用户名: 密码: 验证码:
多孔材料的合成与氨硼烷储氢应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文从多孔材料的定向设计合成出发,借助计算机模拟,成功以LTA分子筛拓扑结构为设计思想,研究基本结构基元和特定拓扑结构之间的关系,利用具有硅氧双四员环D4R的官能化立方硅烷I8OPS [(IPhSiO_(3/2))_8]模拟传统分子筛结构中的D4R,合成了类LTA拓扑结构的新型有机无机杂化骨架,为定向设计提供了新路线,并且成功为无机分子筛材料和有机多孔材料搭建桥梁(第二章)。
     以定向设计为基本思路,我们合成了只由C,H轻元素组成的具有很低的骨架密度的有机多孔材料PAF-1,同时该材料具有预想的性质:很高的比表面和很大的孔容,并且热稳定性也普遍高于金属有机骨架。这种新材料的应用成为该论文的研究课题之一。在当今能源问题的大环境下,我们将该材料应用于燃料电池的储氢体系,利用其良好的纳米限域作用和低密度特点,可以明显提高氨硼烷的放氢性能(第三章)。
     而以往报导的用于AB性能提高材料一般是同时利用纳米限域和催化作用,但是在PAF-1体系中,仅仅利用前者就能得到相同的性能提高。纳米限域和催化在AB性能的提高中之间的相互关系如何是一个值得探讨的问题,在下一章中,我们选用了不同金属中心的MOF-74结构作为研究对象,探索了纳米限域和催化在该体系中如何发挥作用,并且得到两者共同作用时能得到更好的结果的结论(第四章)。
     本论文在有机无机骨架的定向合成以及氨硼烷的性能提高上进行了详细的研究和阐述,为多孔材料在储氢方面的应用提供了大量开创性的工作。
Porous materials have attracted the extensive attention due to its unique porestructure and separation, catalysis, adsorption, confinement properties. Especially, inrecent years, following the development of COFs, MOFs, PAFs materials, organicfunctional groups are introduced into the frameworks which provides widerdevelopment space to design and synthesis porous materials from inorganic moleculesieves to the organic porous material with practical applications.
     This paper mainly focuses on how to build up the porous framework which hasthe specific topology of molecule sieve using the organic-inorganic hybrid buildingunit. And we also discussed nano-confinement and catalytic performances of PAFs,MOFs on hydrogen storage in AB system. A series of techniques were employed toimprove the total hydrogen storage and hydrogen dynamics. In summery, the workhas achieved the following results:
     (1). Using silica double4-rings (D4R) functionalized cubic silane I8OPS[(IPhSiO3/2)8](octaphenylsilsesquioxanes, OPSs) as cubic nano building block,biphenyl groups were formed to alternate the T–O–T linkage between D4R in LTA orACO backbones of the new porous organic-inorganic hybrid framework of JUC-Z1.MAS, NMR and N2adsorption results show that the structure is likely to have LTAtopology. This strategy of utilizing I8OPS as a building block with Ullmann chemistryas a linking method may provide an approach for constructing a wide variety offunctionalized zeolitic porous organic frameworks that bridge COFs and zeolites.
     (2). Using porous aromatic framework PAF-1as substrate to nano-confine ABmolecules can improve the amount of hydrogen and decrease the release temperaturewith no volatile by-products in dehydrogenation process. It started to dehydrogenateat very low temperature (around50oC) with the peak of77oC. Furthermore, about4wt%(AB) of hydrogen was evolved in the first25minutes at75oC which is2wt%ofsystem. Compared with other porous supports such as MOFs, the PAF-1has a verylow framework density because it is built up by light C and H elements. This couldsignificantly improve the hydrogen systemic gravimetric capacity and thus more feasible in practical applications.
     (3). MOFs has good catalytic effect due to the metals in the structure relative tothe aromatic frameworks of PAFs materials in the thermal decomposition of AB. Weused NiCo-MOF-74as bi-metal catalyst and nano-confinement substrate. The amountof released hydrogen and rate were much higher than that of the single metalNi-MOF-74and Co-MOF-74systems. Studies have found that Ni is better catalyst toimprove hydrogen releasing speed, and Co is easier to keep the structural stability ofMOF-74. It provides a new method to selective utilize nano-confinement and catalyticproperties.
引文
[1] Lee J., Farha O. K., Roberts J., Scheidt K. A., Nguyen S. T., HuppJ. T., Metal–organic framework materials as catalysts,[J].Chem.Soc. Rev.,2009,38:1450-1459.
    [2] Ma L., Abney C., Lin W., Enantioselective catalysis withhomochiral metal-organic frameworks,[J].Chem. Soc. Rev.,2009,38:1248-1256.
    [3] Murray L. J., Dincǎ M., Long J. R., ChemInform Abstract: HydrogenStorage in Metal—Organic Frameworks,[J].Chem. Soc. Rev.,2009,38:1294-1314.
    [4] Furukawa H., Yaghi O. M., Storage of Hydrogen, Methane, and CarbonDioxide in Highly Porous Covalent Organic Frameworks for CleanEnergy Applications,[J]. J. Am. Chem. Soc.,2009,131:8875-8883.
    [5] Li J., Kuppler R. J., Zhou H., Selective gas adsorption andseparation in metal–organic frameworks,[J].Chem. Soc, Rev.,2009,38:1477-1504.
    [6] Beck J S, et al. A New family of Mesoporous Molecular sievesprepared with Liquid Crystal Templates,[J].J. Am.Chem. Soc.,1992114:10834-10843.
    [7] Eddaoudi M, Moler D B, Li H L, et al., Modular chemistry: Secondarybuilding units as a basis for the design of highly porous androbust metal-organic carboxylate frameworks,[J].Accounts ofChemical Research,2001,34:319-330.
    [8] Champness N R, Schr der M., Extended networds formed bycoordination Polymers in the solid state,[J].Current Opinionin Solid State and Materials Science,1998,3:419-424.
    [9] Ferey G., Hybrid porous solids: past present, future,[J].chemical society reviews,2008,37:191-214.
    [10] Li H, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of anexceptionally stable and highly porous metal-organic framework,[J].Nature,1999,402:276-279.
    [11] Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore sizeand functionality in isoreticular MOFs and their application inmethane storage,[J].Science,2002,295:469-472.
    [12] Chae H K, Siberio-Perez D Y, Kim J, et al. A route to high surfacearea, porosity and inclusion of large molecules in crystals,[J].Nature,2004,427:523-527.
    [13] Furukawa H., Ko N., Go Y. B., Aratani N., Choi S. B., Choi E.,Yazaydin A. O., Snrr R.Q., O’Keeffe M., Kim J., Yaghi O. M.,Ultrahigh porosity in metal-organic frameworks,[J].Science,2010,329:424-428.
    [14] Ferey G, Serre C, Mellot-Draznieks C, et al. A hybrid solid withgiant pores prepared by a combination of targeted chemistry,simulation and powder diffraction,[J].AngewandteChemie-International Edition,2004,43:6296-6301.
    [15] Ferey G, Mellot-Draznieks C, Serre C, et al. A chromiumterephthalate-based solid with unusually large pore volumes andsurface area,[J].Science,2005,309:2040-2042.
    [16] Park K S, Ni Z, Cote A P, et al. Exceptional chemical and thermalstability of zeolitic imidazolate frameworks,[J].Proceedings ofthe national academy of sciences of the united states ofAmerica,2006,103:10186-10191.
    [17] Férey G., Hybrid porous solids: past, present, future,[J]. Chem.Soc. Rev.,2008,37:191-214.
    [18] Banerjee R., Phan A., Wang B., Knobler C., Furukawa H., O’KeeffeM., Yaghi O. M., High-Throughput Synthesis of ZeoliticImidazolate Frameworks and Application to CO2Capture,[J].Science,2008,319:939-943.
    [19] Banerjee R., Furukawa H., Britt D., Knobler C., O’Keeffe M.,Yaghi O. M., Control of Pore Size and Functionality inIsoreticular Zeolitic Imidazolate Frameworks and their CarbonDioxide Selective Capture Properties,[J].J. Am.Chem. Soc.,2009,131:3875-3877.
    [20] Zhang J, Chen S M, Nieto R A, et al. A Tale of Three Carboxylates:Cooperative Asymmetric Crystallization of a Three-DimensionalMicroporous Framework from Achiral Precursors,[J].Angew andtechemie-International Edition,2010,49:1267-1270.
    [21] Clegg J K, Iremonger S S, Hayter M J, et al. HierarchicalSelf-Assembly of a Chiral Metal-Organic Framework DisplayingPronounced Porosity,[J].Angewandte Chemie-InternationalEdition,2010,49:1075-1078.
    [22] Kepert C J, Prior T J,Rosseinsky M J. A versatile family ofinterconvertible microporous chiral molecular framework:thefriste xample of the ligand control of network chirality,[J].Journal of the American Chemical Society,2000,122:5158-5168.
    [23] Mueller T,Ceder G. A, Density functional theory study of hydrogenadsorption in MOF-5,[J].J. Phys. Chem. B,2005,109:17974-17983.
    [24] Bordiga S, Vitillo J G, Ricchiardi G, et al., Interaction ofhydrogen with MOF-5,[J].J. Phys. Chem. B,2005,109:18237-18242.
    [25] Li J R, Kuppler R J,Zhou H C. Selective gas adsorption andseparation in metal-organic frameworks,[J].Chemical Societyreviews,2009,38:1477-1504.
    [26] Wong K L, Law G L, Yang Y Y, et al. A highly porous luminescentterbium-organic framework for reversible anion sensing,[J].AdvMater,2006,18:1051-1054.
    [27] Zhao H, Bazile M J, Galan-Mascaros J R, et al. A rare-earth metalTCNQ magnet: Synthesis, structure, and magnetic properties of{[Gd2(TCNQ)5(H2O)9][Gd(TCNQ)4(H2O)3]}·4H2O,[J]. AngewandteChemie-International Edition,2003,42:1015-1018.
    [28] Voronkov M G., Laverent’yev V I.,Polyhedraloligosilsesquioxanes and their homo derivatives,[J].TopicsCurr.Chem.,1982,102:199-236.
    [29] Isayeva I S., Kennedy J P., Amphiphilic membranes crosslinked andreinforced by POSS,[J].Journal of Polymer Science Part A: PolymerChemistry,2004,42:4337-4352.
    [30] Wada K., Mitsudo T.-A., Preparation of Novel Materials forCatalysts Utilizing Metal-Containing Silsesquioxanes,[J].Catal.SurV. Asia2005,9:229-241.
    [31] Kannan R. Y., Salacinski H. J., Butler P. E., Seifalian A. M.,Polyhedral Oligomeric Silsesquioxane Nanocomposites: The NextGeneration Material for Biomedical Applications,[J]. Acc. Chem.Res.,2005,38:879-884.
    [32] Chris D, Polyhedral Oligomericsilsequioxanes: Additives forUnique Cosmetic Properties,[J].Cosmetics and toiletries,2008,123:51-56.
    [33] Morris R. E. J., Modular materials from zeolite-like buildingblocks,[J].Mater. Chem.,2005,15:931-938.
    [34] LoyD. A., In Hybrid Materials: Synthesis Characterization andApplications, Kickelbick, G., Ed.,[M].Wiley: Weinheim, Germany,2007,225-254.
    [35] Su X, Xu H, Deng Y, Li J, Zhang W, Wang P, Preparation and opticallimiting properties of a POSS-containing organic–inorganichybrid nanocomposite,[J].Materials Letters,2008,62:3818-3820.
    [36] Su X, Guang S, Xu H, Liu X, Li S, Wang X, Deng Y, Wang P,Controllable Preparation and Optical Limiting Properties ofPOSS-Based Functional Hybrid Nanocomposites with DifferentMolecular Architectures,[J].Macromolecules,2009,42:8969-8976.
    [37] Morris R E., Modular materials from zeolite-like building blocks,[J].J. Mater. Chem.,2005,15:931-938.
    [38] Korchkov V. P., Martynova T. N., Danilovich V. S.,[J].Thin SolidFilms,1983,101:369-372.
    [39](a)Agaskar P. A., Organolithic macromolecular materials derivedfrom vinyl-functionalized spherosilicates: novel potentiallymicroporous solids,[J].J. Am. Chem. Soc.,1989,111:6858-6859.(b) Zhang C., Babonneau F., Bonhomme C., Laine R. M., Soles C.L., Hristov H. A., Yee A. F., Highly Porous PolyhedralSilsesquioxane Polymers. Synthesis and Characterization,[J].J.Am. Chem. Soc.,1998,120:8380-8391.(c) Morrison J. J., LoveC. J., Manson B. W., Shannon I. J., Morris R. E., Synthesis offunctionalised porous network silsesquioxane polymers,[J].J.Mater. Chem.,2002,12:3208-3212.
    [40](a) Lichtenhan J. D., Vu N. Q., Carter J. A., Gilman J. W., FeherF. J., Silsesquioxane-siloxane copolymers from polyhedralsilsesquioxanes,[J].Macromolecules,1993,26:2141-2142.(b)Choi J., Harcup J., Yee A. F., Zhu Q., Laine R. M.,Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes,[J].J. Am. Chem. Soc.,2001,123:11420-11430.
    [41](a) Bagshaw S. A., Prouzet E., Pinnavaia T, J., Templating ofmesoporous molecular sieves by nonionic polyethylene oxidesurfactants,[J].Science,1995,269:1242-1244.(b) Goltner C.G., Antonietti M., Mesoporous materials by templating of liquidcrystalline phases,[J].Adv. Mater.,1997,9:431-436.(c)Templin M., Franck A., Chesne A. D., Leist H., Zhang Y. M., UlrichR., SchMdler V., Wiesner U., Organically Modified AluminosilicateMesostructures from Block Copolymer Phases,[J].Science1997,278:1795-1798.(d) Zhao D. Y., Feng J. L., Huo Q. S., Melosh N.,Fredrickson G. H., Chmelka B. F., Stucky G. D., Triblock CopolymerSyntheses of Mesoporous Silica with Periodic50to300AngstromPores,[J].Science,1998,279:548-552.
    [42] Laine R M,Nanobuilding blocks based on the [OSiO1.5]x(x=5,6,8,10) octasilsesquioxanes,[J].Mater. Chem.,2005,15:3725–3744.
    [43] Harrison P. G., Kannengisser R., Porous materials derived fromtrigonal-prismatic {Si609} and cubane {Si8012}cage monomers,[J].Chem. Commun.,1996,415-416.
    [44] Zhang C. X., Babonneau F., Bonhomme C., Laine R. M., Soles C. L.,Hristov H. A., Yee A. F., Highly Porous Polyhedral SilsesquioxanePolymers. Synthesis and Characterization,[J].J. Am. Chem. Soc.,1998,120:8380-8391.
    [45] Zhang L, Abbenhuis H C. L., Yang Q, MengWang Y, Magusin P C. M.M., Mezari B, van Santen R A., Li C, Mesoporous Organic–InorganicHybrid Materials Built Using Polyhedral OligomericSilsesquioxane Blocks,[J].Angew. Chem. Int. Ed.,2007,46:5003-5006.
    [46] Chaikittisilp W, Sugawara A, Shimojima A, Okubo T, MicroporousHybrid Polymer with a Certain Crystallinity Built fromFunctionalized Cubic Siloxane Cages as a Singular Building Unit,[J].Chem. Mater.,2010,22:4841-4843.
    [47](a) Hagiwara Y., Shimojima A., Kuroda K.,Alkoxysilylated-Derivatives of Double-Four-Ring Silicate asNovel Building Blocks of Silica-Based Materials,[J].Chem.Mater.,2008,20:1147-1153.(b) Hagiwara Y., Shimojima A., KurodaK., Formation of Reactive Microporous Networks fromAlkoxyvinylsilylated Siloxane Cages,[J].Bull. Chem. Soc. Jpn.,2010,83:424-430.(c) Auner N., Bats J. W., Katsoulis D. E.,SutoM., Tecklenburg R. E., Zank G. A., Chemistry ofHydrogen-Octasilsesquioxane: Preparation and Characterizationof Octasilsesquioxane-Containing Polymers,[J].Chem. Mater.,2000,12:3402-3418.
    [48] Detken A., Zimmermann H., Haeberlen U., Poupko R., LuzZ.,Molecular Reorientation and Self-Diffusion in Solid Cubane byDeuterium and Proton NMR,[J].J. Phys. Chem.,1996,100:9598-9604.
    [49] Roll M. F., Kampf J. W., Kim Y., Yi E., Laine R. M., Nano BuildingBlocks via Iodination of [PhSiO1.5]n, Forming [p-I-C6H4SiO1.5]n(n=8,10,12), and a New Route to High-Surface-Area, Thermally Stable,Microporous Materials via Thermal Elimination of I2[J].J. AM.CHEM. SOC.2010,132:10171-10183.
    [50] Roll M. F., Asuncion M. Z., Kampf J., Laine R. M.,para-Octaiodophenylsilsesquioxane,[p-IC6H4SiO1.5]8, a NearlyPerfect Nano-Building Block,[J]. ACSNONA2008,2:320-326.
    [51] Cote A. P., Benin A. I., Ockwig N. W., O’Keeffe M., Matzger A.J., Yaghi O. M., Porous, crystalline, covalent organic frameworks,[J].Science,2005,310:1166-1170.
    [52] El-Kaderi H. M., Hunt J. R., Medoza-Cortes J. L., Cote A. P.,Taylor R. E., O’Keeffe M., Yaghi O. M., Designed synthesis of3D covalent organic frameworks,[J].Science,2007,316:268-272.
    [53] Uribe-Romo F. J., Hunt J. R., Furukawa H., Klock C., O’KeeffeM., Yaghi O. M., A Crystalline Imine-Linked3-D Porous CovalentOrganic Framework [J].J.Am.Chem.Soc.,2008,131:4570-4571.
    [54] McKeown N. B., Makhseed S., Budd P. M., Phthalocyanine-basednanoporous network polymers,[J]. Chem. Commun.,2002,2780-2781.
    [55] McKeown N. B., Budd P. M., Msayib K. J., Ghanem B. S., KingstonH. J., Tattershall C.E., Makhseed S., Reynolds K. J., Fritsch D.,Polymers of Intrinsic Microporosity (PIMs): Bridging the Voidbetween Microporous and Polymeric Materials,[J].Chem. Eur. J.,2005,11:2610-2620.
    [56] McKeown N. B., Budd P. M., Polymers of intrinsic microporosity(PIMs): organic materials for membrane separations,heterogeneous catalysis and hydrogen storage,[J].Chem. Soc. Rev.,2006,35:675-683.
    [57] Jiang J, Su F, Trewin A, Wood C D., Campbell N L., Niu H, DickinsonC, Ganin A Y., Rosseinsky M J., Khimyak Y Z., Cooper A I.,Conjugated Microporous Poly(aryleneethynylene) Networks,[J].Angew. Chem. Int. Ed.,2007,46:8574-8578.
    [58] Chen L., Honsho Y., Seki S., Jiang D., Light-Harvesting ConjugatedMicroporous Polymers: Rapid and Highly Efficient Flow of LightEnergy with a Porous Polyphenylene Framework as Antenna,[J].J.Am. Chem. Soc.,2010,132:6742-6748.
    [59] Ben T, Ren H, Ma S, Cao D, Lan J, Jing X, Wang W, Xu J, Deng F,Simmons J M., Qiu S, Zhu G, Targeted Synthesis of a Porous AromaticFramework with High Stability and Exceptionally High Surface Area,[J].Angew. Chem. Int. Ed.,2009,48:9457-9460.
    [60] Ren H, Ben T, Wang E, Jing X, Xue M, Liu B, Cui Y, Qiu S, Zhu G,Targeted synthesis of a3D porous aromatic framework for selectivesorption of benzene,[J].Chem. Commun.,2010,46:291-293.
    [61] Satyapal S, Read C, Ordaz G, et al.,2006Annual DOE HydrogenProgram Merit ReView: Hydrogen Storage,[R].U.S. Department ofEnergy: Washington,2006.
    [62] Satyapal S, Petrovic J, Read C, Thomas G, Ordaz G, Satyapal S.,etal., The U.S. Department of Energy’s National Hydrogen StorageProject: Progress towards meeting hydrogen-powered vehiclerequirements,[J].Catalysis Today,2007,120:246-256.
    [63] Von Helmolt R., Eberle U., Fuel cell vehicles: Status2007,[J].J.Power Sources,2007,165:833-843.
    [64] For a survey covering some of the relevant issues, see:[M].R.S. Irani, MRS Bull.2002,27:680-684.
    [65] For a survey covering some of the relevant issues, see:[M].J.Wolf, MRS. Bull.,2002,27:684-687.
    [66] Satyapal S., Read C., Ordaz G., Thomas G., DOE Hydrogen ProgramAnnual Merit Review Proceedings,2006,http://www.hydrogen.energy.-gov/annual_review06_plenary.html.
    [67] Lawrence Livermore National Laboratory Project Report, FY2005Annual Progress Report for the DOE Hydrogen Program, November2005,http://www1.eere.energy.gov/hydrogenandfuelcells/storage/hydrogen_storage.html
    [68] Wiswall R., Hydrogen in Metals II,[M].Topics in applied physics.1978,29:209.
    [69] Fukai Y., The metal–hydrogen system, basic bulk properties.
    [M].Springer series in materials science,1993.
    [70] Sakintunaa B, Lamari-Darkrimb F, Hirscherc M, Sakintuna B.et al.,Metal hydride materials for solid hydrogen storage:Areview.[J].International Journal of Hydrogen Energy,2007,32:1121-1140.
    [71] Grochala W, Edwards P P, Thermal decomposition of thenon-interstitial hydrides for the storage and production ofhydrogen.[J].Chem. Rev.,2004,104:1283-1315.
    [72] Zaluski L, Zaluska A, Str m-Olsen J O., Nanocrystalline metalhydrides.[J].J. Alloys. Compds.1997,253-254:70-79.
    [73](a) Dillon A. C., Jones K. M., Bekkedahl T. A., Kiang C.H.,BethuneD. S., Heben, M. J., Storage of hydrogen in singlewalledcarbon nanotubes [J]. Nature1997,386:377-379.(b) Zhao X. B.,Xiao B.,Fletcher A. J., Thomas K. M., Hydrogen Adsorption onFunctionalized Nanoporous Activated Carbons [J].J. Phys. Chem.B,2005,109:8880-8888.
    [74] Lin X., Telepeni I., Blake A. J., Dailly A., Brown C. M., SimmonsJ. M., Zoppi M., Walker G. S., Thomas K. T., Mays T. J., HubbersteyP., Champness N. R., Schr der M., High Capacity HydrogenAdsorption in Cu(II) Tetracarboxylate Framework Materials: TheRole of Pore Size, Ligand Functionalization, and Exposed MetalSites,[J]. J. Am. Chem. Soc.,2009,131:2159-2171.
    [75](a) RowsellJ. L. C., Millward A. R., Park K. S., Yaghi O. M.,Hydrogen Sorption in Functionalized Metal Organic Frameworks,[J].J. Am. Chem. Soc.,2004,126:5666-5667.(b) Furukawa H., KimJ., Ockwig N. W., O’Keeffe M., Yaghi O. M., Control of VertexGeometry, Structure Dimensionality, Functionality, and PoreMetrics in the Reticular Synthesis of Crystalline Metal OrganicFrameworks and Polyhedra,[J].J. Am. Chem. Soc.,2008,130:11650-11661.(c) Wu S., Ma L., Long L.-S., Zheng L.-S., Lin W.,Three-Dimensional Metal-Organic Frameworks Based onFunctionalized Tetracarboxylate Linkers: Synthesis, Strucures,and Gas Sorption Studies,[J].Inorg. Chem.,2009,48:2436-2442.(d) Yang W., Lin X., Jia J., Blake A. J., Wilson C., HubbersteyP., Champness N. R., Schr der M.,[J].Chem. Commun.2008,359-361.(e) Tanabe K. K., Cohen S. M., Engineering a Metal–OrganicFramework Catalyst by Using Postsynthetic Modification [J].Angew.Chem. Int. Ed.,2009,480:7560-7563.(f) Wang Z. Q., Cohen S. M.,Postsynthetic modification of metal–organic frameworks,[J].Chem. Soc. ReV.,2009,38:1315-1329.
    [76](a) Dinca M., Han W. S., Liu Y., Dailly A., Brown C. M., LongJ. R., Observation of Cu2+-H2Interactions in a Fully DesolvatedSodalite-Type Metal–Organic Framework,[J].Angew. Chem. Int.Ed.,2007,46:1419-1422.(b) Liu Y., Kabbour H., Brown C. M.,Neumann D. A., Ahn C. C., Increasing the Density of AdsorbedHydrogen with Coordinatively Unsaturated Metal Centers inMetal Organic Frameworks,[J].Langmuir,2008,24:4772-4777.
    [77] Belof J. L., Stern A. C., Eddaoudi M., Space B., On the Mechanismof Hydrogen Storage in a Metal Organic Framework Material,[J].J.Am. Chem. Soc.,2007,129:15202-15210.
    [78](a) Himsl D.,Wallacher D., Hartmann M., Improving theHydrogen-Adsorption Properties of a Hydroxy-Modified MIL-53(Al)Structural Analogue by Lithium Doping,[J].Angew. Chem. Int. Ed.,2009,48:4639-4642.(b) Mulfort K. L., Farha O. K., Stern C. L.,Sarjeant A. A., Hupp J. T., Post-Synthesis Alkoxide FormationWithin Metal Organic Framework Materials: A Strategy forIncorporating Highly Coordinatively Unsaturated Metal Ions,[J].J. Am. Chem. Soc.,2009,131:3866-3868.
    [79] Yang S., Lin X.,Blake A. J., Thomas K. M., Hubberstey P.,ChampnessN. R., Schr der M., Enhancement of H2adsorption in Li+-exchangedco-ordination framework materials,[J].Chem. Commun.,2008,6108-6110.
    [80](a) Li Y, Yang R T, Significantly Enhanced Hydrogen Storage inMetal Organic Frameworks via Spillover,[J].J. Am. Chem. Soc.,2006,128:726-727.(b) Tsao C.S., Yu M.S., Wang C.Y., Liao P.Y.,Chen H.L., Jeng U.S., Tzeng Y.R., Chung T.Y., Wu H.C.,Nanostructure and Hydrogen Spillover of Bridged Metal-OrganicFrameworks,[J].J. Am. Chem. Soc.,2009,131:1404-1406.
    [81] Dinca M., Long J. R., Hydrogen Storage in MicroporousMetal–Organic Frameworks with Exposed Metal Sites,[J].Angew.Chem., Int. Ed.,2008,47:6766-6779.
    [82] Yan Y, Telepeni I, Yang S, Lin X, Kockelmann W, Dailly A, BlakeA J., Lewis W, Walker G S., Allan D R., Barnett S A., ChampnessN R., Schr der M, Metal-Organic Polyhedral Frameworks: High H2Adsorption Capacities and Neutron Powder Diffraction Studies,[J].J. AM. CHEM. SOC.,2010,132:4092-4094.
    [83](a) Perry IV J. J., Perman J. A., Michael J., Zaworotko M. J.,Design and synthesis of metal–organic frameworks usingmetal–organic polyhedra as supermolecular building blocks,[J].Chem. Soc. ReV.,2009,38:1400-1417.(b) Prakash M. J., Lah M.S., Metal–organic macrocycles, metal–organic polyhedra andmetal–organic frameworks,[J].Chem. Commun.,2009,3326-3341.(c) Nouar F., Eubank J. F., Bousquet T., Wojtas L., Zaworotko M.J., Eddaoudi M., Supermolecular Building Blocks (SBBs) for theDesign and Synthesis of Highly Porous Metal-Organic Frameworks,[J].J. Am. Chem. Soc.,2008,130:1833-1835.(d) Zhao D., YuanD., Sun D., Zhou H.C., Stabilization of Metal Organic Frameworkswith High Surface Areas by the Incorporation of Mesocavities withMicrowindows,[J].J. Am. Chem. Soc.,2009,131:9186-9188.
    [84] Yan Y., Lin X., Yang S., Blake A., Dailly A. J., Champness N. R.,Hubberstey P., Schr der M., Exceptionally high H2storage by ametal–organic polyhedral framework,[J].Chem. Commun.,2009,1025-1027.
    [85] Millennium Cell Project Report, FY2005Annual Progress Report forthe DOE Hydrogen Program, November2005,http://www.hydrogen.energy.gov/annual_progress05_storage.html
    [86] Hodoshima S., Arai H., Saito Y., Liquid-film-type catalyticdecalin dehydrogeno-aromatization for long-term storage andlong-distance transportation of hydrogen,[J].Int. J. HydrogenEnergy2003,28:197-204.
    [87] Sandrock G., Reilly J., Graetz J., Zhou W.-M., Johnson J., WegrzynJ.,Accelerated thermal decomposition of AlH3for hydrogen-fueledvehicles,[J].Appl. Phys. A,2005,80:687-690.
    [88] Custelcean R., Dreger Z. A., Dihydrogen Bonding under HighPressure: A Raman Study of BH3NH3Molecular Crystal,[J].J. Phys.Chem. B,2003,107:9231-9235.
    [89] Gutowska A, Li L, Shin Y, Wang C M., Li X S., Linehan J C., SmithR. S, Kay B D., Schmid B, Shaw W, Gutowski M, Autrey T, NanoscaffoldMediates Hydrogen Release and the Reactivity of Ammonia Borane,[J].Angew. Chem.,2005,117:3644-3648.
    [90] Li L, Yao X, Sun C, Du A, Cheng L, Zhu Z, Yu C, Zou J, Smith SC., Wang P, Cheng H M, Frost R L., G Q (Max), AB materials inhydrogen storage.Lithium-Catalyzed Dehydrogenation of AmmoniaBorane within Mesoporous Carbon Framework for Chemical HydrogenStorage,[J].Lu Angew. Chem.,2005,117:3644-3648.
    [91] Li Z, Zhu G, Lu G, Qiu S, Yao X, Ammonia Borane Confined by aMetal-Organic Framework for Chemical Hydrogen Storage: EnhancingKinetics and Eliminating Ammonia,[J].J. AM. CHEM. SOC.,2010,132:1490-1491.
    [92] Gadipelli S, Ford J, Zhou W, Wu H, Udovic T J., Yildirim T,Nanoconfinement and Catalytic Dehydrogenation of Ammonia Boraneby Magnesium-Metal Organic-Framework-74,[J].Chem. Eur. J.,2011,17:6043-6047.
    [93] Srinivas G., Ford J, Zhou W, Yildirim T, Assisted dehydrogenationof ammonia borane:Enhanced kinetics and clean hydrogen generation,[J].International Journal of Hydrogen Enengydoi:10.1016/j.ijhydene.2011.04.008.
    [94] Zhong R Q, Zou R Q, Nakagawa T, Janicke M, Semelsberger T A.,Burrell A K., Del Sesto R E., Improved Hydrogen Release fromAmmonia Borane with ZIF-8,[J]. Inorg. Chem.,doi.org/10.1021/ic202562b.
    [95] Xiong Z T, Yong C K, Wu G T, et al. High-capacity hydrogen storagein lithium and sodium amidoboranes,[J].Nat. Mater.,2008,7:138-141.
    [96] Kang X. D., Fang Z. Z., Kong L. Y., Cheng H. M., Yao X. D., LuG. Q., Wang P.,Ammonia Borane Destabilized by Lithium Hydride:An Advanced On‐Board Hydrogen Storage Material,[J].Adv. Mater.,2008,20:2756-2759.
    [97] He T, Xiong Z, Wu G, Chu H, Wu C, Zhang T, Chen P, Nanosized Co-and Ni-Catalyzed in Ammonia Borane Storage,[J].Chem. Mater.,2009,21:2315-2318.
    [98] Zhao J, Shi J, Zhang X, Cheng F, Liang J, Tao Z, Chen J, A SoftHydrogen Storage Material: Poly(methyl acrylate)-ConfinedAmmonia Borane with Controllable Dehydrogenation,[J].Adv.Mater.,2010,22:394–397.
    [1](a) Van Bekkum H., Flanigen E. M., Jacobs P. A., Jansen J. C.,Eds., Introduction to Zeolite Science and Practic,[M]. Elsevier,Amsterdam,2001.(b) Breck D. W., Zeolite Molecular Sieves,[M].Wiley, New York,1974.(c) Nozue Y., Kodaira T., Ohwashi S., GotoT., Terasaki O., Optical Properties of Potassium ClustersIncorporated into Zeolite LTA,[J].Phys. Rev.,1993, B,48:12245-12252.
    [2] Hayashi H., C té A. P., Furukawa H., O’Keeffe M., Yaghi O. M.,Zeolite A imidazolate frameworks,[J]. Nature Materials,2007,6:501-506.
    [3] Corma A., Rey F., Rius J., Sabater J. M., Valencia S.,Supramolecular self-assembled molecules as organic directingagent for synthesis of zeolites,[J]. Nature,2004,431:287-290.
    [4](a) C té A. P., Benin A. I., Ockwig, N. W. O’Keeffe M., MatzgerJ. Z., Yaghi O. M., Porous, Crystalline, Covalent OrganicFrameworks,[J]. Science,2005,310:1166-1170.(b) EI-KaderiH. M., Hunt J. R., Mendoza-Cortes J. L., C té A. P., Taylor R.E., O’Keeffe M., Yaghi O. M., Designed Synthesis of3D CovalentOrganic Frameworks,[J].Science,2007,316:268-272.(c) C téA. P., EI-Kaderi H. M., Furukawa H., Hunt J. R., Yaghi O. M.,Reticular Synthesis of Microporous and Mesoporous2D CovalentOrganic Frameworks,[J]. J. Am. Chem. Soc.,2007,129:12914-12915.(d) Tilford R. W., Mugavero S. J., Pellechia P.J., Lavigne J. J., Tailoring Microporosity in Covalent OrganicFrameworks,[J]. Adv. Mater.,2008,20:2741-2746.
    [5](a) McKeown N. B., Gahnem B., Msayib K. J., Budd P. M.,Tattershall C. E., Mahmood K., Tan S., Book D., Langmi H. W.,Walton A., Towards Polymer-Based Hydrogen Storage Materials:Engineering Ultramicroporous Cavities within Polymers ofIntrinsic Microporosity,[J]. Angew. Chem. Int. Ed.,2006,45:1804-1807.(b) McKeown N. B., Tan S., Book D., Langmi H. W.,Walton A., Towards Polymer-Based Hydrogen Storage Materials:Engineering Ultramicroporous Cavities within Polymers ofIntrinsic Microporosity,[J]. Angew. Chemie,2006,118:1836-1839.
    [6](a) Wood C. D., Tan B., Trewin A., Niu H., Bradshaw D., RosseinskyM. J., Khimyak Y. Z., Campbell N. L., Kirk R., St ckel E., CooperA. I., Hydrogen Storage in Microporous Hypercrosslinked OrganicPolymer Networks,[J]. Chem. Mater.,2007,19:2034-2048.(b)Germain J., Hradil J., Fréchet J. M. J., Svec F., HighSurface Area Nanoporous Polymers for Reversible HydrogenStorage,[J]. Chem. Mater.,2006,18:4430-4435.
    [7](a) Jiang J. X., Su F., Trewin A., Wood C. D., Campbell N. L.,Khimyak Y. Z., Cooper A. I., Conjugated MicroporousPoly(aryleneethynylene) Networks,[J]. Angew. Chem. Int. Ed.,2007,46:8574-8578.(b) Cooper A. I., Conjugated MicroporousPolymers,[J]. Adv. Mater.,2009,21:1291-1295.(c) Jiang J.X., Su F., Trewin A., Wood C. D., Niu H., Jones T. A., KhimyakY. Z., Cooper A. I., Synthetic Control of the Pore Dimension andSurface Area in Conjugated Microporous Polymer and CopolymerNetworks,[J]. J. Am. Chem. Soc.,2008,130:7710–7720.(d)Farha O. K., Spokoyny A. M., Hauser B. G., Bae Y. S., Brown S.E., Snurr R. Q., Mirkin C. A., Hupp J. T., Synthesis, Properties,and Gas Separation Studies of a Robust Diimide-Based MicroporousOrganic Polymer,[J]. Chem. Mater.,2009,21:3033-3035.
    [8](a) Kuhn P., Antonietti M., Thomas A., Porous, CovalentTriazine-Based Frameworks Prepared by Ionothermal Synthesis,[J].Angew. Chem. Int. Ed.,2008,47:3450-3453.(b) Kuhn P.,Forget A., Su D., Thomas A., Antonietti M., From MicroporousRegular Frameworks to Mesoporous Materials with UltrahighSurface Area: Dynamic Reorganization of Porous Polymer Networks,[J]. J. Am. Chem. Soc.,2008,130:13333-13337.
    [9] Ben T., Ren H., Ma S., Cao D., Lan J., Jing X., Wang W. C., XuJ., Deng F., Simmons M. J., Qiu S., Zhu G., Targeted Synthesisof a Porous Aromatic Framework with High Stability andExceptionally High Surface Area,[J]. Angew. Chem. Int. Ed.,2009,48:9457-9460.
    [10] Yamamoto T., π-Conjugated Polymers Bearing Electronic andOptical Functionalities Preparation by OrganometallicPolycondensations, Properties, and Their Applications,[J].Bull. Chem. Soc. Jpn.,1999,72:621-638.
    [11] Trewin A., Cooper A. I., Porous Organic Polymers: Distinctionfrom Disorder,[J].Angew. Chem. Int. Ed.,2010,49:1533-1535.
    [12] Sugiyama S., Yamamoto S., Matsuoka O., Nozoye H., Yu J., Zhu G.,Qiu S., Terasaki O., AFM observation of double4-rings on zeoliteLTA crystals surface,[J]. Microporous and Mesoporous Materials,1999,28:1-7.
    [13] O’Keeffe M., Yaghi O. M., Review of germanate zeolites and acomparison with silicates,[J]. Chem. Eur. J.,1995,5:2796-2801.
    [14] Chaikittisilp W., Sugawara A., Shimojima A., Okubo T., HybridPorous Materials with High Surface Area Derived fromBromophenylethenyl-Functionalized Cubic Siloxane-BasedBuilding Units,[J]. Chem. Eur. J.,2010,16:6006-6014.
    [15] Chaikittisilp W., Sugawara A., Shimojima A., Okubo T.,Microporous Hybrid Polymer with a Certain Crystallinity Builtfrom Functionalized Cubic Siloxane Cages as a Singular BuildingUnit,[J]. Chem. Mater.,2010,22,17:4841-4843.
    [16] Roll M. F., Kampf J. W., Kim Y., Yi E., Laine R. M., Nano buildingblocks via iodination of [PhSiO1.5]n, forming [p-I-C6H4SiO1.5]n(n=8,10,12), and a new route to high-surface-area, thermallystable, microporous materials via thermal elimination of I2,[J].J. Am. Chem. Soc.,2010,132:10171-10183.
    [17] Roll M. F., Asuncion M. Z., Kampf J., Laine R. M.,Para-Octaiodophenylsilsesquioxane,[p-IC6H4SiO1.5]8, a NearlyPerfect Nano-Building Block,[J]. ACSNONA,2008,2:320-326.
    [18] Zhang C., Laine R. M., Hydrosilylation of Allyl Alcohol with
    [HSiMe2OSiO1.5]8:Octa(3-hydroxypropyldimethylsiloxy)octasilsesquioxane and Its Octamethacrylate Derivative as PotentialPrecursors to Hybrid Nanocomposites,[J]. J. Am. Chem. Soc.,2000,122:6979-6988.
    [19] Zhang C., Babonneau F., Bonhomme C., Laine R. M., Soles C. L.,Hristov H. A., Yee A. F., Highly Porous PolyhedralSilsesquioxane Polymers. Synthesis and Characterization,[J].J. Am. Chem. Soc.,1998,120:8380-8391.
    [20] Hagiwara Y., Shimojima A., Kuroda K.,Alkoxysilylated-Derivatives of Double-Four-Ring Silicate asNovel Building Blocks of Silica-Based Materials,[J]. Chem.Mater.,2008,20:1147-1153.
    [21] Choi J., Harcup J., Yee A. F., Zhu Q., Laine R. M.,Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes,[J]. J. Am. Chem. Soc.,2001,123:11420-11430.
    [22] Tanaki R., Choi J., Laine R. M., A Polyimide Nanocomposite fromOcta(aminophenyl)silsesquioxane,[J]. Chem. Mater.,2003,15:793-797.
    [23] Choi J., Yee A. F., Laine R. M., Organic/Inorganic HybridComposites from Cubic Silsesquioxanes. Epoxy Resins ofOcta(dimethylsiloxyethylcyclohexylepoxide) Silsesquioxane,[J]. Macromolecules,2003,36:5666-5682.
    [24] Wu T., Zhang J., Zhou C., Wang L., Bu X. H., Feng P. Y.,ZeoliteRHO-Type Net with the Lightest Elements,[J]. J. Am. Chem. Soc.,2009,131:6111-6113.
    [1] Liu C., Li F., Ma L. P., Cheng H.-M.,Advanced Materials for EnergyStorage. Advanced Materials,[J]. Adv. Mater.,2010,22: E28-E62.
    [2] Lim K. L., Kazemian H., Yaakob Z., Daud W. R. W., Solid-stateMaterials and Methods for Hydrogen Storage: A Critical Review,[J]. Chem. Eng. Technol.,2010,33:213-226.
    [3] Yildirim T., Ciraci S., Titanium-Decorated Carbon Nanotubes asa Potential High-Capacity Hydrogen Storage Medium,[J].PhysicalReview Letters,2005,94:175501-175504.
    [4] Rowsell J. L. C., Yaghi O. M., Strategies for Hydrogen Storagein Metal–Organic Frameworks,[J]. Angew. Chem. Int. Ed.,2005,44:4670-4679.
    [5] Assfour B., Leoni S., Yurchenko S., Seifert G.,Hydrogen storagein zeolite imidazolate frameworks. A multiscale theoreticalinvestigation,[J].Int. J. Hydrogen Energy,2011,36:6005-6013.
    [6] Shao H., Felderhoff M., Schuth F., Weidenthaler C.,Nanostructured Ti-catalyzed MgH2for hydrogen storage,[J].Nanotechnology,2011,22:235401-235407.
    [7] Sakintunaa B., Lamari-Darkrimb F., Hirscherc M., Metal hydridematerials for solid hydrogen storage: a review,[J].Int. J.Hydrogen Energy,2007,32:1121-1140.
    [8] Liu C., Chen Y., Wu C. Z., Xu S. T., Cheng H. M.,Hydrogen storagein carbon nanotubes revisited,[J].Carbon,2010,48:452-455.
    [9] Satyapal S., Read C., Ordaz G., Thomas G., DOE Hydrogen ProgramAnnual Merit Review Proceedings,2006http://www.hydrogen.energy.-gov/annual_review06_plenary.html.
    [10] Yan Y., Telepeni I., Yang S., Lin X., Kockelmann W., Dailly A.,Blake A. J., Lewis W., Walker G. S., Sarah D. R. A., Barnett A.,Champness N. R., Schr der M., Metal Organic Polyhedral Frameworks:High H2Adsorption Capacities and Neutron Powder DiffractionStudies,[J].J. AM. CHEM. SOC.,2010,132:4092-4094.
    [11] Dinca M., Han W. S., Liu Y., Dailly A., Brown C. M., Long J. R.,Observation of Cu2+–H2Interactions in a Fully DesolvatedSodalite-Type Metal–Organic Framework,[J].Angew. Chem. Int.Ed.,2007,46:1419-1422.
    [12] Liu Y., Kabbour H., Brown C. M., Neumann D. A., Ahn C. C.,Increasing the Density of Adsorbed Hydrogen with CoordinativelyUnsaturated Metal Centers in Metal Organic Frameworks,[J].Langmuir2008,24:4772-4777.
    [13] Bogdanovic B., Hartwig T., Spliethoff B., The development,testing and optimization of energy storage materials based on theMgH2-Mg system [J].Int. J. Hydrogen Energy,1993,18:575-589.
    [14] Chen P., Xiong Z. T., Luo J. Z., Lin J. Y., Tan K.L., Interactionof hydrogen with metal nitrides and imides,[J].Nature,2002,420:302-304.
    [15] Graham T. W., Tsang C. W., Chen X., Guo R., Jia W., Lu S. M.,Sui-Seng C., Ewart C. B., Lough A., Amoroso D., Abdur-Rashid K.,Catalytic Solvolysis of Ammonia Borane,[J].Angew. Chem. Int. Ed.2010,49:8708-8711.
    [16] Xiong Z., Yong C. K., Wu G., Chen P., Shaw W., Karkamkar A., AutreyT., Jones M.O., Johnson S. R., Edwards P. P., David W. I.F.,High-capacity hydrogen storage in lithium and sodium amidoboranes,[J].nature materials,2008,7:138-141.
    [17] Ren H., Ben T., Wang E., Jing X., Xue M., Liu B., Cui Y., Qiu S.,Zhu G., Targeted synthesis of a3D porous aromatic framework forselective sorption of benzene,[J].Chem. Commun.,2010,46:291-293.
    [18] Ben T., Ren H., Ma S., Cao D., Lan J., Jing X., Wang W., Xu J.,Deng F., Simmons J. M., Qiu S., Zhu G., Targeted Synthesis of aPorous Aromatic Framework with High Stability and ExceptionallyHigh Surface Area,[J].Angew. Chem. Int. Ed.,2009,48:9457-9460.
    [19] Li Z., Zhu G., Lu G, Qiu S., Yao X., Ammonia Borane Confined bya Metal-Organic Framework for Chemical Hydrogen Storage:Enhancing Kinetics and Eliminating Ammonia,[J].J. AM. CHEM. SOC.,2010,132:1490-1491.
    [20] Gadipelli S., Ford J., Zhou W., Wu H., Udovic T. J., Yildirim T.,Nanoconfinement and Catalytic Dehydrogenation of Ammonia Boraneby Magnesium-Metal–Organic-Framework-74,[J].Chem. Eur. J.,2011,17:6043-6047.
    [21] Srinivas G., Ford J., Zhou W., Yildirim T., Zn-MOF assisteddehydrogenation of ammonia borane: Enhanced kinetics and cleanhydrogen generation,[J].Int. J. Hydrogen Energy,2011,37:3633-3638.
    [22] Lee S. M., Kang X. D., Wang P., Cheng H. M., Lee Y. H., A ComparativeStudy of the Structural, Electronic, and Vibrational Propertiesof NH3BH3and LiNH2BH3: Theory and Experiment,[J].Chem. Phys. Chem.,2009,10:1825-1833.
    [23] L. Li, X. Yao, C. Sun, A. Du, L. Cheng, Z. Zhu, C. Yu, J. Zou,S.C. Smith, P. Wang, H-M. Cheng, R.L. Frost and G. Q. Lu,Lithium-Catalyzed Dehydrogenation of Ammonia Borane withinMesoporous Carbon Framework for Chemical Hydrogen Storage,[J].Adv. Funct. Mater.,2009,19:265-271.
    [24] GrantGlover T., Peterson G. W., Schindler B. J., Britt D., YaghiO. M., MOF-74building unit has a direct impact on toxic gasadsorption,[J].Chemical Engineering Science,2011,66:163-170.
    [25] Stowe A. C., Shaw W. J., Linehan J. C., Schmid B., Autrey T., Insitu solid state11B MAS-NMR studies of the thermal decompositionof ammonia borane: mechanistic studies of the hydrogen releasepathways from a solid state hydrogen storage material,[J]. Phys.Chem. Chem. Phys.,2007,9:1831-1836.
    [26] Muhr H. J., Nesper R., Schnyder B., K tz R., The boronheterofullerenes C59B and C69B: generation, extraction, massspectrometric and XPS characterization,[J]. Chemical PhysicsLetters,1996,249:399-405.
    [27] Linssa V., Rodilb S.E., Reinkec P., Garnierd M.G., Oelhafend P.,Kreissige U., Richtera F., Bonding characteristics of DCmagnetron sputtered B-C-N thin films investigated byFourier-transformed infrared spectroscopy and X-rayphotoelectron spectroscopy,[J].Thin Solid Films,2004,467:76-87.
    [1] Bluhm M. E., Bradley M. G., Butterick R., Kusari U., Sneddon L.G., Amineborane-Based Chemical Hydrogen Storage: EnhancedAmmonia Borane Dehydrogenation in Ionic Liquids,[J]. J. Am. Chem.Soc.,2006,128:7748-7749.
    [2] Cheng F. Y., Ma H., Li Y. M., Chen J., Ni1-xPtx(x=00.12) HollowSpheres as Catalysts for Hydrogen Generation from Ammonia Borane,[J].Inorg. Chem.,2007,46:788-794.
    [3] Barkhordarian G., Klassen T., Bormann R. U., Effect of Nb2O5content on hydrogen reaction kinetics of Mg,[J]. J. Alloys,Compd.2004,364:242-246.
    [4] Lin Y, Mao W L,Mao H K. Storage of molecular hydrogen in an ammoniaborane compound at high pressure,[J].Acad. Sci. USA,2009,106:8113-8116.
    [5] Gutowska A, Li L, Shin Y, Wang C M., Li X S., Linehan J C., ScottSmith R., Kay B D., Schmid B, Shaw W, Gutowski M, Autrey T,Nanoscaffold Mediates Hydrogen Release and the Reactivity ofAmmonia Borane,[J].Angew. Chem.,2005,117:3644-3648.
    [6] Li L, Yao X, Sun C, Du A, Cheng L, Zhu Z, Yu C, Zou J, Smith SC., Wang P, Cheng H-M, Frost R L., Lu G Q (Max), Lithium-CatalyzedDehydrogenation of Ammonia Borane within Mesoporous CarbonFramework for Chemical Hydrogen Storage,[J].Advanced Functionalmaterials,2009,19,265-271.
    [7] Li Z, Zhu G, Lu G, Qiu S, Yao X, Ammonia Borane Confined by aMetal-Organic Framework for Chemical Hydrogen Storage: EnhancingKinetics and Eliminating Ammonia,[J].J. AM. CHEM. SOC.,2010,132:1490-1491.
    [8] Gadipelli S., Ford J., Zhou W., Wu H., Udovic T. J., Yildirim T.,Nanoconfinement and Catalytic Dehydrogenation of Ammonia Boraneby Magnesium-Metal-Organic-Framework-74,[J].Chem. Eur. J.,2011,17:6043-6047.
    [9] Srinivas G., Ford J., Zhou W., Yildirim T., Zn-MOF assisteddehydrogenation of ammonia borane: Enhanced kinetics and cleanhydrogen generation,[J].Int. J. Hydrogen Energy,2011,37:3633-3638.
    [10](a) Metin, zkar S, Hydrogen Generation from the Hydrolysisof Ammonia-borane and Sodium Borohydride Using Water-solublePolymer-stabilized Cobalt(0) Nanoclusters Catalyst,[J]. EnergyFuel,2009,23:3517-3526.(b) Clark T.J., Whittell G.R., MannersI., Highly Efficient Colloidal Cobalt-and Rhodium-CatalyzedHydrolysis of H3N·BH3in Air,[J].Inorg. Chem.2007,46:7522-7527.(c) Xu Q., Chandra M., Catalytic activities of non-noble metalsfor hydrogen generation from aqueous ammonia–borane at roomtemperature,[J].J. Power Sources,2006,163:364-370.
    [11](a) Umegaki T., Yan J.M., Zhang X.B., Shioyama H., Kuriyama N.,Xu Q., Preparation and catalysis of poly(N-vinyl-2-pyrrolidone)(PVP) stabilized nickel catalyst forhydrolytic dehydrogenation of ammonia borane,[J].Int. J.Hydrogen Energy,2009,34:3816-3822.(b) Yao C.F., Zhuang L., CaoY.L., Ai X.P., Yang H.X., Hydrogen release from hydrolysis ofborazane on Pt-and Ni-based alloy catalysts,[J].Int. J. HydrogenEnergy,2008,33:2462-2467.(c) Umegaki T., Yan J.M., Zhang X.B.,Shioyama H., Kuriyama N., Xu Q., Hollow Ni-SiO2nanosphere-catalyzed hydrolytic dehydrogenation of ammoniaborane for chemical hydrogen storage,[J].J. Power Sources,2009,191:209-216.
    [12] GrantGlover T., Peterson G W., Schindler B J., Britt D, YaghiO. M., MOF-74building unit has a direct impact on toxic gasadsorption,[J].International Journal of Hydrogen Energy,2011,66:163-170.
    [13] Rosi N L, Kim J, Eddaoudi M, Chen B, O'Keeffe M, Yaghi O M,RodPackings and Metal Organic Frameworks Constructed fromRod-Shaped Secondary Building Units,[J]. J. Am. Chem. Soc.,2005,127:1504-1518.
    [14] Botas J A, Calleja G, Sa′nchez M, Orcajo M G, Effect of Zn/Coratio in MOF-74type materials containing exposed metal sites ontheir hydrogen adsorption behaviour and on their band gap energy,[J]. international journal of hydrogen energy,2011,36:10834–10844.
    [15] Lee S. M., Kang X. D., Wang P., Cheng H.M., Lee Y. H., A ComparativeStudy of the Structural, Electronic, and Vibrational Propertiesof NH3BH3and LiNH2BH3: Theory and Experiment,[J].ChemPhysChem.,2009,10:1825-1833.
    [16] Nesbitt áH.W., Legrand á D., Bancroft G.M., Interpretation ofNi2p XPS spectra of Ni conductorsand Ni insulators,[J].Phys ChemMinerals,2000,27:357-366.
    [17] Legrand D L, Nesbitt H W, Bancroft G M, X-ray photo-electronspectroscopic study of a pristine millerite (NiS) sur-face andthe efect of air and water oxidation.[J].Am. Mineral1998,83:1256-1265.
    [18] Tan B J, Klabunde K J, Sherwood P M A, XPS Studies of SolvatedMetal Atom Dispersed Catalysts. Evidence for LayeredCobalt-Manganese Particles on Aluminaand Silica,[J].J. Am. Chem.Soc.,1991,113:855-861.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700