用户名: 密码: 验证码:
MIMO手机天线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着无线通信的迅猛发展,消费者对大容量、高可靠性的移动通信质量的需求越来越紧迫,而传统通信技术已经难以解决这个问题。在多径传输环境中,MIMO (Mitiple-Input Mitiple-Output,多输入多输出)技术能在不增加工作带宽与发射功率的前提下,大幅度地提高无线信道的容量和通信质量,故MIMO技术已经成为无线通信领域的研究热点,引起无线通信领域广大学者的注意,并且已经广泛地被认为是LTE (Long Term Evolution,第三代移动通信的长期演进)和4G (The fourth generation mobile communication system,第四代移动通信)的核心技术之一。MIMO手机天线作为移动通信系统的关键器件,也备受关注。本论文主要研究适合应用于手机系统的小型宽带/多频MIMO天线,提出了几种具有良好性能的小型宽带/多频MIMO手机天线。本研究课题受国家自然科学基金面上项目(61171029)“手机MIMO天线研究”和广州市科技计划项目(12C42081659)“手机MIMO天线研究”的资助,课题主要创新工作包括:
     (一)基于单极子天线与环型天线的工作原理,提出将单极子天线设计成通过路径耦合组成环形回路的结构。在小天线尺寸和宽工作带宽的条件下,实现手机天线稳定性(高鲁棒性)设计,使之适合作为MIMO手机天线的天线单元。本论文将该设计思路应用到小型双频手机天线的设计中,仿真和实验结果同时证明该方法是可行的。
     (二)基于双带线的工作原理,利用双面双带线结构的优点,减小天线的尺寸和改善天线的阻抗匹配,从而设计出适合作为MIMO手机天线单元的天线;基于天线单元间互耦机理,对抑制地板表面波和空间波所引起的互耦的方法进行深入的研究,提出同时抑制因地板表面波和空间波引起的互耦的思想和方法(隔离结构)。将该思想和方法应用到两单元双频MIMO手机天线和四单元三频MIMO手机天线的设计中,仿真与实验结果表明这两个MIMO天线均获得良好的特性,故这种思想和方法是可用行的。
     (三)基于解耦和阻抗匹配的工作机理,研究如何利用一个结构同时达到解耦和改善阻抗匹配的作用,提出了一种新型的地板弯折细隙。在MIMO天线的低频有效带宽内,该新型地板弯折细缝和传统的地板细隙一样,具有阻碍地板电流从激励端口流向非激励端口的作用,从而提高天线单元之间的隔离度;在该MIMO天线高频有效带宽中,该新型地板弯折细隙可以被看作是地板缝隙天线,在高频产生谐振,拓宽天线单元的工作带宽。此外,实验与仿真结果表明,该新型地板弯折细缝对天线单元的阻抗匹配影响很小。
     (四)基于机理——增加合适的耦合路径可以减小MIMO天线单元间的耦合,研究中和线解耦技术适合应用于宽带MIMO手机天线中的方法。提出了一种宽带T型中和线,深入研究了它的工作机理,仿真与实验结果均证明该宽带T型中和线的可行性;为了使得MIMO手机天线既覆盖第二代移动通信系统的工作频率,又能满足MIMO通信系统的要求,从而解决不同通信系统的兼容问题,提出将工作带宽覆盖GSM900、DCS、 PCS、UMTS的天线和两个工作带宽相同(工作带宽覆盖WLAN2.4、WiMAX2.5和WiMAX3.5)的天线放置在同一个手机系统中,利用不同的解耦方法提高不同天线单元之间的隔离度。
     (五)基于UWB (Ultra-Wideband,超宽带)天线技术和MIMO天线技术的优点,提出将UWB天线技术与MIMO手机天线相结合,研究耦合结构和UWB陷波结构之间相互的影响,成功设计出一款小型高隔离度双陷波UWB MIMO天线。在该设计中,通过引入两个地板枝节,实现两天线单元的合理放置。一方面可以改善天线单元的阻抗匹配,减小天线单元的尺寸,另一方面增加了两天线单元之间沿着地板方向的路径,从而可以减小天线单元之间的耦合。在天线单元的辐射体背面放置一条小型的金属带,利用该天线单元与金属带通过耦合组成的环形电流回路实现超宽带天线的陷波功能,这种陷波结构既不增加天线的尺寸,又不会增加天线单元之间的互耦。
In recent years, with the rapid development of wireless communication systems, thedemand for high data rate and high quality mobile communication systems is increasing andthe conventional technologies of communication are difficult to solve this problem. Withoutsacrificing additional spectrum or transmitted power in rich multi-path environments, MIMO(Multiple-Input Multiple-Output) technology, which has potentiality of increasing channelcapacity and improving the quality of mobile communication systems, draws increasingattentions form scholars of mobile communication. MIMO technology has been extensivelyconsidered as one of the core technologies of LTE (Long Term Evolution) and4G (The fourthgeneration mobile communication system) systems. In LTE and4G systems, the MIMOphone antenna is vital and attentional. In the dissertation, the compact wideband/multi-bandMIMO antennas, which are suitable to apply in mobile phone, are studied, and several kindsof compact wideband/multi-band MIMO phone antennas with good characteristics arepresented. The dissertation was supported by the National Natural Science Foundation ofChina (61171029)“MIMO Antennas for Mobile Phones” and Guangzhou Science andTechnology Project (12C42081659)“MIMO Antennas for Mobile Phones”, and the maincontributions of the dissertation can be summarized as follows.
     (I) Based on the working mechanisms of monopole antenna and loop antenna, amonopole antenna is designed into a loop path through coupling, and stability or goodrobustness of phone antenna can be realized. Thus, with compact size, wide operation bandand good robustness, the monopole antenna is suitable as an antenna element for MIMOantenna. In the dissertation, the design proposal is applied in the design of a compactdual-band phone antenna, and the simulated and measured results proved the feasibility of thedesign proposal.
     (II) Based on the working mechanism of the two-strip, the dual-side two-strip are usedto compact the antenna size and improve the impedance matching of antenna, and antennassuitable for MIMO phone antenna are desinged. Based on the mechanism of mutual couplingbetween the antenna elements, methods to decreases the mutual caused by the ground surfacecurrents and space wave are analyzed in detail. Proposal and decoupling methods that mutualcoupling caused by the ground surface currents and space wave both can be reduced by onedecopling structure are presented, and the proposa and decoupling methods are applied in thedesigns of dual-band MIMO phone antenna with two antenna elements and Tri-band MIMOphone antenna with four antenna elements. The simulated and measured results show the two MIMO phone antennas have good properties, therefore, the proposal and decoupling methodsare feasible.
     (III) Based on the working mechanisms of decoupling and impedance mathing,structures, which can reduce the mutual coupling and improve the impedance matching ofantenna elements too, are investigated, and a kind of novel bent slits etched into the groundplane are presented. For the lower frequencies of the operation band, the function of the novelbent silts is the same as the conventional slits etched into the ground plane, the couplingcurrents flowing to the no excited port are blocked by the bent silts, and the isolation of theMIMO antenna elements can be improved. For the higher frequencies of the operation band,the novel bent silts can be considered as slit antennas, and they can produce resonant to widenthe impedance bandwidth. Moreover, the simulated and measured results show the effect ofthe bent slits on the impedance matching is slight.
     (IV) Based on the decouping mechanism of introdcution of additional coupling path,the neutralization lines are investigated to decrease the mutual coupling of MIMO phoneantenna with wide operation band, and a wideband T-shape neutralization line is proposed.The working mechanism of the wideband T-shape neutralization line is analyzed in detail, andthe simulated and measured results prove its feasibility. In order to cover the conventionaloperation bands of phone antenna and take advantages of the MIMO technology, a compactconventional phone antenna with operation band covering GSM900DCS PCS and UMTSis integrated with a wideband MIMO antenna, which operation band cover WLAN2.4WiMAX2.5and WiMAX3.5, and different decoupling methods are applied to improve theisolation for the different kinds of antenna elements.
     (V) Based on the adventanges of UWB (Ultra-Wideband) antenna technique and MIMOantenna technique, the combine of the two kinds of antenna techniques is proposed. Theinteractions of decoupling structure and band-notched structure are studied in detial, and acompact dual band-notched UWB MIMO antenna with high isolation is designed successfully.In the design, a special layout of the two antenna elements is realized by the application oftwo protruded ground parts, which can improve the impedance matching, reduce the size ofantenna element, increase the distance (along the ground plane) between the two feed ports,and lower the mutual coupling. A metal strip is placed behind the antenna element. Bycoupling beweent the metal strip and the antenna element, a coupling loop path is producedfor the band-notched frequency. Without increasing the sizes of antenna elements, thisband-notched structure does not increase the mutual coupling between the two antenna elements.
引文
[1]黄韬,袁超伟,杨睿哲,刘鸣.MIMO相关技术与应用[M].北京:机械工业出版社,2006
    [2]Telatar I.E.. Capacity of multi-antenna gaussian channels [J]. Technology Report#BLO112170-950615-07TM. AT&TBell Lab Internal Tech Memo,1995
    [3]Foschini G.J.. Layered space2-time architecture for wireless communications in fading environment when using multi-element antennas [J]. Bell Labs Technology,1996,1:41-59
    [4]Tarokh V., Seshadri N., Calderbank A.R.. Space-time coders for high data rate wireless communications:performance and criterion and code construction [J]. IEEE Transactions Information Theory,1998,44:774-765
    [5]Wei C. New criteria and related techniques for4G wireless systems [C]. International Workshop on Signal Design and Its Applications in Communications,2007:3
    [6]Frattasi S., Fathi H., Fitzek F.H.P., et al. Defining4G technology from the users perspective [J]. IEEE Network,2006,20(1):35-41
    [7]Bedekar A., Agrawal R.. Analysis of distributed mobility anchoring for4G systems [C]. International Conference on Mobile Wireless Communications Networks,2007:111-115
    [8]Lin M., Heesook C., Dawson T., et al. Network integration in3G and4G wireless networks international [C]. Conference on Computer Communications and Networks,2010:1-6
    [9]Paulraj A.J., Nabar R.U., et al. Introduction to Space-Time Wireless Communications [M]. England:Cambridge University Press,2003
    [10]Foschini G.J. On limits of wireless communication in a fading environment when using multi-element antennas [J]. Wireless Personal Communication (S0929-6212),1998,6(30):311-335
    [11]Paulraj A.J., Gore D.A., Nabar R.U., et al. An Overview of MIMO Communications-A key to gigabit wireless [C]. Proceedings of IEEE,2004,92(2):198-218
    [12]Berenguer I., Wang X.D.. Space-time coding and signal processing for MIMO communications [J]. Journal of Computer Science and Technology (S1000-9000),2003,18(6):689-702
    [13]Yue G., Xiao D.C., Zhi N.Y.. Design and performance investigation of a dual-element PIFA array at2.5GHz for MIMO terminal [J]. IEEE Transactions on Antennas and Propagation.2007,55(12):3433-3440
    [14]Marco D.M., Daniele P., Fulvio S.. Improving channel capacityusing adaptive MIMO antennas [J], IEEE Transactions on Antennas and Propagation,2006,54(11):3481-3488
    [15]Hiroshi S., Toshiteru H., Yoshio K.. Samll array antenna for2×2MIMO terminal using folded loop antenna [J], First European Conference on Antennas and Propagation,2006:1-5
    [16]Peter A., Telmo S., Fredrik T., et al. Measured diversity gains from MIMO antenna selection [C], Vehicular Technology Conference,2006:1-6
    [17]Manos P.K., Vasileios C.P., George F T, et al. Integrating compact printed antennas onto small diversity/MIMO terminals [J]. IEEE Transactions on Antennas and Propagation,2008,56(7):2067-2078
    [18]Gago O., Gonzalez L., Eickhof R.. Study of the optimum number of radiating elements for different portable devices operating in a MIMO system [J], European Wireless2009:78-83
    [19]William C.Y.L.. Mutual coupling effect on maximum-ratio diversity combiners and application to mobile radio [J]. IEEE Transactions on Communication Technology,1970,18(6):779-791
    [20]Akcakaya M., Tarokh V.. Shannon-theoretic limits on noisy compressive Sampling [J]. IEEE Transactions on Information Theory,2010,50(9):492-504
    [21]李忻.新一代无线通信系统中的MIMO信道建模与多天线设计研究[D].成都:电子科技大学,2005
    [22]Gesbert D., Shiu D.. From theory to practice:An overview of MIMO Space-time coded wireless systems [J]. IEEE Journal Selected Areas in Communication,2003,21(3):281-302
    [23] Chih M., Wong K.L., Chen W.S., et al. A microstrip-coupled printed inverted-Fmonopole antenna [J]. Microwave and Optical Technology Letters,2004,43(6):470-472
    [24] Li W.Y., Wong K.L.. Internal printed loop-type mobile phone antenna for penta-bandoperation [J]. Microwave and Optical Technology Letters,2007,49(10):2595-2599
    [25] Wong K.L., Lai P.Y.. Wideband integrated monopole slot antenna for WLAN/WiMAXoperation in the mobile phone [J]. Microwave and Optical Technology Letters,2008,50(8):2000-2005
    [26] Wu C.H., Wong K.L.. Internal hybrid loop/monopole slot antenna for quad-bandoperation in the mobile phone [J]. Microwave and Optical Technology Letters,2008,50(3):795-801
    [27] Wong K.L., Huang C.H.. Bandwidth-enhanced internal PIFA with a coupling feed forquad-band operation in the mobile phone [J]. Microwave and Optical TechnologyLetters,2008,50(3):683-687
    [28] Lai P.Y., Wong K.L.. Capacitively fed hybrid monopole/slot chip antenna for2.5/3.5/5.5GHz WIMAX operation in the mobile phone [J]. Microwave and OpticalTechnology Letters,2008,50(10):2689-2694
    [29] Chi Y.W., Wong K.L.. Half-wavelength loop strip capacitively fed by a printedmonopole for penta-band mobile phone antenna [J]. Microwave and OpticalTechnology Letters,2008,50(10):2549-2553
    [30] Chang C.H., Wong K.L.. GSM850/900/1800/1900/UMTS coupled-fed planar/8-PIFAfor internal mobile phone antenna [J]. Microwave and Optical Technology Letters,2009,51(4):1091-1096
    [31] Chang C.H., Wong K.L.. Printed/8-PIFA for penta-band WWAN operation in themobile phone [J]. IEEE Transactions on Antennas Propagation,2009,57(5):1373-1381
    [32] Wong K.L., Kang T.W.. GSM850/900/1800/1900/UMTS printed monopole antenna formobile phone application [J]. Microwave and Optical Technology Letters,2009,50(12):3192-3198
    [33] Chi Y.W., Wong K.L.. Quarter-wavelength printed loop antenna with an internalprinted matching circuit for GSM/DCS/PCS/UMTS operation in the mobile phone [J].IEEE Transactions on Antennas Propagation,2009,57(9):2541-2547
    [34] Kang T.W., Wong K.L.. Chip-inductor-embedder small size printed strip monopole forWWAN operation in the mobile phone [J]. Microwave and Optical Technology Letters,2009,51(4):966-971
    [35] Chi Y.W., Wong K.L.. Very-small-size printed loop antenna for GSM/DCS/PCS/UMTSoperation in the mobile phone [J]. Microwave and Optical Technology Letters,2009,51(1):184-192
    [36] Wheeler H.A.. Transmission-line properties of parallel wide strips by aconformal-mapping appximation [J]. IEEE Transacions on Microwave Theory andTechniques,1964,12:280-289
    [37] Wheeler H.A.. Transmission-line properties of parallel strips separated by a dielectricsheet [J]. IEEE Transacions on Microwave Theory and Techniques,1965,13:172-185
    [38] Ghnimi S., Rajhi A., Gharsallah A.. Theoretical and simulation of crosstalk betweentwo strip lines using multiconductor transmission line[C]. Internatonal Conference onMicroelectronics,2007:407-410
    [39] Chen J.X., Lau K.W., Chan K.Y., et al. A double-sided parallel-strip line push–pulloscillator [J]. IEEE Microwave and Wireless Components Letters,2008,18(5):335-337
    [40] Kim S.G., Chang K.. Ultrawide-band transitions and new mi crowave components usingdouble-sided parallel-strip lines [J]. IEEE Transacions on Microwave Theory andTechniques,2004,52(9):2148–2151
    [41] Sun S., Zhu L.. Stopband-enhanced and size-miniaturized low-pass lters usinghigh-impedance property of offset nite-ground microstrip line [J]. Transacions onMicrowave Theory and Techniques,2005,53(9):2844–2850
    [42] Chen J.X., Li J.L., Xue Q.. Lowpass lter using offset double sided parallel-strip lines[J]. Electronics Letters,2005,41:1336–1337
    [43] Chen J.C., Chin C.H.K., Xue Q.. Double-sided parallel-strip line with an insertedconductor plane and its applications [J]. IEEE Transactions on Microwave Theory andTechniquees,2007,55(9):1899-1904
    [44] Xue Q.. Double side parallel strip line and its applications [C]. IEEE MTT-SInternational Microwave Workshop Series on Art of Miniaturizing RF and MicrowavePassive Components,2008:55-58
    [45] Jiang W., Zhou L., Gao A.M., et al. Compact dual-mode dual-band balun filter usingdouble-sided parallel-strip line [J]. Electronics Letters,2012,48(21):1351-1352
    [46] Noguchi K., Yasui N., Mizusawa M., et al. Increasing the bandwidth of a two-stripmeander-line antenna mounted on a conducting box [C]. IEEE Antennas andPropagation Society International Symposium,2001,4:112-115
    [47] Shi J., Chen J.X., Xue Q.. A differential voltage-controlled integrated antenna oscillatorbased on double-sided parallel-strip line [J]. IEEE Transactions on Microwave Theoryand Techniquees,2008,56(10):2207-2212
    [48] Li R.L., Pan B., Joy L., et al. A novel low-profile broadband dual-frequency planarantenna for wireless handsets [J]. IEEE Transactions on Antennas Propagation,2008,56(4):1155-1162
    [49] Zhang T., Li R.L., Jin G.P., et al. A novel multiband planar antenna forGSM/UMTS/LTE/Zigbee/RFID mobile devices [J]. IEEE Transactions on AntennasPropagation,2011,59(11):4209-4214
    [50] Goldsmith S.A. Jafar N.J.. Capacity limits of MIMO channels [J]. IEEE JournalSelected Areas in Communication.2003,21(5):684-702
    [51] Wallace J.W., Jensen M.A.. The capacity of MIMO wireless systems with mutualcoupling [C]. IEEE56th Vehicular Technology Conference,2002,2:696700
    [52] Andersen J., Rasmussen H.. Decoupling and descattering networks for antennas [J].Transactions on Antennas and Propagation,1976,24:841–846
    [53] Weber J., Volmer C., Blau K., et al. Miniaturized antenna arrays using decouplingnetworks with realistic elements [J]. IEEE Transactions on Microwave Theory andTechniques,2006,54(2):2733-2740
    [54] Chen S.C., Wang Y., et al. A decoupling technique for increasing the port isolationbetween two strongly coupled antennas [J]. IEEE Transactions on Antennas andPropagation,2008,56(12):3650–3658
    [55] Volmer C., Weber J., Stephan R., et al. Hein A. Aneigen analysis of compact antennaarrays and its application to port decoupling [J]. IEEE Transactions on Antennas andPropagation,2008,56(2):360–370
    [56] Rashid A.B., Yi S.Y., Park S.O.. Compact antenna array with port decoupling forLTE-standardized mobile phones [J]. IEEE Antennas and Wireless Propagations Letters,2009,8:1430-1433
    [57] Juman K., Minseok H., Changho L., et al. Dual band MIMO antenna using a decouplingnetwork for WLAN application [C].13th International Conference on AdvancedCommunication Technology,2011:624-627
    [58] Yong C., Guo Y.J.. Frequency-agile compact array with a reconfigurable decouplingand matching network [J]. IEEE Antennas and Wireless Propagation Letters,2011,10:1031-1034
    [59] Li S., Honma N., Yamaki N.. Decoupling network comprising transmission lines andbridge resistance for two-element array antenna [C]. Microwave ConferenceProceedings,2012:702-704
    [60] Fan Y. Yahya R.S.. Microstrip antennas integrated with electromagnetic band-gap(EBG) structures: a low mutual coupling design for array applications [J]. IEEETransactions on Antennas and Propagation,2003,51(10):2936-2946
    [61] Long L., Bin L., Hai X.L., et al. Locally resonant cavity cell model for electromagneticband gap structures [J]. IEEE Transactions on Antennas and Propagation,2006,54(1):90-100
    [62] Michailidis E., Tsimenidis C., Chester, G.. Mutual coupling reduction in a linear twoelement patch array and its effect on theoretical MIMO capacity [C]. LoughboroughAntennas and Propagation Conference,2008:457-462
    [63] Kasra P., Ramesh A.. Employing EBG structures in multiantenna systems for improvingisolation and diversity gain [J]. IEEE Antennas and Wireless Propagations Letters,2009,8:1162-1165
    [64] Margaret D.H., Subasree M.R., Susithra S., et al. Mutual coupling reduction in MIMOantenna system using EBG structures [C]. International Conference on SignalProcessing and Communications,2012:1-5
    [65] Assimonis S.D., Yioultsis T.V., Antonopoulos S.. Computational investigation anddesign of planar EBG structures for coupling reduction in antenna applications [J].IEEE Transactions on Magnetics,2012,48(2):771-774
    [66] Min K.S., Kim D.J., Moon Y M.. Improved MIMO antenna by mutual couplingsuppression between elements [J]. Wireless Technology,2005:125-128
    [67] Li Z.Y., Du Z. W., Gong K.. A dual-slot diversity antenna with isolation enhancementusing parasitic elements for mobile handsets [C]. Asia Pacific Microwave Conference,2009:1821-1824
    [68] Wang H., Fang D.G., Wang X.L.. Mutual coupling reduction between two microstrippatch antennas by using the parasitic elements[C]. Asia Pacific Microwave Conference,2008:1-4
    [69] Robert B., Ralf R.M.. Using parasitic elements for implementing the rotating antennafor MIMO receivers [J]. IEEE Transactions on wireless communications,2008,7(11):4522-4533
    [70] Li Z.Y., Du Z.W., Takahashi M., et al. Reducing mutual coupling of MIMO antennaswith parasitic elements for mobile terminals [J]. IEEE Transactions on Magnetics,2012,60(2):473-481
    [71] Lau B.K., Andersen, J.B.. Simple and Efficient Decoupling of compact arrays withparasitic scatterers [J]. IEEE Transactions on Magnetics,2012,60(2):464-472
    [72] Karaboikis M., Soras C., Tsachtsiris G., et al. Compact dual-printed inverted-F antennadiversity systems for portable wireless devices [J]. IEEE Antennas WirelessPropagation Letter,2004,3:9–14
    [73] Mavridis G.A., Sahalos J.N., Chryssomallis M.T.. Spatial diversity two-branch antennafor wireless devices [J]. Electronics Letters,2006,42(5):266–268
    [74] Shin Y.S., Park S.. Spatial diversity antenna for WLAN application [J]. Microwave andOptical Technology Letters,2007,49(6):1290–1294
    [75] Mavridis G.A., Sahalos J.N., Chryssomallis M.T.. Spatial diversity two-branch antennafor wireless devices [J]. Electronics Letters200642(5)266-268
    [76] Chiu C.Y., Cheng C.H., Ross D.M.. Reduction of mutual coupling betweenclosely-packed antenna elements [J]. IEEE Transactions on Antennas Propagation,2007,55(6):1732-1738
    [77] Zhang H.L., Wang Z.H., Yu J.W.. A compact MIMO antenna for wirelesscommunication [J]. IEEE Antennas and Propagation Magazine,2008,50(6):104-107
    [78] Hui L., Jiang X., He. S.L.. A compact planar MIMO antenna system of four elementswith similar radiation characteristics and isolation structure [J]. IEEE Antenna andWireless Propagation Letters,2009,8:1107-1110
    [79] Zhou X., Quan X.L., Li R.L.. A Dual-broadband MIMO antenna system forGSM/UMTS/LTE and WLAN handsets [J]. IEEE Antennas and Wireless PropagationLetters,2012,11:551-554
    [80] Ayatollahi M., Rao Q.J., Wang D.. A compact, high isolation and wide bandwidthantenna array for long term evolution wireless devices [J]. IEEE on Antenna andPropagation,2012,60(10):4960-4963
    [81] Wang Y.S., Chung S.J.. A short open-end slot antenna with equivalent circuit analysis[J]. EEE Transations on Antenna and Propagation,2010,58(5):1771-1775
    [82] Park J., Choi J., Park J.Y., et al. Study of a T-shaped slot with a capacitor for highisolation between MIMO antennas [J]. IEEE Antennas and Wireless Propagation Letters,2012,11:1541-1554
    [83] Ding Y., Du Z.W, Gong K.. A novel dual-band printed diversity antenna for mobileterminals [J]. IEEE Transactions on Antennas Propagation,2007,55(7):2088-2096
    [84] Ding Y., Du Z.W., Gong K.. A four-element antenna system for mobile phones [J].IEEE Antenna and Wireless Propagation Letters,2007,6:655-658
    [85] Cai Y.X., Du Z. W., Gong K.. A novel wideband diversity antenna for mobile handsets[J]. Microwave Optical Technology Letters,2009,51(1):218-222
    [86] Diallo A., Luxey C. Thuc P.. Study and reduction of the mutual coupling between twomobile phone PIFAs operating in the DCS1800and UMTS bands [J]. IEEE Transactionson Antennas Propagation,2006,54(11):3063–3073
    [87] Anissa C., Cyril L., Robert S.. A novel isolation technique for closely spaced PIFAs forUMTS mobile phones [J]. IEEE Antennas and Wireless Propagation Letters,2008,7:665-668
    [88] Diallo A., Luxey C., Thuc P. L.. MIMO performance of enhanced UMTS four-antennastructures for mobile phones in the presence of the user’s head [C]. IEEE Antennas andPropagation Society International Symposium,2007,2853–2856
    [89] Yang C., Kim J., Kim H., et al. Quad-band antenna with high isolation MIMO andbroadband SCS for broadcasting and telecommunication services [J]. IEEE Antennasand Wireless Propagation Letters,2010,9:584-587
    [90] Park S.H., Jung C.W.W.. Compact MIMO antenna with high isolation performance [J].Electronics Letters,2010,46(6):390-391
    [91] Kim J., Yang C., Yun T., et al. Multimode multiband (VHF/UHF/L/802.11a/b) antennasfor broadcasting and telecommunication services [J]. IEEE Antennas and WirelessPropagation Letters,2011,10:41-44
    [92] Su S.W., Cheng T.L., Chang F.S.. Printed MIMO-antenna system usingneutralization-line technique for wireless USB-dongle applications [J]. IEEETransactions on Antennas Propagation,2012,60(2):456–463
    [93] Chi G.M., Li B.H, Qi D.S.. Dual-band printed diversity antenna for2.4/5.2-GHzWLAN applications [J]. Microwave Optical. Technology. Letters,2005,45(6):561-563.
    [94] Chiu C.Y., Yan J.B., Murch R.D.. Compact three-port orthogonally polarized MIMOantennas [J]. IEEE Antenna and Wireless Propagation Letters,2007,6:619-622
    [95] Andrews M.R., Mitra P.P., Carvalho R.D., Tripling the capacity of wirelesscommunications using electromagnetic polarization [J].Nature,2001,409(6818):316–318
    [96] Oikonomopoulos Z.C., Rembold B.. A3-Port Antenna for MIMO applications [C].2ndInternational ITG Conference on Antennas,2007:49-52
    [97] Grzegorz A., Stefan B., Werner W.. Dual-orthogonal polarized antenna for UWB-IRtechnology [J]. IEEE Antenna and Wireless Propagation Letters,2009,8:981-984
    [98] Lu Y.C., Lin, Y.C.C.. A compact dual-polarized UWB antenna with high port isolation[C]. IEEE Antennas and Propagation Society International Symposium,2010:1-4
    [99] Sanad M.S.A., Hassan N.. Orthogonally polarized MIMO antennas for all bands ofportable computers including digital TV [C]. Loughborough Antennas and PropagationConference,2010:289-292
    [100] Li, Y.D. Zhang Z.J., et al. Compact azimuthal omnidirectional dual-polarized antennausing highly isolated colocated slots [J]. IEEE Transactions on Antennas Propagation,2012,60(9):4037–4045
    [101] Yan J.B., Bernhard J.T.. Design of a MIMO dielectric resonator antenna for LTEfemtocell base stations [J]. IEEE Transactions on Antennas Propagation,2012,60(2):438-444
    [102] Anand S.K., Keyoor G., Sandeep H.K.. Increasing wireless channel capacity throughMIMO systems employing co-located antennas [J]. IEEE Transations on MicrowaveTheory,2006,53(6):1837-1844.
    [103] Britton T.Q., Michael A.J.. Optimal antenna radiation characteristics for diversity andMIMO systems [J]. EEE Transactions on Antennas Propagation,2009,57(11):3474–3481
    [104] Jon W.W., Rashid M..On the accuracy of equivalent circuit models for multi-antennasystems [J]. IEEE Transactions on Antennas Propagation,2012,60(2):540–547
    [105] IEEE Standard Test Procedures for Antennas, in IEEE, Standards. Piscataway, NJ:IEEE:149–1979
    [106] IEEE standard definitions of terms for antennas, in IEEE, Standards Piscataway, NJ:IEEE:145–1993
    [107] Paul H.. The significance of radiation efficiencies when using S-parameterss tocalculate the received signal correlation from two antennas [J]. IEEE Antenna andWireless Propagation Letters,2005,4:97-99
    [108] Valenzuela-Valdés J.F., García-Fernández M. A., et al. The in uence of ef ciency onreceive diversity and MIMO capacity for Rayleigh-Fading channels [J]. IEEETransactions on Antennas Propagation,2008,56(5):1444–1450
    [109] Tian R.Y., Lau, B.K., Ying, Z.N.. Multiplexing efficiency of MIMO antennas [J]. IEEEAntenna and Wireless Propagation Letters,2011,10:183-186
    [110] Tian R.Y., Lau, B.K., Ying, Z.N.. Multiplexing efficiency of MIMO antennas inarbitrary propagation scenarios [J]. European Conference on Antennas and Propagation,2012:373-377
    [111] Jane X.Y., Rodney G.V,. Multiple element antenna ef ciency and its impact ondiversity and capacity [J]. IEEE Transactions on Antennas Propagation,2012,60(2):529–539
    [112] Kahn, W.. Active reflection coefficient and elements efficiency in arbitrary antennaarrays [J]. IEEE Transactions on Antennas Propagation,1969,17(5):653-654
    [113] Zhang S., Khan S.N., He S.L.. Reducing mutual coupling for an extremelyclosely-packed tunable dual-element PIFA array through a resonant slot antenna formedin-between [J]. IEEE Transactions on Antennas Propagation,2010,58(8):2771-2776
    [114] Stein S. On cross coupling in multiple-beam antennas [J]. IRE Transactions onAntennas and Propagation,1962,10(5):548–557
    [115] Salonen I., Vainikainen P.. Estimation of signal correlation in antenna arrays [C].Proceedings of12thInternational Symposium on Antenna,2002,2:383–386
    [116] Blanch S.N. Romeu J.. Exact representation of antenna system diversity performancefrom input parameter description [J]. Electronics Letters,2003,39(9):705–707
    [117] Taga T.. Analysis of correlation characteristics of antenna diversity in land mobile radioenvironments [J]. Electronica Communnication,1991,74(8):101–116
    [118] Vaughan R.G. Andersen J.B.. Antenna diversity in mobile communications [J]. IEEETransactions on Vehicular Technology,1987,36(4):149–172
    [119] Kevin B. Radiation patterns and correlation of closely spaced linear antennas [J]. IEEETransactions on Antennas Propagation,2002,50(8):1162-1165
    [120] Samuel C.K.K. and Ross D.M.. Compact integrated diversity antenna for wirelesscommunications [J]. IEEE Transactions on Antennas Propagation,2001,49(6):954-960
    [121] Taga T. Analysis for mean effective gain for mobile in land mobile radio environments[J]. IEEE Transactions on Vehicular Technology,1990,39:117–131
    [122] Pedersen G.F., Andersen J.B..Handset antennas for mobile communications: integration,diversity and performance [J]. Review of Radio Scinece1996-1999,1999:119–137
    [123] Manos P.K., Vasileios C.P., George F.T., et al. Integrating compact printed antennasonto small diversity/MIMO terminals [J]. IEEE Transactions on Antennas Propagation,2008,56(7):2067-2078
    [124] Kildal P.S., Rosengran K., Correlation and capacity of MIMO systems and mutualcoupling, radiation efficiency, and diversity gain of their Aantennas: simulations andmeasurements in a reverberation chamber [J]. IEEE Communications Magazine,2004,42(12):102-112
    [125] Kildal P.S., Rosengren K., Byun J., et al. Definition of effective diversity gain and howto measure it in a reverberation chamber [J]. Microwave Optical Technolnogy Letter,2002,34(1):56–59
    [126] Azremi A.A., Toivanen H.J., Laitinen T.. On diversity performance of two-elementcoupling element based antenna structure for mobile terminal [C]. European conferenceon Antenna and propagation,2010:1-5
    [127] Kildal P.S., Kent R.. Electromagnetic Analysis of effective and apparent diversity gainof two parallel dipoles [J]. IEEE Antennas and Wirless Propagation Letters,2003,2:9-13
    [128] Ozdemir M.K., Arvas E., Arslan H.. Dynamics of spatial correlation and implicationson MIMO systems [M], IEEE Communications Magazine,2004,42(6):14–19
    [129] Khalighi M.A., Raoof K., Jourdain G.. Capacity of wireless communication systemsemploying antenna arrays, a tutorial study [J]. Wireless Personal Communications,2002,23(3):321–352
    [130] Kermoal J.P., Schumacher L., Pedersen K. I., et al. A stochastic MIMO radio channelmodel with experimental validation [J]. IEEE Journal on Selected Areas inCommunications,2002,20:1211–1226
    [131] Dong L., Choo H., Heath R., et al. Simulation of MIMO channel capacity with antennapolarization diversity [J]. IEEE Transactions on Wireless Communications,2005,4(4):1869–1873
    [132]Hong S., Chung K., Lee J., et al. Design of a diversity antenna with stubs for UWB applications [J]. Microwave Optical Technolnogy Letter,2008,50(5):1352-1356
    [133]See T.S.P., Chen, Z.N.. An ultrawideband diversity antenna [J]. IEEE Antenna and Wireless Propagation Letters,2009,57(6):1597-1605
    [134]Zhang S., Ying Z.N., Xiong J., et al. Ultrawideband MIMO/diversity antennas with a tree-like structure to enhance wideband isolation [J]. IEEE Antenna and Wireless Propagation Letters,2009,8:1279-1232
    [135]Lee J.M., Kim K.B., Ryu H.K., et al. A compact uwltrawideband MIMO antenna with WLAN band-rejected operation for mobile devices [J]. IEEE Antenna and Wireless Propagation Letters,2012,11:990-993
    [136]Warren L.S., Gary A.T..天线理论与设计[M].北京:人民邮电出版社,2006
    [137]Hua R.C, Chou C.F, et al. Compact multiband planar monopole antennas for smart application [J]. IET Microwave Antennas Papagation,2008,2(5):473-481
    [138]Wu C.H., Wong K.L., et al. Simplified hand model including the user's forearm for the study of internal GSM/DCS mobile phone antenna [J]. Microwave Optical Technolnogy Letter,2006,48(11):2202-2205.
    [139]Waldschmidt C, Wiesbeck W.. Compact Wide-Band Multimode Antennas for MIMO and Diversity [J]. IEEE Transactions on Antennas Propagation.2004,52(8):458-462
    [140]Panda J.R., Kshetrimayum R.S.. A compact printed U-shaped dual-band monopole antenna for wireless and RFID applications [C]. Applied Electromagnetic Conference,2009:1-4
    [141]Thomas K.G., Sreenivasan M.. A Simple Ultrawideband Planar Rectangular Printed Antenna With Band Dispensation [J]. IEEE Transactions on Antennas Propagation,2010,58(1):27-34
    [142]Li W.T., Shi X.W., Hei Y.Q.. Novel planar UWB monopole antenna with triple band-notched characteristics [J]. IEEE Antennas and wireless Propagation letter,2009,8:1094-1098
    [143]Zheng Z.A., Chu Q.X., Tu Z.H.. Compact band-rejected ultrawideband slot antennas inserting with λ/2and λ/2resonators [J]. IEEE Transactions on Antennas Propagation,2011,59(2):390-397

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700