用户名: 密码: 验证码:
氮杂环卡宾活化CO_2及对其催化转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业的迅速发展,CO2的排放量急剧增加,给人类生产生活造成了严重的影响。同时,CO2是碳一家族中最为廉价、无毒而又最为丰富的资源。CO2资源化利用不但可以解决温室效应引起的环境问题同时又可以解决日益严峻的能源枯竭问题。CO2热力学性质高度稳定不易活化,因此,其化学转化的关键问题就是CO2的活化问题。通过给电子试剂对CO2中心碳原子亲核进攻是活化CO2的最有效途径之一。
     N-杂环卡宾(N-heterocyclic carbenes, NHCs)化学引起了化学家们广泛的研究兴趣。这一切主要归功于Arduengo等人的杰出工作,他们已经在1991年首次成功分离得到第一个稳定的NHC-咪唑-2-碳烯。由于共轭效应和诱导效应,NHCs表现出很强的给电子能力。NHCs不但作为配体在金属有机化学领域中得到广泛关注,作为小分子催化剂在有机反应中的应用也取得了一定进展。最近研究发现NHCs可以有效地与CO2形成结构稳定的NHCs-CO2加合物形式,而对于这类NHCs-CO2加合物的化学性质及NHCs活化下CO2化学转化研究却很少。
     1.本论文首次通过温控高压原位红外技术研究了NHCs-CO2加合物结构与热稳定性的关系。实验结果表明:1,3-氮原子上键合位阻较小的给电子取代基时,NHCs与CO2结合牢固。相反,键合位阻较大的吸电子基时,NHCs与CO2的牢固程度下降。咪唑环中含有共轭双键的NHCs-CO2加合物热稳定性低于相应饱和咪唑环NHCs-CO2加合物。
     温度升高,NHCs-CO2加合物热稳定性下降。游离CO2的引入可有效提高NHCs-CO2加合物的热稳定性。NHCs具有室温条件下快速固定CO2和在高温条件下可逆释放C02的特殊性质。
     2.通过NHCs-CO2加合物热稳定性研究,设计合成了NHC功能化的MCM-41介孔材料(MCM-41-NHC)和聚苯乙烯高分子材料(P-NHC),并对MCM-41-NHC和P-NHC新型CO2吸附材料的可逆CO2吸附性质进行研究。原位漫反射红外光谱跟踪表明:MCM-41-NHC可以在40℃条件下快速捕获CO2,温度升高到180℃又可以释放CO2。该固定和释放CO2行为具有可逆性。
     利用热重分析方法对P-NHC二氧化碳吸附材料的CO2固定效率和可逆吸附行为进行了研究。实验结果表明:在40℃和CO2流速20 mL/min条件下,60 min内CO2固定效率达到57%,显著高于目前报道的有机胺类CO2吸附材料。经过两次循环使用CO2的固定效率仍可以达到42%。量化计算对NHC高效固定CO2的行为进行了理论解释。
     3.研究了NHCs催化剂在CO2与环氧烷烃环加成反应中的新应用。实验结果表明NHCs-CO2加合物可以有效的催化CO2与端位环氧烷烃发生环加成反应高选择性得到环状碳酸酯。其中热稳定性最差的IPr-CO2加合物催化活性最高。优化实验条件:IPr-CO2(0.5 mo1%),环氧丙烷(50mmol), CH2C12(2mL), CO2初始压力(2.0 MPa),24 h。在此条件下环状碳酸丙烯酯的产率可达100%。同条件下催化其他单取代端位环氧烷烃时,相应环状碳酸酯产率仍可以达到90%以上。该催化体系是目前报道的活性最高的单组分小分子催化体系。
     当反应体系中引入SalenAlEt时,其与IPr-CO2组成的双组分催化体系可以协同催化CO2与环氧烷烃环加成反应,催化活性较IPr-CO2单独使用时有明显提高。120℃,反应8h,各种环状碳酸酯产率均超过96%。通过应用氘代环氧烷烃底物及原位红外技术对反应机理进行深入探讨。SalenAlEt与IPr或IPr-CO2协同催化环氧烷烃开环,游离C02插入Al-O键,进一步分子内环消除得到环状碳酸酯。
     考察负载化MCM-41-NHC催化体系催化CO2与环氧烷烃环加成反应及催化剂循环使用研究。IPr负载化后催化活性受传质影响活性有所降低。MCM-41-IPr经过3次循环使用,催化活性没有明显降低。
     4.本论文采用溶剂热方法,用NHC-CS2功能化的双齿线性羧基桥联配体与高氯酸锌在DMF/CH3OH混合溶剂体系中反应,成功合成了NHC-CS2功能化的多孔金属有机框架。MOF-NHC-CS2晶体结构通过元素分析、红外光谱、热重分析和X-射线单晶衍射进行了表征。MOF-NHC-CS2结晶于立方晶系,空间群Fm-3m,晶胞参数:a=b=c=39.7719A,α=β=γ=90°,V=62911.449 A3,Z=8。进一步精修结构时由于大孔道结构,内部包含大量无序DMF溶剂,晶体数据完成度只有35%,无法精确解析出确切结构。
With the rapid development of modern industry, CO2 emissions gradually increase which seriously affects our lives and production. Also, CO2 is well believed to be the new carbon source due to its low price, no toxicity and extremely abundant distribution. Utilization of CO2 not only could solve the environmental problems caused by the greenhouse effect, but also could solve the exhaustion of resources. CO2 is highly thermodynamically stable and kinetically inert, so the key of the chemical utilization of CO2 is it's activation. Due to the electron deficiency of carbonyl carbons, CO2 has strong affinity toward nucleophiles and electron-donating reagents.
     In recent years N-heterocyclic carbenes (NHCs) have evoked considerable interest, and this should thank to Arduengo et al., who first isolated a stable imidazol-2-ylidene in 1991. NHCs show the remarkable electron-donating properties due to inductive effect and conjugated effect. Besides their roles as excellent ligands for transition metal catalysts, organocatalytic carbene catalysis has emerged as an exceptionally fruitful reasearch area in synthetic organic chemistry. NHCs could effectively activate CO2 to form stable NHC-CO2 adducts, but the properties of NHC-CO2 adducts and CO2 chemical conversion catalyzed by NHCs are rarely concerned.
     1. In this dissertation, thermal stability of NHCs-CO2 adducts was investigated by in-situ temperature controlled high pressure FT-IR. NHCs-CO2 adducts possessing low steric hindrance of the N-alkyl substituent displayed higher decarboxylation temperature. Conversely, NHCs-CO2 adducts possessing highly steric hindrance of the N-aryl substituent displayed lower decarboxylation temperature. Unsaturated NHCs-CO2 adducts showed lower thermal stability than their saturated analogue.
     With the increase of temperature, thermal stability of NHCs-CO2 adducts obviously decrease. The presence of free CO2 can effectively inhibit the decomposition of NHCs-CO2 adducts.
     2. NHC-functionalized mesoporous molecular sieve MCM-41 (MCM-41-NHC) and styrene-co-vinyl- benzyl chloride copolymer (P-NHC) were designed on the basis of the study of thermal stability of NHCs-CO2 adducts. MCM-41-NHC and P-NHC, as novel CO2-selective adsorbent, were used for reversible fixation-release of CO2. In situ diffuse reflectance infrared fourier transform spectroscopy demonstrated that MCM-41-NHC could effectively fix CO2 at 40℃and release trapped CO2 at 180℃. The CO2 fixation-release behaviors of MCM-41-NHC are reversible.
     The reversible CO2 fixation-release behaviors of P-NHC were studied by thermogravimetric analysis. When P-NHC was exposed to CO2 atmosphere with a CO2 flow (10 mL/min) at 40℃for 60 min,57% CO2 fixing efficiency was observed on the basis of the weight increase. As compared with the previously reported amine-functionalized polymers, P-NHC exhibited higher CO2 fixing efficiency in the much shorter time. P-NHC is a recyclable CO2 fixation material and 42% CO2 fixing efficiency was obtained for the second CO2 capture. High CO2 fixing efficiency of P-NHC was discussed by quantum chemical calculation.
     3. New application of NHCs was explored as organocatalyst for cycloaddition reaction of CO2 and epoxides. NHCs-CO2 adducts, as NHCs precusor, were proved to be effective organocatalysts for the cycloaddition reaction of CO2 and monosubstituted terminal epoxides to afford cyclic carbonates with high selectivity. IPr-CO2 with the lowest thermostability exhibits excellent activity among NHCs-CO2 adducts and affords cyclic carbonate with 100% yield at 120℃for 24 h (Optimum reaction conditions:0.5 mol% IPr-CO2,50mmol Propylene oxide,2 mL CH2Cl2,2.0 MPa CO2). Under the same conditions, IPr-CO2 can effectively catalyze the cycloaddition reaction of other monosubstituted epoxides with CO2 to afford corresponding cyclic carbonates in good to excellent yields (>90%) with 100% selectivity which exhibits the highest catalytic activity for the cycloaddition reaction amongst the reported organocatalysts.
     The presence of an electrophile such as SalenAlEt could greatly improve the catalytic activity of IPr-CO2 due to intermolecular cooperative catalysis of the binary components. Under the same conditions, the reaction only need 8 h to afford propylene carbonate in 100% yield. Possible mechanism was thoroughly studied on the basis of the reaction of trans-deuterioethene oxide with CO2 and in-situ FT-IR. Epoxide is first activated by its coordination to the central Al3+of SalenAlEt, then is ring-opened by nucleophilic attack of NHC-CO2 adducts or free NHCs at the less substituted C-O bond, and further reacts with CO2 to afford the corresponding cyclic carbonates.
     Heterogeneous MCM-41-NHC catalyst was evaluated in the cycloaddition reaction of epoxides with CO2 and reused by simple filtration. The yield of propylene carbonate is lower than that obtained with the homogeneous IPr-CO2 catalyst at the same conditions, suggesting that the supported catalyst suffer from diffusion resistance. MCM-41-IPr was reused three time without significant loss in catalytic activity.
     4. NHC-CS2 functionalized highly porous MOF was successfully synthesized by heating DMF/CH3OH solution of Zn(ClO4)2.6H2O and NHC-CS2 functionalized linear bidentate carboxylate-bridged linker in sealed vials. MOF-NHC-CS2 was structurally characterized by elemental analyses, IR, XRPD, TG and single crystal X-ray diffraction. Crystal data for MOF-NHC-CS2:cubic, space group Fm-3m, a=b=c=39.7719 A,α=β=γ=90°, V=62911.449 A3, Z=8. Single crystal analysis study could not be obtained due to lower completion of crystal data resulted from large pore size contained lots of disordered DMF solvent molecules.
引文
[1]Zevenhoven R, Eloneva S, Teir S. Chemical fixation of CO2 in carbonates:Routes to valuable products and long-term storage [J]. Catalysis Today,2006,115:73-79.
    [2]Aresta M, Dibenedetto A, Tommasi I. Developing innovative synthetic technologies of industria relevance based on carbon dioxide as raw material [J]. Energy Fuels, 2001,15:269-273.
    [3]Sakakura T, Choi J C, Yasuda H. Transformation of carbon dioxide [J]. Chem. Rev., 2007,107:2365-2387.
    [4]Leitner W. The coordination chemistry of carbon dioxide and its relevance for catalysis:a crtical survey. Coord. Chem. Rev.,1996,153:257-284.
    [5]Gibson D H. The organometallic chemistry of carbon dioxide [J]. Chem. Rev.,1996, 96:2063-2095.
    [6]Yin X L, Moss J R. Recent developments in the activation of carbon dioxide by metal complexes [J]. Coord. Chem. Rev.,1999,181:27-59.
    [7]Perez E R, Santos R H, Gambardella M T, et al. Activation of carbon dioxide by bicyclic amidines [J]. J. Org. Chem.,2004,69:8005-8011.
    [8]Fu P F, Khan M A, Nicholas K M. Thermal and photochemical decarbonylation of niobium complex (MeC5H4)2Nb(η2-CO2)CH2SiMe3 [J]. Organometallics,1991,10:382-384.
    [9]Gibson D H, Mehta J M, Mashuta M S, et al. Synthesis and characterization of new rhenium-tin complexes with μ2-η3-bridging CO2 ligands [J]. Organometallics,1997, 16:4828-4832.
    [10]Tanaka H, Nagao H, Peng S M, et al. Crystal Structure of cis-(Carbon monoxide) (η1-carbon dioxide)bis(2,2-bipyridyl)ruthenium, an Active Species in Catalytic CO2 Reduction Affording CO and HCOO-[J]. Organometallics,1992,11: 1450-1451.
    [11]Bennett M A, Robertson G B, Rokicki A, et al. Synthesis, x-ray structural analysis, and thermal decomposition of the platinum(II) carboxylic acid (hydroxycarbonyl) trans-Pt (C02H) (C6H5) (PEt3):. Formation of a diplatinum(II) complex containing carbon dioxide [J]. J. Am. Chem. Soc.,1988,110:7098-7105.
    [12]Pilato R S, Housmekerides C, Jernakoff P, et al. Net[2+2] cycloaddition reactions of the oxo complexes Cp2M=O (M=Mo,W) with electrophilic organic and organometallic substrates. Formation of bimetallic μ2-η2-CO2 complexes [J]. Organometallics, 1990,9:2333-2341.
    [13]Aresta, M. Nobile, C F. (Carbon dioxide)bis(Trialkylphosphine)Nickel complexes [J]. J. Chem. Soc., Dal ton Trans.1977,708-711.
    [14]Hartwig J F, Andersen R A, Bergman R G. Inter-and intramolecular carbon-hydrogen bond forming and cleavage reactivity of two different types of poly(trimethyl-phosphine) ruthenium intermediates [J]. J. Am. Chem. Soc.,1991,113:6499-6508.
    [15]Hoberg H, Ballesteros A, Sigan A. Ein neuartiger ligandentyp zur CC-verknpfung von Cycloalkenen mit CO2 am (Lig) NiO-System, folgereaktionen [J]. J. Organomet. Chem.,1991,403:19-22.
    [16]Johnston R F, Cooper J C. The first example of photochemically activated carbon dioxide insertion into transition-metal-carbon bonds [J]. Organometallics,1987, 6:2448-2449.
    [17]Mashima K, Tanaka Y, Nakamura A. Synthesis, Characterization, and Reactions of a Mononuclear Tantalum-Benzyne Complexe Ta(η5-C5Me5) (η5-C4H6) (η2-C6H4) [J]. Organometallics,1995,14:5642-5651.
    [18]Pugh J R, Bruce M R, Sullivan B P, et al. Formation of a metal-hydride bond and the insertion of carbon dioxide. Key steps in the electrocatalytic reduction of carbon dioxide to formate anion [J]. Inorg. Chem.,1991,30:86-91.
    [19]Claudio B, Carlo A G, Andrea M, et al. Reactivity of Copper (I) Tetrahydroborates toward C02 and COS. Structure of(triphos)Cu(η1-O2CH) [J]. Inorg. Chem.,1985,24: 924-931.
    [20]Tsai J C, Nicholas K M. Rhodium-catalyzed hydrogenation of carbon dioxide to formic acid [J]. J. Am. Chem. Soc.,1992,114:5117-5124.
    [21]Pandey K K, Garg K H, Tiwari S K. Insertion reactions of carbonyl sulpihde, carbon disulphide and carbon dioxide in the metal-hydrogen bond [J]. Polyhedron,1992,11: 947-950.
    [22]Darensbourg D J, Mueller B L, Bischoff C J, et al. Investigations into the steric influences on the reaction mechanism of carbon dioxide insertion into metal-oxygen bonds. Carbonyl sulfide activation as a model for C02 [J]. Inorg. Chem.,1991,30: 2418-2424.
    [23]Darensbourg D J, Sanchez K M, Reibenspies J H, et al. Synthesis, structure, and reactivity of zerovalent group 6 metal pentacarbonyl aryl oxide complexes. Reactions with carbon dioxide [J]. J. Am. Chem. Soc.,1989,111:7094-7103.
    [24]Lu X B, Shi L, Wang Y M, et al. Design of highly active binary catalyst systems for CO2/epoxide copolymerization:Polymer selectivity, enantioselectivity, and stereochemistry control [J]. J. Am. Chem. Soc.,2006,128:1664-1674.
    [25]Joslin F L, Johnson M P, Mague J T, et al. Synthesis and reaction chemistry of new η5-cyclopentadienylruthenium(Ⅱ) amine and amide complexes [J]. Organometallics,1991,10:2781-2794.
    [26]Cowan R L, Trogler W C. Syntheses, reactions, and molecular structures of trans-hydrido(phenylamido)bis(triethylphosphine)platinum(II) and trans-hydridophen-oxobis (triethylphosphine) platinum(II) [J]. J. Am. Chem. Soc.,1989,111: 4750-4761.
    [27]Fujita S, Bhanage B M, Ikushima Y, et al. Synthesis of dimethyl carbonate from carbon dioxide and methanol in the presence of methyl iodide and base catalysts under mild conditions:effect of reaction conditions and reaction mechanism [J]. Green Chem.,2001,3:87-91.
    [28]Fang S N, Fujimoto K. Direct synthesis of dimethyl carbonate from carbon dioxide and methanol catalyzed by base [J]. Appl. Catal., A 1996,142:1-3.
    [29]Cao F H, Fang D Y, Liu D H, et al. Catalytic esterification of carbon dioxide and methanol for the preparation of dimethyl carbonate [J]. Utilizaton of Greenhouse Gases,2003,852:159-167.
    [30]Cai Q H, Jin C, Lu B, et al. Synthesis of dimethyl carbonate from methanol and carbon dioxide using potassium methoxide as catalyst under mild conditions [J]. Catal. Lett.,2005,103:225-228.
    [31]Dell Amico D B, Calderazzo F, Labella L, et al. Converting carbon dioxide into carbamato derivatives [J]. Chem. Rev.,2003,103:3857-3897.
    [32]Crooks J E, Donnellan J P. Kinetics of the formation of N, N-dialkylcarbamate from diethanolamine and carbon dioxide in anhydrous ethanol[J]. J. Chem. Soc., Perkin Trans.2,1988,191-194.
    [33]Perez E R, da Silva M O, Costa V C, et al. Efficient and clean synthesis of N-alkyl carbamates by transcarboxylation and O-alkylation coupled reactions using a DBU-CO2 zwitterionic carbamic complex in aprotic polar media [J]. Tetrahedron Letters,2002, 43:4091-4093.
    [34]Heldebrant D J, Jessop P G, Thomas C A, et al. The reaction of 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU) with carbon dioxide [J]. J. Org. Chem.,2005,70:5335-5338.
    [35]Perez E R, Santos R H A, Gambardella M T P, et al. Activation of carbon dioxide by bicyclic amidines [J]. J. Org. Chem.,2004,69:8005-8011.
    [36]Villers C, Dognon J-P, Pollet R, et al. An isolated CO2 adduct of a nitrogen base: Crystal and electronic structures [J]. Angew. Chem., Int. Ed.2010,49:3465-3468.
    [37]Mmming C M, Otten E, Kehr G, et al. Reversible metal-free carbon dioxide binding by frustrated lewis pairs [J]. Angew. Chem., Int. Ed.2009,48:6643-6646.
    [38]Turner N J. Applications of transketolases in organic synthesis [J]. Curr. Opin. Biotechnol.,2000,11:527-531.
    [39]Lapworth, A. Reactions involving the addition of hydrogen cyanide to carbon compounds [J]. Journal of the Chemical Society, Transactions 1903,83:995-1005.
    [40]Seebach, D. Methods of reactivity umpolung [J]. Angew. Chem., Int. Ed.1979,18: 239-258.
    [41]de Alaniz J R, Rovis T. A highly enantio-and diastereoselective catalytic intramolecular stetter reaction [J]. J. Am. Chem. Soc.,2005,127:6284-6289.
    [42]Liu Q, Rovis T. Asymmetric synthesis of hydrobenzofuranones via desymmetrization of cyclohexadienones using the intramolecular Stetter reaction [J]. J. Am. Chem. Soc.,2006,128:2552-2553.
    [43]Mattson A E, Bharadwaj A R, Scheidt K A. The thiazolium-catalyzed sila-Stetter reaction:Conjugate addition of acylsilanes to unsaturated esters and ketones [J]. J. Am. Chem. Soc.,2004.126:2314-2315.
    [44]Miyashita A, Suzuki Y, Lwamoto, K, et al. Catalytic action of azolium salts:Part X. synthesis of 2-aroylquinoxalines,1-aroylphthalazines, and 4-aroylcinnolines; An aroylation method using arenecarbaldehydes catalyzed by azolium salt [J]. Heterocycles,1998,49:405-413.
    [45]Suzuki Y, Toyota T, Imada F, et al. Nucleophilic acylation of arylfluorides catalyzed by imidazolidenyl carbene [J]. Chem. Commun.,2003,1314-1315.
    [46]Enders D, Balensiefer T. Nucleophilic carbenes in asymmetric organocatalysis [J]. Acc. Chem. Res.,2004,37:534-541.
    [47]Zeitler K. Extending mechanistic routes in heterazolium catalysis-promising concepts for versatile synthetic methods [J]. Angew. Chem., Int. Ed.2005,44: 7506-7510.
    [48]Arduengo A J, Harlow R L, Kline, M. A stable crystalline carbene [J] J. Am. Chem. Soc.,1991,113:361-363.
    [49]Arduengo A J, Dias, H V R, Harlow R L, et al. Electronic stabilization of nucleophilic carbenes [J]. J. Am. Chem. Soc.,1992,114:5530-5534.
    [50]Enders D, Breuer K, Raabe G, et al. Preparation, structure, and reactivity of 1,3,4-triphenyl-4,5-dihydro-lH-1,2,4-triazol-5-ylidene, a new stable carbene [J]. Angew. Chem., Int. Ed.1995,34:1021-1023.
    [51]Enders D, Breuer K, Runsink J, et al. Chemical reactions of the stable carbene 1,3,4-triphenyl-4,5-dihydro-lH-1,2,4-triazol-5-ylidene [J]. Liebigs Annalen, 1996,12:2019-2028.
    [52]Magill A M, Cavell K J, Yates B F. Basicity of nucleophilic carbenes in aqueous and nonaqueous solvents-theoretical predictions [J]. J. Am. Chem. Soc.,2004,126: 8717-8724.
    [53]Alder R W, Allen P R, Williams S J. Stable carbenes as strong bases [J]. J. Chem. Soc., Chem. Commun.,1995,12:1267-1268.
    [54]Kim Y J, Streitwieser A. Basicity of a stable carbene,1,3-di-tert-butylimidazol-2-ylidene, in THF [J]. J. Am. Chem. Soc.,2002,124:5757-5761.
    [55]Jacobsen H, Correa A, Costabille C, et al. π-Acidity and π-basicity of N-heterocyclic carbene ligands. A computational assessment [J]. J. Organomet. Chem., 2006,691,4350-4358.
    [56]Mercs L, Labat G, Nells A, et al. Piano-stool iron(Ⅱ) complexes as probes for the bonding of N-heterocyclic carbenes:Indications for π-acceptor ability [J]. Organometallics,2006,25:5648-5656.
    [57]Khramov D M, Lynch V M, Bialewski C W. N-heterocyclic carbene-transition metal complexes:Spectroscopic and crystallographic analyses of π-back-bonding interactions [J]. Organometallics,2007,26:6042-6049.
    [58]Fantasia S, Petersen J L, Jacobsen H, et al. Electronic properties of N-heterocyclic carbene (NHC) ligands:Synthetic, structural, and spectroscopic studies of (NHC)Platinum (Ⅱ) complexes [J]. Organometallics,2007,26:5580-5889.
    [59]Green J C, Scur R G, Arnold P L, et al. An experimental and theoretical investigation of the electronic structure of Pd and Pt bis (carbene) complexes [J]. Chem. Commun., 1997,20:1963-1964.
    [60]Herrmann W A. N-Heterocyclic Carbenes:A new concept in organometallic catalysis [J]. Angew. Chem., Int. Ed.2002,41:1290-1309.
    [61]Trnka T M, Grubbs R H. The development of L2X2Ru=CHR olefin metathesis catalysts: An organometallic success story [J]. Acc. Chem. Res.,2001,34:18-29.
    [62]Jafarpour L, Nolan S P. Development of olefin metathesis catalyst precursors bearing nucleophilic carbene ligands [J]. J. Organomet. Chem.,2001,617:17-27.
    [63]Hillier A C, Grasa G A, Viciu M S, et al. Catalytic cross-coupling reactions mediated by Palladium/nucleophilic carbene systems [J]. J. Organomet. Chem.,2002, 653:69-82.
    [64]Marti J, Castells J, Lopezcalahorra F. Introduction to a rational design of chiral thiazolium salts [J]. Tetrahedron Lett.,1993,34:521-524.
    [65]Enders D, Kallfass U. An efficient nucleophilic carbene catalyst for the asymmetric benzoin condensation [J]. Angew. Chem., Int. Ed.2002,41:1743-1745.
    [66]Connor E F, Nyce G W, Mock A, at el. First example of B-heterocyclic carbenes as catalysts for living polymerization:Organocatalytic ring-opening polymerization of cyclic esters [J]. J. Am. Chem. Soc.,2002,124:914-915.
    [67]Nyce G W, Lamboy J A, Connor E F, et al. Expanding the catalytic activity of nucleophilic N-heterocyclic carbenes for transesterification reactions [J]. Org. Lett.,2002,4:3587-3590.
    [68]Grasa G A, Kissling R M, Nolan S P. N-heterocyclic carbenes as versatile nucleophilic catalysts for transesterification/acylation reactions [J]. Org. Lett.,2002,4:3583-3586.
    [69]Kamber N E, Jeong W, Gonzalez S, et al. N-heterocyclic carbenes for the organocatalytic ring-opening polymerization of epsilon-caprolactone [J]. Macromolecules,2009,42:1634-1639
    [70]Duong H A, Cross M J, Louie J. N-heterocyclic carbenes as highly efficient catalysts for the cyclotrimerization of isocyanates [J]. Org. Lett.,2004,6:4679-4681.
    [71]Raynaud J, Absalon C, Gnanou Y, et al. N-heterocyclic carbene-induced zwitterionic ring-opening polymerization of ethylene oxide and direct synthesis of alpha, omega-difunctionalized poly(ethylene oxide)s and poly (ethylene oxide)-b-poly(epsilon-caprolactone) block copolymers [J]. J. Am. Chem. Soc.,2009,131:3201-3209.
    [72]Dvorak C A, Rawal V H. Catalysis of benzoin condensation by conformationally-restricted chiral bicyclic thiazolium salts [J]. Tetrahedron Lett.,1998,39: 2925-2928.
    [73]Tachibana Y, Kihara N, Takaka T. Asymmetric benzoin condensation catalyzed by chiral rotaxanes tethering a thiazolium salt moiety via the cooperation of the component:Can rotaxane be an effective reaction field? [J]. J. Am. Chem. Soc. 2004,126:3438-3439.
    [74]Pesch J, Harms K, Bach T. Preparation of axially chiral N, N-diarylimidazolium and N-arylthiazolium salts and evaluation of their catalytic potential in the benzoin and in the intramolecular Stetter reactions [J]. Eur. J. Org. Chem.,2004, 2025-2035.
    [75]Raghavan S, Anuradha K. Solid-phase synthesis of 1,4-diketones by thiazolium salt promoted addition of aldehydes to chalcones [J]. Tetrahedron Lett.,2002,43: 5181-5183.
    [76]Kerr M S, Alaniz J, Rovis T. A highly enantioselective catalytic intramolecular Stetter reaction [J]. J. Am. Chem. Soc.,2002,124:10298-10299.
    [77]de Alaniz J R, Rovis T. A highly enantio-and diastereoselective catalytic intramolecular Stetter reaction [J]. J. Am. Chem. Soc.,2005,127:6284-6289.
    [78]Schssler W, Regitz M. Stabile dipole aus 1,1,3,3-tetraphenyl-2,2-bimidazol-idinyliden und acyliso-bzw. Acylisothiocyanaten [J]. Chem. Ber.,1974,107: 1931-1948.
    [79]Castells J, Calahorra L F L, Domingo L. Use of thiazolium-2-carboxylates to induce benzoin condensations [J]. Tetrahedron Letters,1985,26:5457-5458.
    [80]Kuhn N, Steimann M, Weyers G. Synthesis and properties of 1,3-diisopropyl-4,5-dimethylimidazolium-2-carboxylate. A stable carbene adduct of carbon dioxide [J]. Z. Naturforsch., Teil B 1999,54:427-433.
    [81]Duong H A, Tekavec T N, Arif A M et al. Reversible carboxylation of N-heterocyclic carbenes [J]. Chem. Commun.,2004,112-113.
    [82]Holbrey J D, Reichert W M, Tkatchenko I, et al.1,3-dimethylimidazolium-2-carboxylate:The unexpected synthesis of an ionic liquid precursor and carbene-CO2 adduct [J]. Chem. Commun.,2003,28-29.
    [83]Ri jksen C, Rogers R D. A solventless route to 1-ethyl-3-methylimidazolium fluoride hydrofluoride, [C2mim][F]. xHF [J]. J. Org. Chem.,2008,73:5582-5584.
    [84]Tommasi I, Sorrentino F. Utilisation of 1,3-dialkylimidazolium-2-carboxylates as C02-carriers in the presence of Na+ and K+:Application in the synthesis of carboxylates, monomethylcarbonate anions and halogen-free ionic liquids [J]. Tetrahedron Lett.,2005,46:2141-2145.
    [85]Tommasi I, Sorrentino F. Synthesis of 1,3-dialkylimidazolium-2-carboxylates by direct carboxylation of 1,3-dialkylimidazolium chlorides with CO2[J]. Tetrahedron Lett.,2006,47:6453-6456.
    [86]Voutchkova A M, Appelhans L N, Chianese A R, et al. Disubstituted imidazolium-2-carboxylates as efficient precursors to N-heterocyclic carbene complexes of Rh, Ru, Ir, and Pd [J]. J. Am. Chem. Soc.,2005,127:17624-17625.
    [87]Voutchkova A M, Feliz M, Clot E, et al. Imidazolium carboxylates as versatile and selective N-heterocyclic carbene transfer agents:Synthesis, mechanism, and applications [J]. J. Am. Chem. Soc.,2007,129:12834-12846.
    [88]Brauer D J, Kottsieper K W, Liek C, et al. Phosphines with 2-imidazolium and para-phenyl-2-imidazolium moieties synthesis and application in two-phase catalysis [J]. J. Organomet. Chem.,2001,630:177-184.
    [89]Komarov I V, Kornilov M Y. Tungsten pentacarbonyl as a potential protecting group for soft Lewis base centres in alkylation of multifunctional molecules [J]. Tetrahedron,1995,51:11271-11280.
    [90]Azouri M, Andrieu J, Picquet M, et al. Synthesis of new cationic donor-stabilized phosphenium adducts and their unexpected p-substituent exchange reactions [J]. Inorg. chem.,2009,48:1236-1242.
    [91]Kuhn N, Maichle-Mssmer C, Weyers G. Syntheses and structures of Cl3Ti(μ-O) (μ-ImCO2)2TiCl3 and Cl3Ti(μ-O) (μ-ImCO2)TiCl3. 2MeCN (Im=2,3-dihydro-1,3- diisopropyl-4,5-dimethylimidazol-2-ylidene):An Imidazolium carboxylate as electroneutral bridging ligand [J]. Z. Anorg. Allg. Chem.,1999,625:851-856.
    [92]Smiglak M, Holbrey J D, Griffin S T, et al. Ionic liquids via reaction of the zwitterionic 1,3-dimethylimidazolium-2-carboxylate with protic acids. Overcoming synthetic limitations and establishing new halide free protocols for the formation of ILs [J]. Green Chem.,2007,9:90-98.
    [93]Riduan S N, Zhang Y G, Ying J Y. Conversion of carbon dioxide into methanol with silanes over N-Heterocyclic carbene catalysts [J]. Angew. Chem., Int. Ed.2009, 48:3322-3325.
    [94]Hegg E L. Unraveling the structure and mechanism of acetyl-coenzyme a synthase [J]. Acc. Chem. Res.,2004,37:775-783.
    [95]Lin W Y, Frei H. Photochemical CO2 splitting by metal-to-metal charge-transfer excitation in mesoporous ZrCu(I)-MCM-41 silicate sieve [J]. J. Am. Chem. Soc.,2005, 127:1610-1611.
    [96]Simon-Manso E, Kubiak C P. Dinuclear nickel complexes as catalysts for electrochemical reduction of carbon dioxide [J]. Organometallics,2005,24: 96-102.
    [97]Leitner W. The coordination chemistry of carbon dioxide and its relevance for catalysis:A critical study [J]. Coord. Chem. Rev.,1996,153:257-284.
    [98]Gu L Q, Zhang Y G. Unexpected C02 splitting reactions to form CO with N-heterocyclic carbenes as organocatalysts and aromatic aldehydes as oxygen acceptors [J]. J. Am. Chem. Soc.,2010,132:914-915.
    [99]Tommasi I, Sorrentino F.1,3-Dialkylimidazolium-2-carboxylates as versatile N-heterocyclic carbene-C02 adducts employed in the synthesis of carboxylates and alpha-alkylidene cyclic carbonates [J]. Tetrahedron Lett.,2009,50:104-107.
    [100]Kayaki Y, Yamamoto M, Ikariya T. N-heterocyclic carbenes as efficient organocatalysts for CO2 Fixation Reactions [J]. Angew. Chem., Int. Ed.2009,48: 4194-4197.
    [101]Kayaki Y, Yamamoto M, Ikariya T. Stereoselective formation of alpha-alkylidene cyclic carbonates via carboxylative cyclization of propargyl alcohols in supercritical carbon dioxide [J]. J. Org. Chem.,2007,72:647-649.
    [102]Capon J, Hassnaoui S, Gloaguen F, et al. ALheterocyclic carbene ligands as cyanide mimics in diiron models of the all-iron hydrogenase active site [J]. Organometallics,2005,24:2020-2022.
    [103]Liu J P, Chen J B, Zhao J F, et al. A modified procedure for the synthesis of 1-arylimidazoles [J]. Synthesis,2003,17:2661-2666.
    [104]Arduengo A J, Krafczyk R, Schmutzler R. Imidazolylidenes, imidazolinylidenes and imidazolidines [J]. Tetrahedron,1999,55:14523-14534.
    [105]毛松柏,叶宁,丁雅萍,et al烟道气中CO2回收新技术的开发和应用[J].煤化工,2005,33(3):25-28.
    [106]黎四芳,任铮伟,李盘生,et al. MDEA-MEA混合有机胺水溶液吸收CO2[J].化工学报,1994,45(6):698-703.
    [107]许阳,毛玉如,能源洁净利用与CO2排放控制技术[J].能源化工,2002(4):11-15.
    [108]苏毅,胡亮,刘谋盛.气体膜分离技术及应用[J].石油与天然气化工,2001,30(3):113-116.
    [109]Quinn R, Appleby J B, Pez G P. New facilitated transport membranes for the separation of carbon dioxide from hydrogen and methane [J]. Journal of Membrane Science,1995,104:139-146.
    [110]魏玺,陈健,变压吸附分离技术及其在粉末冶金行业中的应用[J],化工进展,2002,21(3):209-213.
    [111]李天成,冯霞,李鑫刚.二氧化碳处理技术现状及其发展趋势[J],化学工业与工程,2002,4(2):191-196.
    [112]Xu X C, Song C S, Andresen J M, et al. Novel polyethylenimine-modified mesoporous molecular sieveof MCM-41 Type as High-capacity adsorbent for CO2 Capture [J]. Energy Fuels,2002,16:1463-1469.
    [113]Xu X C, Song C S, Andresen J M, et al. Preparation and characterization of novel CO2 molecular basket adsorbents based on polymer-modified mesoporous molecular sieve MCM-41 [J]. Microporous and Mesoporous Materials,2003,62:29-45.
    [114]Ma X L, Wang X X, Song C S. "Molecular Basket" sorbents for separation of CO2 and H2S from various gas streams [J].2009,131:5777-5783.
    [115]Endo T, Nagai D, Monma T, et al. A novel construction of a reversible fixation-release system of carbon dioxide by amidines and their polymer [J]. Macromolecules,2004,37:2007-2009.
    [116]Ochiai B, Yokota K, Fujii A, et al. Reversible trap-release of CO2 by polymers bearing DBU and DBN moieties [J]. Macromolecules,2008,41:1229-1236.
    [117]Shaikh A-A G, Sivaram S. Organic carbonates [J]. Chem Rev.,1996,96:951-976.
    [118]Kawanami H, Ikushima Y. Chemical fixation of carbon dioxide to styrene carbonate under supercritical conditions with DMF in the absence of any additional catalysts[J]. Chem. Commun.,2000,2089-2090.
    [119]Barbarini A, Maggi R, Mazzacani A, et al. Cycloaddition of CO2 to epoxides over both homogeneous and silica-supported guanidine catalysts [J]. Tetrahedron Letters, 2003,44:2931-2934.
    [120]Huang J W, Shi M. Chemical fixation of carbon dioxide by NaI/PPh3/PhOH [J]. J Org Chem.,2003,68:6705-6709.
    [121]Shen Y M, Duan W L, Shi M. Phenol and organic bases co-catalyzed chemical fixation of carbon dioxide with terminal epoxides to form cyclic carbonates [J]. Adv. Synth. Catal.,2003,345:337-340.
    [122]Shen Y M, Duan W L, Shi M. Chemical fixation of carbonate co-catalyzed by a combination of shiff bases or phenols and organic bases [J]. Eur. J. Org. Chem., 2004,3080-3089.
    [123]Kasuga K, Nagao S, Fukumoto T. Cycloaddition of carbon dioxide to propylene oxide catalysed by tetra-t-butylphthalocyaninatoaluminium(III) Chloride [J]. Polyhedron,1996,15:69-72.
    [124]Takeda N, Inoue S. Activation of carbon dioxide by tetraphenylporphinato-aluminum methoxide. Reaction with epoxide [J]. Bull. Chem. Soc. Jpn.,1978,51: 3564-3567.
    [125]Lu X B, Feng X J, He R. Catalytic formation of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture with tetradentate schiff-base complexes as catalyst [J]. Appl. Catal. A:General,2002,234:25-33.
    [126]Lu X B, Zhang Y J, Liang B, et al. Chemical fixation of carbon dioxide to cyclic carbonates under extremely mild conditions with highly active bifunctional catalysts [J]. J. Mol. Catal. A:Chem.,2004,210:31-34.
    [127]Lu X B, Zhang Y J, Jin K, et al. Highly active electrophile-nucleophile catalyst system for the cycloaddition of CO2 to epoxides at ambient temperature [J]. J. Catal., 2004,227:537-541.
    [128]Peng J J, Deng Y Q. Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids [J]. New J. Chem.,2001,25:639-641.
    [129]Jeong W, Hedrick J L, Waymouth R M. Organic spirocyclic initiators for the ring-expansion polymerization of α-Lactones [J]. J. Am. Chem. Soc.,2007,129: 8414-8415.
    [130]Yamaguchi K, Ebitani K, Yoshida T, et al. Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides [J]. J. Am. Chem. Soc.,1999,121:4526-4527.
    [131]Zhang X, Jia Y B, Lu X B, et al. Intramolecularly two-centered cooperation catalysis for the synthesis of cyclic carbonates from CO2 and epoxides [J]. Tetrahedron Lett.,2008,49:6589-6592.
    [132]Lu X B, Shi L, Wang Y M, et al. Design of highly active binary catalyst systems for C02/epoxide copolymerization:polymer selectivity, enantioselectivity, and stereochemistry control [J]. J. Am. Chem. Soc.,2006,128(5):1664-1674.
    [133]Eddaoudi M, Moler D B, Li H, et al. Modular Chemistry:Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks [J]. Acc. Chem. Res.,2001,34:319-330.
    [134]Ferey G, Mellot-Draznieks C, Serre C, et al. Crystallized Frameworks with Giant Pores:Are There Limits to the Possible? [J] Acc. Chem. Res.,2005,38:217-225.
    [135]Mueller U, Schubert M, Teich F, et al. Metal-organic frameworks-prospective industrial applications [J]. J. Mater. Chem.,2006,16:626-636.
    [136]Kitagawa S, Kitaura R, Noro S. Functional Porous Coordination Polymers [J]. Angew. Chem., Int. Ed.2004,43:2334-2375.
    [137]Li H L, Eddaoudi M,O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J]. Nature.1999,402:276-279.
    [138]Eddaoudi M, Kim J, Rosi N, et al. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage [J]. Science.2002, 295:469-472.
    [139]Chae H K, Siberio-Perez D Y, Kim J, et al. A Route to High Surface Area, Porosity and Inclusion of Large Molecules in Crystals [J]. Nature.2004,427:523-527.
    [140]Rowsell J L C, Yaghi 0 M. Strategies for Hydrogen Storage in Metal-Organic Frameworks [J], Angew. Chem., Int. Ed.2005,44:4670-4679.
    [141]Millward A R, Yaghi O M. Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature [J], J. Am. Chem. Soc.,2005, 127:17998-17999.
    [142]Bredenkotter B, Volkmer D, Hitzbleck J, et al. A Cobalt(II)-containing Metal-Organic Framework Showing Catalytic Activity in Oxidation Reactions [J]. Anorg. Allg. Chem.,2008,634:2411-2417.
    [143]Cho S H, Ma B, Nguyen S T, et al. A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation [J]. Chem. Commun.,2006, 2563-2565.
    [144]Gandara F, Garcia-Cortes A, Cascales C, et al. Rare Earth Arenedisulfonate Metal-Organic Frameworks:An Approach toward Polyhedral Diversity and Variety of Functional Compounds [J]. Inorg. Chem.,2007,46:3475-3484.
    [145]Suslick K S, Bhyrappa P, Chou J H, et al. Microporous Porphyrin Solids [J]. Acc. Chem. Res.,2005,38:283-291.
    [146]Seo J S, Whang D, Lee H, et al. A homochiralmetal organic porous material for enantioselective separation and catalysis [J]. Nature.2000,404:982-986.
    [147]Wu C D, Hu A G, Zhang L, et al. A Homochiral Porous Metal-Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis [J]. J. Am. Chem. Soc. 2005,127:8940-8941.
    [148]Matsushita M M, Morikawa M, Kawai T, et al. Metal coordination complexes composed of photo-electrochemically active ligands [J]. Mol. Cryst. And Liq. Cryst.,2000, 343:87-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700