制的试验研究[J].汽车工程.2003(06).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700