用户名: 密码: 验证码:
纳米功能复合材料的制备及其在生物传感中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年,随着纳米技术研究的不断深入,纳米复合材料在人类的生活和生产中正显示出不可替代的重要作用。纳米复合材料不仅具有纳米材料本身的大比表面积、高导电性、强机械性能等特点,还具有较高的催化活性、较强的吸附能力、良好的生物相容性等优点,在广泛查阅大量相关文献的基础上,围绕纳米材料在电致化学发光、光致电化学及电化学传感器中的应用,针对生物传感器构建的关键环节即生物传感界面的构建和信号标记放大策略,本研究论文在微流控功能纸基材上引入了一系列不同形貌和结构的纳米复合材料,包括量子点、纳米金、碳纳米管等功能复合材料,实现了微流控功能复合纸基材的高灵敏分析方法的建立。制备了鲁米诺-Au纳米、三联吡啶钌-石墨烯等功能分子组装材料,并将这些纳米复合材料与生物功能大分子进行组装,例如抗体与适配体等,达到提高传感器选择性、延长传感器使用寿命等目的,以满足临床诊断、环境监测等应用的需要。
     1.多孔CdS量子点-碳纳米管复合功能纸基材的制备及光致电化学传感应用研究
     将光致电化学分析方法与微流控功能复合纸基材结合,通过蜡打印技术,构建实现低成本、简单、便携、易处理的光致电化学功能纸基材。对光致电化学功能纸基材进行复合处理,在纤维素纤维表面原位修饰制备CdS量子点-碳纳米管复合材料。该光致电化学功能复合纸基材以鲁米诺-金纳米粒子复合材料为内部光源,以数字万用表为外部终端光电流检测设备。考察了该光致电化学功能复合纸基材的光电流响应。与传统平面电极相比,在内光源与外光源模式下均观察到光致电化学功能复合纸基材对光电流的增强效应。为进一步放大光电流信号,设计制备了固态超级纸电容器,并将其集成到光致电化学功能复合纸基材上,以收集并存储产生的光电流。存储在固态超级纸电容器内的电能可以通过数字万用表短路法瞬间释放出来,并得到放大的光电流(大约放大了.13倍),并可被数字万用表检测。该光致电化学功能复合纸基材摒弃了昂贵复杂的电化学工作站检测机制,并获得比直接光电流检测更高的灵敏度。最后,在该光致电化学功能复合纸基材内构建了夹心式适配体传感界面用于人血清中三磷酸腺苷的检测,线性范围为1.0pmol/L至1.0nmol/L,检测限为0.2pmol/L。最后考察了该光致电化学功能复合纸基材的重现性、特异性与稳定性。
     2.多孔半导体聚合物-纳米金复合功能纸基材的制备及其电化学传感应用
     通过自催化还原生长方法,在纤维素纸纤维表面原位生长制备纳米金导电层,形成微流控功能纸基材上的多孔金纸电极。由于纸的多孔性与大表面积以及金纳米粒子的高导电性,多孔金纸电极极大地提高了纸电极的有效表面积和检测灵敏度。随后,在多孔金纸电极内部的导电纸纤维表面电聚合制备分子印迹聚合物,在微流控功能纸基材上引入分子印迹技术。基于以上制备的分子印迹修饰多孔金纸电极和折纸原理,进一步构建了分子印迹电化学功能复合纸基材用于检测D-谷氨酸。该功能复合纸基材由一个辅助功能卡和四个样品功能片构成。检测线性范围为1.2nmol/L至125.0nmol/L。考察了分子印迹电化学功能复合纸基材的选择性、重现性和稳定性。该分子印迹电化学功能复合纸基材为发展中国家的疾病诊断、公众健康、环境检测等提供了一种灵敏的、特异的、高通量的手段。
     3.电致化学发光复合纸基材的制备及其无线电泳传感应用研究
     将CdS量子点-碳纳米管复合材料通过静电层层修饰技术,组装到纸纤维素纤维表面。利用CdS的电致化学发光特性,首次将微流控功能纸基材与电泳分离技术结合,制备了一种低成本、简单、便携、易处理的微流控电致化学发光电泳纸基材。设计制备柱上铜-金复合双极电极,实现微流控电致化学发光电泳纸基材上的无线电致化学发光检测。该微流控电致化学发光电泳纸基材可在六分钟内将丝氨酸、天冬氨酸与赖氨酸完全分离,分离电压仅为330V。本文还设计制备了一种新型的自制整流器,采用家用电源即可实现上述分离电压。优化实验条件后可得到较高的检测灵敏度。三种氨基酸的检测限分别为:13pmol/L(丝氨酸),34pmol/L(天冬氨酸),0.17nmol/L(赖氨酸)。三种氨基酸电泳谱图的峰高与迁移时间的精密度分别为<5.0%、≤1.5%。该电致化学发光电泳纸基材提供了一种快速、集成、自动化的多组分分离与检测方法。
     4.菱形二氧化钛纳米晶复合材料的制备以及在光致电化学传感器中的应用
     在无水乙醇中,通过溶剂热的方法制备高结晶性的菱形二氧化钛纳米晶。在菱形二氧化钛纳米晶修饰的氧化铟锡导电玻璃上覆盖壳聚糖层后,将抗癌胚抗原抗体通过戊二醛交联共价修饰到电极表面。采用三联吡啶钌配合物作为光致电化学光电流信号分子,抗坏血酸作为自牺牲电子供体,在菱形二氧化钛纳米晶复合材料修饰的氧化铟锡导电玻璃上构建了一种新型的光致电化学免疫传感器。为了进一步增强该传感器在紫外及可见光区内的光电流强度,合成制备了三联吡啶钌配合物-还原石墨烯纳米复合材料(Ru-RGO),其中三联吡啶钌配合物作为电子供体,还原石墨烯作为电子受体,加速光生电子-空穴的分离并抑制其复合。借助免疫反应带来的光电流信号变化,实现了光致电化学免疫传感器测定癌胚抗原。其光电流强度与癌胚抗原浓度的对数成线性关系,线性范围为0.1pg/mL to100ng/mL,检测限为0.059pg/mL。另外该光致电化学免疫传感器还表现出了较高的灵敏度、稳定性、重现性,并为免疫分析开辟了一条新的出路。
     5.量子点-二氧化钛复合薄膜的溶胶凝胶制备与性能研究
     本工作研究了一种新型的CdTe量子点-二氧化钛复合溶胶凝胶膜的制备方法。制备了以巯基乙酸为保护剂的水溶性CdTe量子点,荧光发射颜色分别为绿色、黄色和红色。在最佳制备条件下,水溶性CdTe量子点表现出较高的荧光效率。通过控制钛酸四丁酯在乙醇与聚乙烯基吡咯烷酮溶液中的水解,’制备Ti02溶胶。在Ti02溶胶中加入二乙醇胺以防止CdTe量子点的表面缺陷猝灭。将CdTe量子点嵌入Ti02溶胶膜后,由于CdTe量子点与Ti02之间的相互作用,导致CdTe量子点荧光强度降低。与溶液中的CdTe量子点相比,Ti02溶胶膜内的CdTe量子点荧光发射峰发生轻微蓝移,且蓝移量取决于量子点的性质。红光量子点发生峰蓝移量为1nm,而绿光量子点发生峰蓝移量为7nm,表明红光量子点具有较高的稳定性,且其与Ti02溶胶的相互作用较少。该CdTe量子点-Ti02复合溶胶凝胶膜不仅制备简单,而且具备较高的亮度、多色的光发射以及较高的稳定性等优点,因此CdTe量子点-TiO2复合溶胶凝胶膜将在不同的领域具有较高的应用潜力。
Recently, with the deep development of nanotechnology, nanocomposite has played an important role in our daily life. Nanocomposite not only possesses the advantages of nanomaterials, such as large surface area, good conductivity, and super mechanical property, but also possesses high catalytic activity, robust adsorption capacity, and good biocompatibility. Based on the searching of abundant papers, using the electrochemiluminescent, photoelectrochemical, and electrochemical properties of nanomaterials, nanocomposites with different morphology and structure was constructed in microfluidic paper-based devices, including quantum dot, gold nanoparticles, and carbon nanotubes, to realize high sensitivity on microfluidic paper-based devices. Luminol-gold nanoparticles and Ru(bpy)32+-graphene nanocomposites were prepared to label functional biomacromolecule, such as antibody and aptamer, to enhance the specificity of the biosensors. The use of such high-sensitivity sensors can offer the application of clinical diagonosis and environment monitoring.
     1. Fabrication of CdS Quantum Dot-Carbon Nanotube Functionalized Paper Composite Materials and their Application Research in Photoelectrochemical Biosensors
     In this work, a photoelectrochemical (PEC) method was introduced into a microfluidic paper-based analytical device (μ-PAD), and thus, a truly low-cost, simple, portable, and disposable microfluidic PEC origami device (μ-PECOD) with an internal chemiluminescence light source and external digital multimeter (DMM) was demonstrated. The PEC responses of this μ-PECOD were investigated, and the enhancements of photocurrents in μ-PECOD were observed under both external and internal light sources compared with that on a traditional flat electrode counterpart. As a further amplification of the generated photocurrents, an all-solid-state paper supercapacitor was constructed and integrated into the μ-PECOD to collect and store the generated photocurrents. The stored electrical energy could be released instantaneously through the DMM to obtain an amplified (~13-fold) and DMM detectable current as well as a higher sensitivity than the direct photocurrent measurement, allowing the expensive and sophisticated electrochemical workstation or lock-in amplifier to be abandoned. As a model, sandwich adenosine triphosphate (ATP)-binding aptamers were taken as molecular reorganization elements on this μ-PECOD for the sensitive determination of ATP in human serum samples in the linear range from1.0pM to1.0nM with a detection limit of0.2pM. The specificity, reproducibility, and stability of this μ-PECOD were also investigated.
     2. Fabrication of Porous Semiconductor Polymer-Gold Nanoparticles Functionalized Paper Composite Materials and their Application Research in Electrochemical Biosensors
     Molecular imprinting technique is introduced into microfluidic paper-based analytical devices (μ-PADs) through electropolymerization of molecular imprinted polymer (MIP) in a novel Au nanoparticle (AuNP) modified paper working electrode (Au-PWE). This is fabricated through the growth of a AuNP layer on the surfaces of cellulose fibers in the PWE. Due to the porous morphology of paper as well as the high specific surface area and conductivity of the resulting AuNP layer on the cellulose fibers, the effective surface area and the sensitivity of the Au-PWE is enhanced remarkably. Based on this novel MIP-Au-PWE and the principle of origami, a microfluidic MIP-based electro-analytical origami device (μ-MEOD), comprised of one auxiliary pad surrounded by four sample tabs, is developed for the detection of D-glutamic acid in a linear range from1.2nM to125.0nM with a low detection limit of0.2nM. The selectivity, reproducibility, and stability of this μ-MEOD are investigated. This μ-MEOD would provide a new platform for high-throughput, sensitive, specific, and multiplex assay as well as point-of-care diagnosis in public health, environmental monitoring, and the developing world.
     3. Fabrication of Electrochemiluminescent Paper Nanocompostie and its Application Research in Wireless Electrophoresis Biosensor
     In this work, microfluidic paper-based analytical device (μ-PAD) was further exploited by coupling electrophoretic separation technique for the first time, and a low-cost, simple, portable, and disposable microfluidic paper-based electrophoretic device (μ-PED) with on-column wireless electrogenerated chemiluminescence (ECL) detector (denoted as μ-PED@ECL) was demonstrated. As a proof-of-concept, the performance of this μ-PED@ECL was illustrated by the complete separation and detection of electro-inactive serine, aspartic acid, and lysine within6min, which was realized by household alternating power supply (220V in China) through a novel home-made rectifier, allowing the expensive and sophisticated electrophoretic power supply to be abandoned. Optimizations were performed to achieve both good sensitivity and complete separation with detection limits (3a) of13pM for serine,34pM for aspartic acid, and0.17nM for lysine. The peak height and migration time precisions were<5.0%and<1.5%(n=11) for the three amino acids, respectively. This p.-PED@ECL provided a fast, integrated, and automated potential for multiplex separation and detection on μ-PAD.
     4. Fabrication of Rhombic TiO2Nanocrystal Composites and their Application Research in Photoelectrochemical Biosensor
     A novel photoelectrochemical immunosensor using Ru complex as the photoelectrochemical signal-generating molecule, ascorbic acid (AA) as the sacrificial electron donor based on rhombic TiO2nanocrystals (NCs) modified ITO electrode was developed. In order to enhance the photocatalytic activities under UV-vis or visible light irradiation, Ru complex and reduced graphene oxide (RGO) hybrid (Ru-RGO) was prepared, in which Ru complex acts as an electron donor and RGO serves as an electron acceptor in the hybridized species, which facilitates charge separation and suppresses recombination of photoexcited electron-hole pairs in Ru-RGO. The highly crystalline rhombic TiO2NCs were fabricated through a solvothermal technique in anhydrous ethanol. After the ITO/TiO2electrode was coated with chitosan (CS), carcinoma embryonic antigen (CEA) antibodies were covalently conjugated on the surface of the electrode through glutaraldehyde (GLD). Thus, a photoelectrochemical immunosensor for the detection of CEA was developed by monitoring the changes in the photocurrent signals of the electrode resulting from the immunoreaction. The photocurrents were proportional to the logarithmic CEA concentrations, and the linear range of the developed immunosensor was from0.1pg/mL to100ng/mL and with a detection limit of0.059pg/mL. The proposed method showed high sensitivity, stability, reproducibility, and could become a promising technique for immunoassays.
     5. Composite TiO2Film with Quantum Dots Fabricated Through a Sol-Gel Process
     A novel strategy has been developed to fabricate composite TiO2films with CdTe quantum dots (QDs). Aqueous CdTe QDs with green-, yellow-, and red-emitting were prepared using thioglycolic acid as a capping agent. The QDs revealed high photoluminescence (PL) efficiencies under optimal preparation conditions. TiO2sol was obtained by the controlling hydrolysis of tetrabutyl titanate in ethanol with poly (vinyl pyrrolidone). Diethanolamine was added to prevent the QDs from PL quenching generated by surface defects. After embedding the QDs in composite TiO2film, the PL intensity of the QDs decreased because of the excitation and recombination between the QDs and TiO2. The PL peak wavelength of the QDs in films revealed a slight blue shift compared with their initial ones. The blue shift degree of the PL peaks depended on the properties of the QDs. Red-emitting CdTe QDs revealed a small blue shift of1nm while green-emitting ones revealed a blue shift of7nm. This indicated red-emitting QDs with high stability against incorporation. Facile preparation and excellent properties including high PL brightness, multicolor emission, and high stability make these films important applications in various fields.
引文
[1]Qian, F.; Zhang, C.; Zhang, Y.; He, W.; Gao, X.; Hu, P.; Guo, Z., Visible Light Excitable Zn2+Fluorescent Sensor Derived from an Intramolecular Charge Transfer Fluorophore and Its in Vitro and in Vivo Application. J. Am. Chem. Soc.2009,131, 1460-1468.
    [2]Shen, F.; Wang, J.; Xu, Z.; Wu, Y.; Chen, Q.; Li, X.; Jie, X.; Li, L.; Yao, M.; Guo, X.; Zhu, T., Rapid Flu Diagnosis Using Silicon Nanowire Sensor. Nano Letters 2012, 12,3722-3730.
    [3]Na, N.; Liu, H.; Han, J.; Han, F.; Liu, H.; Ouyang, J., Plasma-Assisted Cataluminescence Sensor Array for Gaseous Hydrocarbons Discrimination. Anal. Chem.2012,84,4830-4836.
    [4]Ermel, M.; Oswald, R.; Mayer, J. C; Moravek, A.; Song, G.; Beck, M.; Meixner, F. X.; Trebs, I., Preparation Methods to Optimize the Performance of Sensor Discs for Fast Chemiluminescence Ozone Analyzers. Environ. Sci. Technol.2013,47, 1930-1936.
    [5]Chen, K.; Liu, M.; Zhao, G.; Shi, H.; Fan, L.; Zhao, S., Fabrication of a Novel and Simple Microcystin-LR Photoelectrochemical Sensor with High Sensitivity and Selectivity. Environ. Sci. Technol.2012,46,11955-11961.
    [6]Bao, B.; Melo, L.; Davies, B.; Fadaei, H.; Sinton, D.; Wild, P., Detecting Supercritical CO2 in Brine at Sequestration Pressure with an Optical Fiber Sensor. Environ. Sci. Technol.2012,47,306-313.
    [7]Hayashi, N.; Chen, R.; Ikezaki, H.; Ujihara, T., Evaluation of the Umami Taste Intensity of Green Tea by a Taste Sensor. Journal of Agricultural and Food Chemistry 2008,56,7384-7387.
    [8]Hossain, M. E.; Rahman, G. M. A.; Freund, M. S.; Jayas, D. S.; White, N. D. G.; Shafai, C; Thomson, D. J., Fabrication and Optimization of a Conducting Polymer Sensor Array Using Stored Grain Model Volatiles. Journal of Agricultural and Food Chemistry 2012,60,2863-2873.
    [9]Yang, Q.; Sun, Q.; Zhou, T.; Shi, G.; Jin, L., Determination of Parathion in Vegetables by Electrochemical Sensor Based on Molecularly Imprinted Polyethyleneimine/Silica Gel Films. Journal of Agricultural and Food Chemistry 2009,57,6558-6563.
    [10]Du, J.; Liu, M.; Lou, X.; Zhao, T.; Wang, Z.; Xue, Y.; Zhao, J.; Xu, Y., Highly Sensitive and Selective Chip-Based Fluorescent Sensor for Mercuric Ion: Development and Comparison of Turn-On and Turn-Off Systems. Anal. Chem.2012, 84,8060-8066.
    [11]Clark, L. C, Monitor and control of biood and tissue oxygen tensions. Transactions American Society for Artificial Internal Organs 1956,2,41-48.
    [12]Clark, L. C; Lyons, C, Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences 1962,102, 29-45.
    [13]Guilbault, G. G.; Montalvo, J. G., Urea-specific enzyme electrode. J. Am. Chem. Soc.1969,91,2164-2165.
    [14]Yin, B.-C; Guan, Y.-M; Ye, B.-C, An ultrasensitive electrochemical DNA sensor based on the ssDNA-assisted cascade of hybridization reaction. Chem. Commun.2012,48,4208-4210.
    [15]Cao, X.; Wang, N., A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays. Analyst 2011,136,4241-4246.
    [16]Tyagi, A. K.; Ramkumar, J.; Jayakumar, O. D., Inorganic-organic Ag-rhodamine 6G hybrid nanorods:"Turn on" fluorescent sensors for highly selective detection of Pb2+ions in aqueous solution. Analyst 2012,137,760-764.
    [17]Farahi, R. H.; Passian, A.; Tetard, L.; Thundat, T., Critical Issues in Sensor Science To Aid Food and Water Safety. ACS Nano 2012,6,4548-4556.
    [18]Pei, H.; Li, J.; Lv, M.; Wang, J.; Gao, J.; Lu, J.; Li, Y.; Huang, Q.; Hu, J.; Fan, C., A Graphene-Based Sensor Array for High-Precision and Adaptive Target Identification with Ensemble Aptamers. J. Am. Chem. Soc.2012,134,13843-13849.
    [19]Arias, A. C; MacKenzie, J. D.; McCulloch, I.; Rivnay, J.; Salleo, A., Materials and Applications for Large Area Electronics:Solution-Based Approaches. Chem. Rev. 2010,110,3-24.
    [20]O'Regan, B.; Gratzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991,353,737-740.
    [21]Brown, G. N.; Birks, J. W.; Koval, C. A., Development and characterization of a titanium dioxide-based semiconductor photoelectrochemical detector. Anal. Chem. 1992,64,427-434.
    [22]Cooper, J. A.; Wu, M.; Compton, R. G., Photoelectrochemical Analysis of Ascorbic Acid. Anal. Chem.1998,70,2922-2927.
    [23]Tokudome, H.; Yamada, Y.; Sonezaki, S.; Ishikawa, H.; Bekki, M.; Kanehira, K.; Miyauchi, M., Photoelectrochemical deoxyribonucleic acid sensing on a nanostructured TiO2 electrode. Applied Physics Letters 2005,87,213901.
    [24]Liang, M.; Guo, L.-H., Photoelectrochemical DNA Sensor for the Rapid Detection of DNA Damage Induced by Styrene Oxide and the Fenton Reaction. Environ. Sci. Technol.2006,41,658-664.
    [25]Liang, M.; Liu, S.; Wei, M.; Guo, L.-H., Photoelectrochemical Oxidation of DNA by Ruthenium Tris(bipyridine) on a Tin Oxide Nanoparticle Electrode. Anal. Chem.2005,78,621-623.
    [26]Liang, M.; Jia, S.; Zhu, S.; Guo, L.-H., Photoelectrochemical Sensor for the Rapid Detection of in Situ DNA Damage Induced by Enzyme-Catalyzed Fenton Reaction. Environ. Sci. Technol.2007,42,635-639.
    [27]Liu, S.; Li, C; Cheng, J.; Zhou, Y., Selective Photoelectrochemical Detection of DNA with High-Affinity Metallointercalator and Tin Oxide Nanoparticle Electrode. Anal. Chem.2006,78,4722-4726.
    [28]Willner, I.; Patolsky, F.; Wasserman, J., Photoelectrochemistry with Controlled DNA-Cross-Linked CctS Nanoparticle Arrays. Angew. Chem. Int. Ed 2001,40, 1861-1864.
    [29]Gao, Z.; Tansil, N. C., An ultrasensitive photoelectrochemical nucleic acid biosensor. Nucleic Acids Research 2005,33, e123.
    [30]Yildiz, H. B.; Freeman, R.; Gill, R.; Willner, I., Electrochemical, Photoelectrochemical, and Piezoelectric Analysis of Tyrosinase Activity by Functionalized Nanoparticles. Anal. Chem.2008,80,2811-2816.
    [31]Wang, G.-L.; Yu, P.-P.; Xu, J.-J.; Chen, H.-Y., A Label-Free Photoelectrochemical Immunosensor Based on Water-Soluble CdS Quantum Dots. J. Phys. Chem. C2009,113,11142-11148.
    [32]Haddour, N.; Chauvin, J.; Gondran, C; Cosnier, S., Photoelectrochemical Immunosensor for Label-Free Detection and Quantification of Anti-cholera Toxin Antibody. J. Am. Chem. Soc.2006,128,9693-9698.
    [33]Hojeij, M; Su, B.; Tan, S.; Meriguet, G.; Girault, H. H., Nanoporous Photocathode and Photoanode Made by Multilayer Assembly of Quantum Dots. ACS Nano 2008,2,984-992.
    [34]Alivisatos, A. P., Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996,271,933-937.
    [35]Nirmal, M.; Brus, L., Luminescence Photophysics in Semiconductor Nanocrystals. Accounts of Chemical Research 1998,32,407-414.
    [36]Jie, G.; Wang, L.; Yuan, J.; Zhang, S., Versatile Electrochemiluminescence Assays for Cancer Cells Based on Dendrimer/CdSe-ZnS-Quantum Dot Nanoclusters. Anal. Chem.2011,83,3873-3880.
    [37]Su, B.; Fermin, D. J.; Abid, J.-P.; Eugster, N.; Girault, H. H., Adsorption and photoreactivity of CdSe nanoparticles at liquid|liquid interfaces. J. Electroanal. Chem. 2005,583,241-247.
    [38]Cottingham, K., Quantum Dots Leave the Light On. Anal. Chem.2005,77,354 A-357 A.
    [39]Shipway, A. N.; Katz, E.; Willner, I., Nanoparticle Arrays on Surfaces for Electronic, Optical, and Sensor Applications. ChemPhysChem 2000,1,18-52.
    [40]Daniel, M.-C; Astruc, D., Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev.2003,104,293-346.
    [41]Sheeney-Haj-Ichia, L.; Basnar, B.; Willner, I., Efficient Generation of Photocurrents by Using CdS/Carbon Nanotube Assemblies on Electrodes. Angew. Chem. Int. Ed.2005,44,78-83.
    [42]Hickey, S. G.; Riley, D. J.; Tull, E. J., Photoelectrochemical Studies of CdS Nanoparticle Modified Electrodes:Absorption and Photocurrent Investigations. The Journal of Physical Chemistry B 2000,104,7623-7626.
    [43]Jensen, H.; Fermin, D. J.; Moser, J. E.; Girault, H. H., Organization and Reactivity of Nanoparticles at Molecular Interfaces. Part I. Photoelectrochemical Responses Involving TiO2 Nanoparticles Assembled at Polarizable Water 1,2-Dichloroethane Junctions. The Journal of Physical Chemistry B 2002,106, 10908-10914.
    [44]Miyake, M; Torimoto, T.; Sakata, T.; Mori, H.; Yoneyama, H., Photoelectrochemical Characterization of Nearly Monodisperse CdS Nanoparticles-Immobilized Gold Electrodes. Langmuir 1999,15,1503-1507.
    [45]Tessler, N.; Medvedev, V.; Kazes, M.; Kan, S.; Banin, U., Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes. Science 2002,295, 1506-1508.
    [46]Dabbousi, B. O.; Bawendi, M. G.; Onitsuka, O.; Rubner, M. F., Electroluminescence from CdSe quantum-dot/polymer composites. Applied Physics Letters 1995,66,1316-1318.
    [47]Mattoussi, H.; Radzilowski, L. H.; Dabbousi, B. O.; Thomas, E. L.; Bawendi, M. G.; Rubner, M. F., Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals. Journal of Applied Physics 1998,83, 7965-7974.
    [48]Bechinger, C; Ferrere, S.; Zaban, A.; Sprague, J.; Gregg, B. A., Photoelectrochromic windows and displays. Nature 1996,383,608-610.
    [49]Patolsky, F.; Gill, R.; Weizmann, Y.; Mokari, T.; Banin, U.; Willner, I., Lighting-Up the Dynamics of Telomerization and DNA Replication by CdSe-ZnS Quantum Dots. J. Am. Chem. Soc.2003,125,13918-13919.
    [50]Willner, I.; Patolsky, F.; Wasserman, J., Photoelectrochemistry with Controlled DNA-Cross-Linked CdS Nanoparticle Arrays. Angewandte Chemie 2001,113, 1913-1916.
    [51]Gill, R.; Zayats, M.; Willner, L, Semiconductor Quantum Dots for Bioanalysis. Angew. Chem. Int. Ed.2008,47,7602-7625.
    [52]Pardo-Yissar, V.; Katz, E.; Wasserman, J.; Willner, I., Acetylcholine Esterase-Labeled CdS Nanoparticles on Electrodes:Photoelectrochemical Sensing of the Enzyme Inhibitors. J. Am. Chem. Soc.2002,125,622-623.
    [53]Zhang, X.; Li, S.; Jin, X.; Li, X., Aptamer based photoelectrochemical cytosensor with layer-by-layer assembly of CdSe semiconductor nanoparticles as photoelectrochemically active species. Biosens. Bioelectron.2011,26,3674-3678.
    [54]Bas, D.; Boyaci, I. H., Quantitative Photoelectrochemical Detection of Biotin Conjugated CdSe/ZnS Quantum Dots on the Avidin Immobilized ITO Electrodes. Electroanalysis 2009,21,1829-1834.
    [55]Ikeda, A.; Nakasu, M.; Ogasawara, S.; Nakanishi, H.; Nakamura, M.; Kikuchi, J.-i., Photoelectrochemical Sensor with Porphyrin-Deposited Electrodes for Determination of Nucleotides in Water. Organic Letters 2009,11,1163-1166.
    [56]Schuster, G. B., Long-Range Charge Transfer in DNA:Transient Structural Distortions Control the Distance Dependence. Accounts of Chemical Research 2000, 33,253-260.
    [57]Armitage, B., Photocleavage of Nucleic Acids. Chem. Rev.1998,98,1171-1200.
    [58]Alegria, A. E.; Ferrer, A.; Santiago, G.; Sepulveda, E.; Flores, W., Photochemistry of water-soluble quinones. Production of the hydroxyl radical, singlet oxygen and the superoxide ion. Journal of Photochemistry and Photobiology A: Chemistry 1999,127,57-65.
    [59]Mothilal, K. K.; Johnson Inbaraj, J.; Gandhidasan, R.; Murugesan, R., Photosensitization with anthraquinone derivatives:optical and EPR spin trapping studies of photogeneration of reactive oxygen species. Journal of Photochemistry and Photobiology A:Chemistry 2004,162,9-16.
    [60]Pandey, P. C; Weetall, H. H., Application of Photochemical Reaction in Electrochemical Detection of DNA Intercalation. Anal. Chem.1994,66,1236-1241.
    [61]Tissot, P.; Huissoud, A., Proton effects in the electrochemical behaviour of 2-ethyl-9,10-anthraquinone in the medium dimethoxyethane-tetrabutylammonium hydroxide with and without oxygen. Electrochim. Acta 1996,41,2451-2456.
    [62]Ossowski, T.; Pipka, P.; Liwo, A.; Jeziorek, "D., Electrochemical and UV-spectrophotometric study of oxygen and superoxide anion radical interaction with anthraquinone derivatives and their radical anions. Electrochim. Acta 2000,45, 3581-3587.
    [63]Han, S. W.; Joo, S. W.; Ha, T. H.; Kim, Y.; Kim, K., Adsorption Characteristics of Anthraquinone-2-carboxylic Acid on Gold. The Journal of Physical Chemistry B 2000,104,11987-11995.
    [64]Salimi, A.; Banks, C. E.; Compton, R. G., Ultrasonic effects on the electro-reduction of oxygen at a glassy carbon anthraquinone-modified electrode. The Koutecky-Levich equation applied to insonated electro-catalytic reactions. Phys. Chem. Chem. Phys.2003,5,3988-3993.
    [65]Yamana, K.; Kawakami, N.; Ohtsuka, T.; Sugie, Y.; Nakano, H.; Saito, I., Electrochemical detection of single-base mismatches in DNA by a redox-active intercalator conjugated oligonucleotide. Nucleic Acids Symposium Series 2003,3, 89-90.
    [66]Okamoto, A.; Kamei, T.; Tanaka, K.; Saito, I., Photostimulated Hole Transport through a DNA Duplex Immobilized on a Gold Electrode. J. Am. Chem. Soc.2004, 126,14732-14733.
    [67]Yamada, H.; Tanabe, K.; Nishimoto, S.-i., Photocurrent response after enzymatic treatment of DNA duplexes immobilized on gold electrodes:electrochemical discrimination of 5-methylcytosine modification in DNA. Organic & Biomolecular Chemistry 2008,6,272-277.
    [68]Haruna, K.-i.; Iida, H.; Tanabe, K.; Nishimoto, S.-i., Photoelectrochemical evaluation of pH effect on hole transport through triplex-forming DNA immobilized on a gold electrode. Organic& Biomolecular Chemistry 2008,6,1613-1617.
    [69]Dong; DongZheng, D.; Wang, F.-Q.; Yang, X.-Q.; Wang, N.; Li, Y.-G.; Guo, L.-H.; Cheng, J., Quantitative Photoelectrochemical Detection of Biological Affinity Reaction:Biotin-Avidin Interaction. Anal. Chem.2003,76,499-501.
    [70]Jiang, K.; Xie, H.; Zhan, W., Photocurrent Generation from Ru(bpy)32+ Immobilized on Phospholipid/Alkanethiol Hybrid Bilayers. Langmuir 2009,25, 11129-11136.
    [71]Kira, A.; Umeyama, T.; Matano, Y.; Yoshida, K.; Isoda, S.; Park, J. K.; Kim, D.; Imahori, H., Supramolecular Donor-Acceptor Heterojunctions by Vectorial Stepwise Assembly of Porphyrins and Coordination-Bonded Fullerene Arrays for Photocurrent Generation. J. Am. Chem.Soc.2009,131,3198-3200.
    [72]Kaunisto, K.; Vuorinen, T.; Vahasalo, H.; Chukharev, V.; Tkachenko, N. V.; Efimov, A.; Tolkki, A.; Lehtivuori, H.; Lemmetyinen, H., Photoinduced Electron Transfer and Photocurrent in Multicomponent Organic Molecular Films Containing Oriented Porphyrin-Fullerene Dyad. J. Phys. Chem. C2008,112,10256-10265.
    [73]Tu, W.; Dong, Y.; Lei, J.; Ju, H., Low-Potential Photoelectrochemical Biosensing Using Porphyrin-Functionalized TiO2 Nanoparticles. Anal. Chem.2010, 82,8711-8716.
    [74]Tu, W.; Lei, J.; Wang, P.; Ju, H., Photoelectrochemistry of Free-Base-Porphyrin-Functionalized Zinc Oxide Nanoparticles and Their Applications in Biosensing. Chem. Eur. J.2011,17,9440-9447.
    [75]Lu, W.; Wang, G.; Jin, Y.; Yao, X.; Hu, J.; Li, J., Label-free photoelectrochemical strategy for hairpin DNA hybridization detection on titanium dioxide electrode. Applied Physics Letters 2006,89,263902.
    [76]Zhao, H.; Jiang, D.; Zhang, S.; Catterall, K.; John, R., Development of a Direct Photoelectrochemical Method for Determination of Chemical Oxygen Demand. Anal. Chem.2003,76,155-160.
    [77]Chandrasekharan, N.; Kamat, P. V., Improving the Photoelectrochemical Performance of Nanostructured TiO2 Films by Adsorption of Gold Nanoparticlesf. The Journal of Physical Chemistry B 2000,104,10851-10857.
    [78]Li, H.; Bian, Z.; Zhu, J.; Huo, Y.; Li, H.; Lu, Y., Mesoporous Au/TiO2 Nanocomposites with Enhanced Photocatalytic Activity. J. Am. Chem. Soc.2007,129, 4538-4539.
    [79]Cottingham, K., Delving deep into the parasite proteome. Anal. Chem.2006,78, 5277-5277.
    [80]Phadtare, S.; Kumar, A.; Vinod, V. P.; Dash, C; Palaskar, D. V.; Rao, M.; Shukla, P. G.; Sivaram, S.; Sastry, M., Direct Assembly of Gold Nanoparticle "Shells" on Polyurethane Microsphere "Cores" and Their Application as Enzyme Immobilization Templates. Chemistry of Materials 2003,15,1944-1949.
    [81]Zhu, W.; An, Y.-R.; Luo, X.-M.; Wang, F.; Zheng, J.-H.; Tang, L.-L.; Wang, Q.-J.; Zhang, Z.-H.; Zhang, W.; Jin, L.-T., Study on acetylcholinesteraseinhibition induced by endogenous neurotoxin with an enzyme-semiconductor photoelectrochemical system. Chem. Commun.2009,2682-2684.
    [82]An, Y.; Tang, L.; Jiang, X.; Chen, H.; Yang, M.; Jin, L.; Zhang, S.; Wang, C; Zhang, W., A Photoelectrochemical Immunosensor Based on Au-Doped TiO2 Nanotube Arrays for the Detection of a-Synuclein. Chemistry - A European Journal 2010,16,14439-14446.
    [83]Vogel, R.; Hoyer, P.; Weller, H., Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors. The Journal of Physical Chemistry 1994,98,3183-3188.
    [84]Nasr, C; Kamat, P. V.; Hotchandani, S., Photoelectrochemistry of Composite Semiconductor Thin Films. Photosensitization of the SnO2/TiO2 Coupled System with a Ruthenium Polypyridyl Complex. The Journal of Physical Chemistry B 1998, 102,10047-10056.
    [85]Sant, P. A.; Kamat, P. V., Interparticle electron transfer between size-quantized CdS and TiO2 semiconductor nanoclusters. Phys. Chem. Chem. Phys.2002,4, 198-203.
    [86]Wang, G.-L.; Xu, J.-J.; Chen, H.-Y.; Fu, S.-Z., Label-free photoelectrochemical immunoassay for a-fetoprotein detection based on TiO2/CdS hybrid. Biosens. Bioelectron.2009,25,791-796.
    [87]Sheeney-Haj-Ichia, L.; Pogorelova, S.; Gofer, Y.; Willner, I., Enhanced Photoelectrochemistry in CdS/Au Nanoparticle Bilayers. Adv. Funct. Mater.2004,14, 416-424.
    [88]Miao, W., Electrogenerated Chemiluminescence and Its Biorelated Applications. Chem. Rev.2008,108,2506-2553.
    [89]Zu, Y.; Bard, A. J., Electrogenerated Chemiluminescence.66. The Role of Direct Coreactant Oxidation in the Ruthenium Tris(2,2')bipyridyl/Tripropylamine System and the Effect of Halide Ions on the Emission Intensity. Anal. Chem.2000,72, 3223-3232.
    [90]Dennany, L.; O'Reilly, E. I; Innis, P. C; Wallace, G. G.; Forster, R. J., The influence of poly(2-methoxyaniline-5-sulfonic acid) on the electrochemical and photochemical properties of a highly luminescent ruthenium complex. Electrochim. Acta 2008,53,4599-4605.
    [91]Dennany, L.; O'Reilly, E. J.; Keyes, T. E.; Forster, R. J., Electrochemiluminescent monolayers on metal oxide electrodes:Detection of amino acids. Electrochem. Commun.2006,8,1588-1594.
    [92]Dennany, L.; Keyes, T. E.; Forster, R. J., Surface confinement and its effects on the luminescence quenching of a ruthenium-containing metallopolymer. Analyst 2008, 133,753-759.
    [93]Dennany, L.; Forster, R. J.; Rusling, J. F., Simultaneous Direct Electrochemiluminescence and Catalytic Voltammetry Detection of DNA in Ultrathin Films. J. Am. Chem. Soc.2003,125,5213-5218.
    [94]Dennany, L.; Innis, P. C; Wallace, G. G.; Forster, R. J., Reversible Photoinduced Electron Transfer in a Ruthenium Poly(2-methoxyaniline-5-sulfonic acid) Composite Film. The Journal of Physical Chemistry B 2008,112,12907-12912.
    [95]Zhang, Z.-F.; Cui, H.; Lai, C.-Z.; Liu, L.-J., Gold Nanoparticle-Catalyzed Luminol Chemiluminescence and Its Analytical Applications. Anal. Chem.2005,77, 3324-3329.
    [96]Miao, W.; Choi, J.-P.; Bard, A. J., Electrogenerated Chemiluminescence 69:The Tris(2,2'-bipyridine)ruthenium(Ⅱ), (Ru(bpy)32+)/Tri-n-propylamine (TPrA) System RevisitedA New Route Involving TPrA·+Cation Radicals. J. Am. Chem. Soc.2002, 124,14478-14485.
    [97]Zhan, W.; Bard, A. J., Electrogenerated Chemiluminescence.83. Immunoassay of Human C-Reactive Protein by Using Ru(bpy)32+-Encapsulated Liposomes as Labels. Anal. Chem.2006,79,459-463.
    [98]Tian, D.; Duan, C; Wang, W.; Cui, H., Ultrasensitive electrochemiluminescence immunosensor based on luminol functionalized gold nanoparticle labeling. Biosens. Bioelectron.2010,25,2290-2295.
    [99]Wilson, R.; Clavering, C; Hutchinson, A., Electrochemiluminescence Enzyme Immunoassays for TNT and Pentaerythritol Tetranitrate. Anal. Chem.2003,75, 4244-4249.
    [100]Richter, M. M., Electrochemiluminescence (ECL). Chem. Rev.2004,104, 3003-3036.
    [101]Fang, L.; Lii, Z.; Wei, H.; Wang, E., A electrochemiluminescence aptasensor for detection of thrombin incorporating the capture aptamer labeled with gold nanoparticles immobilized onto the thio-silanized ITO electrode. Anal. Chim. Acta 2008,628,80-86.
    [102]Shan, Y.; Xu, J.-J.; Chen, H.-Y., Distance-dependent quenching and enhancing of electrochemiluminescence from a CdS:Mn nanocrystal film by Au nanoparticles for highly sensitive detection of DNA. Chem. Commun.2009,905-907.
    [103]Guo, S.; Li, J.; Wang, E., High-Density Gold Nanoparticles Supported on a [Ru(bpy)3]2+-Doped Silica/Fe3O4 Nanocomposite:Facile Preparation, Magnetically Induced Immobilization, and Applications in ECL Detection. Chemistry - An Asian Journal 2008,3,1544-1548.
    [104]Li, J.; Xu, Y.; Wei, H.; Huo, T.; Wang, E., Electrochemiluminescence Sensor Based on Partial Sulfonation of Polystyrene with Carbon Nanotubes. Anal. Chem. 2007,79,5439-5443.
    [105]Guo, Z.; Dong, S., Electrogenerated Chemiluminescence from Ru(Bpy)32+ Ion-Exchanged in Carbon Nanotube/Perfluorosulfonated Ionomer Composite Films. Anal. Chem.2004,76,2683-2688.
    [106]Yu, J.; Fan, F.-R. F.; Pan, S.; Lynch, V. M.; Omer, K. M.; Bard, A. J., Spontaneous Formation and Electrogenerated Chemiluminescence of Tris(bipyridine) Ru(II) Derivative Nanobelts. J. Am. Chem. Soc.2008,130,7196-7197.
    [107]Omer, K. M.; Bard, A. J., Electrogenerated Chemiluminescence of Aromatic Hydrocarbon Nanoparticles in an Aqueous Solution. J. Phys. Chem. C 2009,113, 11575-11578.
    [108]Chen, M.; Pan, L.; Huang, Z.; Cao, J.; Zheng, Y.; Zhang, H., A novel route to CdS nanocrystals with strong electrogenerated chemiluminescence. Materials Chemistry and Physics 2007,101,317-321.
    [109]Poznyak, S. K.; Talapin, D. V.; Shevchenko, E. V.; Weller, H., Quantum Dot Chemiluminescence. Nano Letters 2004,4,693-698.
    [110]Ding, Z.; Quinn, B. M.; Haram, S. K.; Pell, L. E.; Korgel, B. A.; Bard, A. J., Electrochemistry and Electrogenerated Chemiluminescence from Silicon Nanocrystal Quantum Dots. Science 2002,296,1293-1297.
    [111]Myung, N.; Ding, Z.; Bard, A. J., Electrogenerated Chemiluminescence of CdSe Nanocrystals. Nano Letters 2002,2,1315-1319.
    [112]Yoonjung, B.; Doh, C. L.; Elena, V. R.; David, C. J.; Brian, A. K.; Allen, J. B., Electrochemistry and electrogenerated chemiluminescence of films of silicon nanoparticles in aqueous solution. Nanotechnology 2006,17,3791.
    [113]Ren, T.; Xu, J.-Z.; Tu, Y.-F.; Xu, S.; Zhu, J.-J., Electrogenerated chemiluminescence of CdS spherical assemblies. Electrochem. Commun.2005,7, 5-9.
    [114]Zou, G.; Ju, H., Electrogenerated Chemiluminescence from a CdSe Nanocrystal Film and Its Sensing Application in Aqueous Solution. Anal. Chem.2004,76, 6871-6876.
    [115]Myung, N.; Lu, X.; Johnston, K. P.; Bard, A. J., Electrogenerated Chemiluminescence of Ge Nanocrystals. Nano Letters 2003,4,183-185.
    [116]Zheng, L.; Chi, Y.; Dong, Y.; Lin, J.; Wang, B., Electrochemiluminescence of Water-Soluble Carbon Nanocrystals Released Electrochemically from Graphite. J. Am. Chem. Soc.2009,131,4564-4565.
    [117]Zhu, H.; Wang, X.; Li, Y.; Wang, Z.; Yang, F.; Yang, X., Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun.2009,5118-5120.
    [118]Sundararajan, M.; Campbell, A. J.; Hillier, I. H., Catalytic Cycles for the Reduction of [UO2]2+by Cytochrome c7 Proteins Proposed from DFT Calculations. The Journal of Physical Chemistry A 2008,112,4451-4457.
    [119]Jiang, H.; Ju, H., Enzyme-quantum dots architecture for highly sensitive electrochemiluminescence biosensing of oxidase substrates. Chem. Commun.2007, 404-406.
    [120]Sun, L.; Bao, L.; Hyun, B.-R.; Bartnik, A. C; Zhong, Y.-W.; Reed, J. C; Pang, D.-W.; Abruna, H. D.; Malliaras, G. G.; Wise, F. W., Electrogenerated Chemiluminescence from PbS Quantum Dots. Nano Letters 2008,9,789-793.
    [121]Wang, X.-F.; Xu, J.-J.; Chen, H.-Y., A New Electrochemiluminescence Emission of Mn2+-Doped ZnS Nanocrystals in Aqueous Solution. J. Phys. Chem. C 2008,112,17581-17585.
    [122]Dennany, L.; Gerlach, M.; O'Carroll, S.; Keyes, T. E.; Forster, R. J.; Bertoncello, P., Electrochemiluminescence (ECL) sensing properties of water soluble core-shell CdSe/ZnS quantum dots/Nafion composite films. J. Mater. Chem.2011,21, 13984-13990.
    [123]Liu, X.; Jiang, H.; Lei, J.; Ju, H., Anodic Electrochemiluminescence of CdTe Quantum Dots and Its Energy Transfer for Detection of Catechol Derivatives. Anal. Chem.2007,79,8055-8060.
    [124]Hua, L.; Han, H.; Zhang, X., Size-dependent electrochemiluminescence behavior of water-soluble CdTe quantum dots and selective sensing of 1-cysteine. Talanta 2009,77,1654-1659.
    [125]Jie, G.; Liu, B.; Pan, H.; Zhu, J.-J.; Chen, H.-Y., CdS Nanocrystal-Based Electrochemiluminescence Biosensor for the Detection of Low-Density Lipoprotein by Increasing Sensitivity with Gold Nanoparticle Amplification. Anal. Chem.2007, 79,5574-5581.
    [126]Ding, S.-N.; Xu, J.-J.; Chen, H.-Y., Enhanced solid-state electrochemiluminescence of CdS nanocrystals composited with carbon nanotubes in H2O2 solution. Chem. Commun.2006,3631-3633.
    [127]Zhang, R.; Fan, L.; Fang, Y.; Yang, S., Electrochemical route to the preparation of highly dispersed composites of ZnO/carbon nanotubes with significantly enhanced electrochemiluminescence from ZnO. J. Mater. Chem.2008,18,4964-4970.
    [128]Wang, X.-F.; Zhou, Y.; Xu, J.-J.; Chen, H.-Y., Signal-On Electrochemiluminescence Biosensors Based on CdS-Carbon Nanotube Nanocomposite for the Sensitive Detection of Choline and Acetylcholine. Adv. Fund. Mater.2009,19,1444-1450.
    [129]Guo, L.; Liu, X.; Hu, Z.; Deng, S.; Ju, H., Electrochemilviniinescence of CdSe Quantum Dots Composited with Nitrogen-Doped Carbon Nanotubes. Electroanalysis 2009,21,2495-2498.
    [130]Qian, J.; Zhang, C; Cao, X.; Liu, S., Versatile Immunosensor Using a Quantum Dot Coated Silica Nanosphere as a Label for Signal Amplification. Anal. Chem.2010, 82,6422-6429.
    [131]Wang, Y.; Lu, J.; Tang, L.; Chang, H.; Li, J., Graphene Oxide Amplified Electrogenerated Chemiluminescence of Quantum Dots and Its Selective Sensing for Glutathione from Thiol-Containing Compounds. Anal. Chem.2009,81,9710-9715.
    [132]Li, L.-L.; Liu, K.-P.; Yang, G.-H.; Wang, C.-M.; Zhang, J.-R.; Zhu, J.-J., Fabrication of Graphene-Quantum Dots Composites for Sensitive Electrogenerated Chemiluminescence Immunosensing. Adv. Funct. Mater.2011,21,869-878.
    [133]Wang, K.; Liu, Q.; Wu, X.-Y.; Guan, Q.-M.; Li, H.-N., Graphene enhanced electrochemiluminescence of CdS nanocrystal for H2O2 sensing. Talanta 2010,82, 372-376.
    [134]Wang, H.; Zhang, F.; Tan, Z.; Chen, Q.; Wang, L., Greatly enhanced electrochemiluminescence of CdS nanocrystals upon heating in the presence of ammonia. Electrochem. Commun.2010,12,650-652.
    [135]Cheng, L.; Liu, X.; Lei, J.; Ju, H., Low-Potential Electrochemiluminescent Sensing Based on Surface Unpassivation of CdTe Quantum Dots and Competition of Analyte Cation to Stabilizer. Anal. Chem.2010,82,3359-3364.
    [136]Jiang, H.; Ju, H., Electrochemiluminescence Sensors for Scavengers of Hydroxyl Radical Based on Its Annihilation in CdSe Quantum Dots Film/Peroxide System. Anal. Chem.2007,79,6690-6696.
    [137]Zhang, L.; Shang, L.; Dong, S., Sensitive and selective determination of Cu2+ by electrochemiluminescence of CdTe quantum dots.-Electrochem. Commun.2008, 10,1452-1454.
    [138]Liu, X.; Ju, H., Coreactant Enhanced Anodic Electrochemiluminescence of CdTe Quantum Dots at Low Potential for Sensitive Biosensing Amplified by Enzymatic Cycle. Anal. Chem.2008,80,5377-5382.
    [139]Liu, X.; Cheng, L.; Lei, J.; Liu, H.; Ju, H., Formation of Surface Traps on Quantum Dots by Bidentate Chelation and Their Application in Low-Potential Electrochemiluminescent Biosensing. Chemistry - A European Journal 2010,16, 10764-10770.
    [140]Jie, G.; Zhang, J.; Wang, D.; Cheng, C; Chen, H.-Y.; Zhu, J.-J., Electrochemiluminescence Immunosensor Based on CdSe Nanocomposites. Anal. Chem.2008,80,4033-4039.
    [141]Jie, G.; Huang, H.; Sun, X.; Zhu, J.-J., Electrochemiluminescence of CdSe quantum dots for immunosensing of human prealbumin. Biosens. Bioelectron.2008, 23,1896-1899.
    [142]Jie, G.-F.; Liu, P.; Zhang, S.-S., Highly enhanced electrochemiluminescence of novel gold/silica/CdSe-CdS nanostructures for ultrasensitive immunoassay of protein tumor marker. Chem. Commun.2010,46,1323-1325.
    [143]Shan, Y.; Xu, J.-J.; Chen, H.-Y., Electrochemiluminescence quenching by CdTe quantum dots through energy scavenging for ultrasensitive detection of antigen. Chem. Commun.2010,46,5079-5081.
    [144]Shan, Y.; Xu, J.-J.; Chen, H.-Y., Opto-magnetic interaction between electrochemiluminescent CdS:Mn film and Fe3O4 nanoparticles and its application to immunosensing. Chem. Commun.2010,46,4187-4189.
    [145]Wu, M.-S.; Shi, H.-W.; Xu, J.-J.; Chen, H.-Y., CdS quantum dots/Ru(bpy)32+ electrochemiluminescence resonance energy transfer system for sensitive cytosensing. Chem. Commun.2011,47,7752-7754.
    [146]Li, L.; Li, M.; Sun, Y.; Li, J.; Sun, L.; Zou, G.; Zhang, X.; Jin, W., Electrochemiluminescence resonance energy transfer between an emitter electrochemically generated by luminol as the donor and luminescent quantum dots as the acceptor and its biological application. Chem. Commun.2011,47,8292-8294.
    [147]Huang, H.; Zhu, J.-J., DNA aptamer-based QDs electrochemiluminescence biosensor for the detection of thrombin. Biosens. Bioelectron.2009,25,927-930.
    [148]Huang, H.; Jie, G.; Cui, R.; Zhu, J.-J., DNA aptamer-based detection of lysozyme by an electrochemiluminescence assay coupled to quantum dots. Electrochem. Commun.2009,11,816-818.
    [149]Huang, H.; Tan, Y.; Shi, J.; Liang, G.; Zhu, J.-J., DNA aptasensor for the detection of ATP based on quantum dots electrochemiluminescence. Nanoscale 2010, 2,606-612.
    [150]Fang, Y.-M.; Song, J.; Li, J.; Wang, Y.-W.; Yang, H.-H.; Sun, J.-J.; Chen, G.-N., Electrogenerated chemiluminescence from Au nanoclusters. Chem. Commun. 2011,47,2369-2371.
    [151]Li, L.; Liu, H.; Shen, Y.; Zhang, J.; Zhu, J.-J., Electrogenerated Chemiluminescence of Au Nanoclusters for the Detection of Dopamine. Anal. Chem. 2011,83,661-665.
    [152]Diez, I.; Pusa, M.; Kulmala, S.; Jiang, H.; Walther, A.; Goldmann, A. S.; Muller, A. H. E.; Ikkala, O.; Ras, R. H. A., Color Tunability and Electrochemiluminescence of Silver Nanoclusters. Angew. Chem. Int. Ed.2009,48,2122-2125.
    [153]Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J., Synthesis of electrically conducting organic polymers:halogen derivatives of polyacetylene, (CH). Journal of the Chemical Society, Chemical Communications 1977,578-580.
    [154]Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C; MacDiarmid, A. G., Electrical Conductivity in Doped Polyacetylene. Physical Review Letters 1977,39,1098-1101.
    [155]Delamar, M.; Lacaze, P. C; Dumousseau, J. Y.; Dubois, J. E., Electrochemical oxidation of benzene and biphenyl in liquid sulfur dioxide:formation of conductive deposits. Electrochim. Acta 1982,27,61-65.
    [156]Wnek, G. E.; Chien, J. C. W.; Karasz, F. E.; Lillya, C. P., Electrically conducting derivative of poly(p-phenylene vinylene). Polymer 1979,20,1441-1443.
    [157]Diaz, A. F.; Logan, J. A., Electroactive polyaniline films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1980,111,111-114.
    [158]Diaz, A. F.; Kanazawa, K. K.; Gardini, G. P., Electrochemical polymerization of pyrrole. Journal of the Chemical Society, Chemical Communications 1979, 635-636.
    [159]Noufi, R.; Nozik, A. J.; White, J.; Warren, L. F., Enhanced Stability of Photoelectrodes with Electrogenerated Polyaniline Films. Journal of The Electrochemical Society 1982,129,2261-2265.
    [160]Tourillon, G.; Gamier, F., New electrochemically generated organic conducting polymers. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1982,135,173-178.
    [161]Dietrich, M.; Heinze, J.; Heywang, G.; Jonas, F., Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes. J. Electroanal, Chem. 1994,369,87-92.
    [162]Heywang, G.; Jonas, F., Poly(alkylenedioxythiophene)s—new, very stable conducting polymers. Adv. Mater.1992, 4,116-118.
    [163]Wang, H. L.; Huang, F.; MacDiarmid, A. G.; Wang, Y. Z.; Gebier, D. D.; Epstein, A. J., Application of aluminum, copper and gold electrodes in a.c. polymer light-emitting devices. Synthetic Metals 1996,80,97-104.
    [164]Wang, H. L.; MacDiarmid, A. G.; Wang, Y. Z.; Gebier, D. D.; Epstein, A. J., Application of polyaniline (emeraldine base, EB) in polymer light-emitting devices. Synthetic Metals 1996,78,33-37.
    [165]Huang, F.; Wang, H. L.; Feldstein, M.; MacDiarmid, A. G.; Hsieh, B. R.; Epstein, A. J., Application of thin films of conjugated polymers in electrochemical and conventional light-emitting devices and in related photovoltaic devices. Synthetic Metals 1997,85,1283-1284.
    [166]Pei, Q.; Yang; Yu, G.; Zhang, C; Heeger, A. J., Polymer Light-Emitting Electrochemical Cells:In Situ Formation of a Light-Emitting p-n Junction. J. Am. Chem. Soc.1996,118,3922-3929.
    [167]Ostrowski, J. C; Robinson, M. R.; Heeger, A. J.; Bazan, G. C, Amorphous iridium complexes for electrophosphorescent light emitting devices. Chem. Commun. 2002,784-785.
    [168]Kerr, T. A.; Wu, H.; Nazar, L. F., Concurrent Polymerization and Insertion of Aniline in Molybdenum Trioxide:Formation and Properties of a [Poly(aniline)]0.24MoO3 Nanocomposite. Chemistry of Materials 1996,8, 2005-2015.
    [169]Hashmi, S. A.; Upadhyaya, H. M., Polypyrrole and poly(3-methyl thiophene)-based solid state redox supercapacitors using ion conducting polymer electrolyte. Solid State Ionics 2002,152-153,883-889.
    [170]Xiao, Q.; Zhou, X., The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Electrochim. Acta 2003,48,575-580.
    [171]Schon, J. H.; Kloc, C; Batlogg, B., Superconductivity in molecular crystals induced by charge injection. Nature 2000,406,702-704.
    [172]Kontturi, K.; Pentti, P.; Sundholm, G., Polypyrrole as a model membrane for drug delivery. J. Electroanal. Chem.1998,453,231-238.
    [173]Weidlich, C; Mangold, K. M.; Juttner, K., Conducting polymers as ion-exchangers for water purification. Electrochim. Acta 2001,47,741-745.
    [174]Janata, J.; Josowicz, M., Conducting polymers in electronic chemical sensors. Nat Mater 2003,2,19-24.
    [175]Ramanavicius, A.; Ramanaviciene, A.; Malinauskas, A., Electrochemical sensors based on conducting polymer—polypyrrole. Electrochim. Acta 2006,51, 6025-6037.
    [176]Lange, U.; Roznyatovskaya, N. V.; Mirsky, V. M., Conducting polymers in chemical sensors and arrays. Anal. Chim. Acta 2008,614,1-26.
    [177]Vidal, J.-C; Garcia-Ruiz, E.; Castillo, J.-R., Recent Advances in Electropolymerized Conducting Polymers in Amperometric Biosensors. Microchimica Acta 2003,143,93-111.
    [178]Cosnier, S., Biosensors based on electropolymerized films:new trends. Anal. Bioanal. Chem.2003,377,507-520.
    [179]Xia, L.; Wei, Z.; Wan, M., Conducting polymer nanostructures and their application in biosensors. J. Colloid Interface Sci.2010,341,1-11.
    [180]Spurlock, L. D.; Jaramillo, A.; Praserthdam, A.; Lewis, J.; Brajter-Toth, A., Selectivity and sensitivity of ultrathin purine-templated overoxidized polypyrrole film electrodes. Anal. Chim. Acta 1996,336,37-46.
    [181]Deore, B.; Chen, Z.; Nagaoka, T., Overoxidized Polypyrrole with Dopant Complementary Cavities as a New Molecularly Imprinted Polymer Matrix. Analytical Sciences 1999,15,827-828.
    [182]Pietrzyk, A.; Suriyanarayanan, S.; Kutner, W.; Chitta, R.; D'Souza, F., Selective Histamine Piezoelectric Chemosensor Using a Recognition Film of the Molecularly Imprinted Polymer of Bis(bithiophene) Derivatives. Anal. Chem.2009, 81,2633-2643.
    [183]Pietrzyk, A.; Suriyanarayanan, S.; Kutner, W.; Maligaspe, E.; Zandler, M. E.; D'Souza, F., Molecularly imprinted poly[bis(2,2'-bithienyl)methane] film with built-in molecular recognition sites for a piezoelectric microgravimetry chemosensor for selective determination of dopamine. Bioelectrochemistry 2010,80,62-72.
    [184]Pietrzyk, A.; Kutner, W.; Chitta, R.; Zandler, M. E.; D'Souza, F.; Sannicolo, F.; Mussini, P. R., Melamine Acoustic Chemosensor Based on Molecularly Imprinted Polymer Film. Anal. Chem.2009,81,10061-10070.
    [185]Bianco-Lopez, M. C; Lobo-Castanon, M. J.; Miranda-Ordieres, A. J.; Tunon-Blanco, P., Electrochemical sensors based on molecularly imprinted polymers. TrAC, Trends Anal. Chem.2004,23,36-48.
    [186]Feas, X.; Seijas, J. A.; Vazquez-Tato, M. P.; Regal, P.; Cepeda, A.; Fente, C, Syntheses of molecularly imprinted polymers:Molecular recognition of cyproheptadine using original print molecules and azatadine as dummy templates. Anal. Chim. Acta 2009,631,237-244.
    [187]Haupt, K., Imprinted polymers-Tailor-made mimics of antibodies and receptors. Chem. Commun.2003,171-178.
    [188]Suryanarayanan, V.; Wu, C.-T.; Ho, K.-C, Molecularly Imprinted Electrochemical Sensors. Electroanalysis 2010,22,1795-1811.
    [189]Cutivet, A.; Schembri, C; Kovensky, J.; Haupt, K., Molecularly Imprinted Microgels as Enzyme Inhibitors. J. Am. Chem. Soc.2009,131,14699-14702.
    [190]Mosbach, K., Molecular imprinting. Trends in Biochemical Sciences 1994,19, 9-14.
    [191]Turiel, E.; Martin-Esteban, A., Molecularly imprinted polymers:towards highly selective stationary phases in liquid chromatography and capillary electrophoresis. Anal Bioanal. Chem.2004,378,1876-1886.
    [192]Tamayo, F. G.; Turiel, E.; Martin-Esteban, A., Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction:Recent developments and future trends. J. Chromatogr. A 2007,1152,32-40.
    [193]Blanco-Lopez, M. C; Gutierrez-Fernandez, S.; Lobo-Castanon, M. J.; Miranda-Ordieres, A. J.; Tunon-Blanco, P., Electrochemical sensing with electrodes modified with molecularly imprinted polymer films. Anal. Bioanal. Chem.2004,378, 1922-1928.
    [194]Hedborg, E.; Winquist, F.; Lundstrom, I.; Andersson, L. I.; Mosbach, K., Some studies of molecularly-imprinted polymer membranes in combination with field-effect devices. Sensors and Actuators A:Physical 1993,37-38,796-799.
    [195]Lakshmi, D.; Bossi, A.; Whitcombe, M. J.; Chianella, I.; Fowler, S. A.; Subrahmanyam, S.; Piletska, E. V.; Piletsky, S. A., Electrochemical Sensor for Catechol and Dopamine Based on a Catalytic Molecularly Imprinted Polymer-Conducting Polymer Hybrid Recognition Element. Anal. Chem.2009,81, 3576-3584.
    [196]Ebarvia, B. S.; Cabanilla, S.; Sevilla Iii, F., Biomimetic properties and surface studies of a piezoelectric caffeine sensor based on electrosynthesized polypyrrole. Talanta 2005,66,145-152.
    [197]Ramanaviciene, A.; Ramanavicius, A.; Finkelsteinas, A., Basic Electrochemistry Meets Nanotechnology:Electrochemical Preparation of Artificial Receptors Based on Nanostractured Conducting Polymer, Polypyrrole. Journal of Chemical Education 2006,83,1212.
    [198]Choong, C.-L.; Milne, W. I., Dynamic modulation of detection window in conducting polymer based biosensors. Biosens. Bioelectron.2010,25,2384-2388.
    [199]Deore, B.; Freund, M. S., Saccharide imprinting of poly(aniline boronic acid) in the presence of fluoride. Analyst 2003,128,803-806.
    [200]Sallacan, N.; Zayats, M.; Bourenko, T.; Kharitonov, A. B.; Willner, I., Imprinting of Nucleotide and Monosaccharide Recognition Sites in Acrylamidephenylboronic Acid-Acrylamide Copolymer Membranes Associated with Electronic Transducers. Anal. Chem.2002,74,702-712.
    [201]Teasdale, P. R; Wallace, G. G., Molecular recognition using conducting polymers:basis of an electrochemical sensing technology-Plenary lecture. Analyst 1993,118,329-334.
    [202]Rick, J.; Chou, T.-C, Using protein templates to direct the formation of thin-film polymer surfaces. Biosens. Bioelectron.2006,22,544-549.
    [203]Atta, N. F.; Galal, A.; Ersin Karagozler, A.; Russell, G. C; Zimmer, H.; Mark Jr, H. B., Electrochemistry and detection of some organic and biological molecules at conducting poly(3-methylthiophene) electrodes. Biosens. Bioelectron.1991,6, 333-341.
    [204]Welzel, H. P.; Kossmehl, G.; Schneider, J.; Plieth, W., Reactive Groups on Polymer-Covered Electrodes.2. Functionalized Thiophene Polymers by Electrochemical Polymerization and Their Application as Polymeric Reagents. Macromolecules 1995,28,5575-5580.
    [1]Clegg, D. L., Paper Chromatography. Anal. Chem.1950,22,48-59.
    [2]Sia, S. K.; Kricka, L. J., Lab on paper. Lab Chip 2008,8,1988-1991.
    [3]Pelton, R., Bioactive paper provides a low-cost platform for diagnostics. TrAC, Trends Anal. Chem.2009,28,925-942.
    [4]Sia, S., Cutting edge:Thin, lightweight, foldable thermochromic displays on paper. Lab Chip 2009,9,2763-2763.
    [5]Martinez, A. W.; Phillips, S. T.; Whitesides, G. M., Diagnostics for the Developing World:Microfluidic Paper-Based Analytical Devices. Anal Chem.2010, 82,3-10.
    [6]Whitesides, G. M., What Comes Next? Lab Chip 2011,11,191-193.
    [7]Ballerini, D. R.; Li, X.; Shen, W., Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics. Microfluid. Nanofluid.2012,13, 769-787.
    [8]Li, X.; Ballerini, D. R.; Shen, W., A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics 2012,6,011301-13.
    [9]Liana, D. D.; Raguse, B.; Gooding, J. J.; Chow, E., Recent Advances in Paper-Based Sensors. Sensors 2012,12,11505-11526.
    [10]Shah, P.; Zhu, X.; Li, C.-z., Development of paper-based analytical kit for point-of-care testing. Expert Review of Molecular Diagnostics 2012,13,83-91.
    [11]Mace, C. R.; Deraney, R. N., Manufacturing prototypes for paper-based diagnostic devices. Microfluid. Nanofluid.2013, DOI:10.1007/s10404-013-1314-6.
    [12]Nery, E. W.; Kubota, L. T., Sensing approaches on paper-based devices:a review. Anal Bioanal. Chem.2013,405,7573-7595.
    [13]Parolo, C; Merkoci, A., Paper-based nanobiosensors for diagnostics. Chemical Society Reviews 2013,42,450-457.
    [14]Yetisen, A. K.; Akram, M. S.; Lowe, C. R., Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 2013,13,2210-2251.
    [15]Hu, J.; Wang, S.; Wang, L.; Li, F.; Pingguan-Murphy, B.; Lu, T. J.; Xu, F., Advances in paper-based point-of-care diagnostics. Biosens. Bioelectron.2014,54, 585-597.
    [16]Nguyen, T. H.; Fraiwan, A.; Choi, S., Paper-based batteries:A Review. Biosens. Bioelectron.2014,640-649.
    [17]Rozand, C, Paper-based analytical devices for point-of-care infectious disease testing. Eur J Clin Microbiol Infect Dis 2014,33,147-156.
    [18]Santhiago, M.; Nery, E. W.; Santos, G. P.; Kubota, L. T., Microfluidic paper-based devices for bioanalytical applications. Bioanalysis 2014,6,89-106.
    [19]Martinez, A. W.; Phillips, S. T.; Wiley, B. J.; Gupta, M.; Whitesides, G. M., FLASH:A rapid method for prototyping paper-based microfluidic devices. Lab Chip 2008,8,2146-2150.
    [20]Abe, K.; Suzuki, K.; Citterio, D., Inkjet-Printed Microfluidic Multianalyte Chemical Sensing Paper. Anal. Chem.2008,80,6928-6934.
    [21]Bruzewicz, D. A.; Reches, M.; Whitesides, G. M., Low-Cost Printing of Poly(dimethylsiloxane) Barriers To Define Microchannels in Paper. Anal. Chem. 2008,80,3387-3392.
    [22]Li, X.; Tian, J.; Nguyen, T.; Shen, W., Paper-Based Microfluidic Devices by Plasma Treatment. Anal. Chem.2008,80,9131-9134.
    [23]Carrilho, E.; Martinez, A. W.; Whitesides, G. M., Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics. Anal. Chem.2009, 81,7091-7095.
    [24]Fenton, E. M.; Mascarenas, M. R.; Lopez, G. P.; Sibbett, S. S., Multiplex Lateral-Flow Test Strips Fabricated by Two-Dimensional Shaping. ACS Appl. Mater. Interfaces 2009,1,124-129.
    [25]Lu, Y.; Shi, W.; Qin, J.; Lin, B., Fabrication and Characterization of Paper-Based Microfluidics Prepared in Nitrocellulose Membrane By Wax Printing. Anal. Chem. 2009,82,329-335.
    [26]Olkkonen, J.; Lehtinen, K.; Erho, T., Flexographically Printed Fluidic Structures in Paper. Anal. Chem.2010,82,10246-10250.
    [27]Lewis, G. G.; DiTucci, M. J.; Baker, M. S.; Phillips, S. T., High throughput method for prototyping three-dimensional, paper-based microfluidic devices. Lab Chip 2012,12,2630-2633.
    [28]Schilling, K. M.; Jauregui, D.; Martinez, A. W., Paper and toner three-dimensional fluidic devices:programming fluid flow to improve point-of-care diagnostics. Lab Chip 2013,13,628-631.
    [29]Nie, J.; Liang, Y.; Zhang, Y.; Le, S.; Li, D.; Zhang, S., One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices. Analyst 2013,138,671-676.
    [30]Nie, J.; Zhang, Y.; Lin, L.; Zhou, C; Li, S.; Zhang, L.; Li, J., Low-Cost Fabrication of Paper-Based Microfluidic Devices by One-Step Plotting. Anal. Chem. 2012,84,6331-6335.
    [31]Carrilho, E.; Phillips, S. T.; Vella, S. J.; Martinez, A. W.; Whitesides, G. M., Paper Microzone Plates. Anal. Chem.2009,81,5990-5998.
    [32]Hossain, S. M. Z.; Luckham, R. E.; McFadden, M. J.; Brennan, J. D., Reagentless Bidirectional Lateral Flow Bioactive Paper Sensors for Detection of Pesticides in Beverage and Food Samples. Anal. Chem.2009,81,9055-9064.
    [33]Kauffman, P.; Fu, E.; Lutz, B.; Yager, P., Visualization and measurement of flow in two-dimensional paper networks. Lab Chip 2010,10,2614-2617.
    [34]Li, X.; Zwanenburg, P.; Liu, X., Magnetic Timing Valves for Fluid Control in Paper-Based Microfluidics. Lab Chip 2013,13,2609-2614.
    [35]Noh, H.; Phillips, S. T., Metering the Capillary-Driven Flow of Fluids in Paper-Based Microfluidic Devices. Anal. Chem.2010,82,4181-4187.
    [36]Hwang, H.; Kim, S.-H.; Kim, T.-H.; Park, J.-K.; Cho, Y.-K., Paper on a disc: balancing the capillary-driven flow with a centrifugal force. Lab Chip 2011,11, 3404-4306.
    [37]Lutz, B. R.; Trinh, P.; Ball, C; Fu, E.; Yager, P., Two-dimensional paper networks:programmable fluidic disconnects for multi-step processes in shaped paper. Lab Chip 2011,11,4274-4278.
    [38]Tao, H.; Chieffo, L. R.; Brenckle, M. A.; Siebert, S. M.; Liu, M.; Strikwerda, A. C; Fan, K.; Kaplan, D. L.; Zhang, X.; Averitt, R. D.; Omenetto, F. G., Metamaterials on Paper as a Sensing Platform. Adv. Mater.2011,23,3197-3201.
    [39]Govindarajan, A. V.; Ramachandran, S.; Vigil, G. D.; Yager, P.; Bohringer, K. F., A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami. Lab Chip 2012,12, 174-181.
    [40]Jahanshahi-Anbuhi, S.; Chavan, P.; Sicard, C; Leung, V.; Hossain, S. M. Z.; Pelton, R.; Brennan, J. D.; Filipe, C. D. M., Creating fast flow channels in paper fluidic devices to control timing of sequential reactions. Lab Chip 2012,12, 5079-5085.
    [41]Martinez, A. W.; Phillips, S. T.; Carrilho, E.; Thomas, S. W.; Sindi, H.; Whitesides, G. M., Simple Telemedicine for Developing Regions:Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site Diagnosis. Anal. Chem.2008,80,3699-3707.
    [42]Zhao, W.; Ali, M. M.; Aguirre, S. D.; Brook, M. A.; Li, Y., Paper-Based Bioassays Using Gold Nanoparticle Colorimetric Probes. Anal. Chem.2008,80, 8431-8437.
    [43]Ellerbee, A. K.; Phillips, S. T.; Siegel, A. C; Mirica, K. A.; Martinez, A. W.; Striehl, P.; Jain, N.; Prentiss, M.; Whitesides, G. M., Quantifying Colorimetric Assays in Paper-Based Microfluidic Devices by Measuring the Transmission of Light through Paper. Anal. Chem.2009,81,8447-8452.
    [44]Hossain, S. M. Z.; Luckham, R. E.; Smith, A. M.; Lebert, J. M.; Davies, L. M.; Pelton, R. H.; Filipe, C. D. M.; Brennan, J. D., Development of a Bioactive Paper Sensor for Detection of Neurotoxins Using Piezoelectric Inkjet Printing of Sol-Gel-Derived Bioinks. Anal. Chem.2009,81,5474-5483.
    [45]Cheng, C.-M.; Martinez, A. W.; Gong, J.; Mace, C. R.; Phillips, S. T.; Carrilho, E.; Mirica, K. A.; Whitesides, G. M., Paper-Based ELISA. Angew. Chem. Int. Ed 2010,49, 4771-4774.
    [46]Noh, H.; Phillips, S. T., Fluidic Timers for Time-Dependent, Point-of-Care Assays on Paper. Anal. Chem.2010,82,8071-8078.
    [47]Li, C.-z.; Vandenberg, K.; Prabhulkar, S.; Zhu, X.; Schneper, L.; Methee, K.; Rosser, C. J.; Ahneide, E., Paper based point-of-care testing disc for multiplex whole cell bacteria analysis. Biosens. Bioelectron.2011,26,4342-4348.
    [48]Ali, M. M.; Aguirre, S. D.; Xu, Y.; Filipe, C. D. M.; Pelton, R.; Li, Y., Detection of DNA using bioactive paper strips. Chem. Commun.2009,45,6640-6642.
    [49]Yang, X.; Wang, E., A Nanoparticle Autocatalytic Sensor for Ag+and Cu2+Ions in Aqueous Solution with High Sensitivity and Selectivity and Its Application in Test Paper. Anal. Chem.2011,83,5005-5011.
    [50]Alkasir, R. S. J.; Ornatska, M.; Andreescu, S., Colorimetric Paper Bioassay for the Detection of Phenolic Compounds. Anal. Chem.2012,84,9729-9737.
    [51]Aragay, G.; Monton, H.; Pons, J.; Font-Bardia, M.; Merkoci, A., Rapid and highly sensitive detection of mercury ions using a fluorescence-based paper test strip with an N-alkylaminopyrazole ligand as a receptor. J. Mater. Chem.2012,22, 5978-5983.
    [52]Liang, J.; Wang, Y.; Liu, B., Paper-based fluoroimmunoassay for rapid and sensitive detection of antigen. RSCAdv.2012,2,3878-3884.
    [53]Yu, J.; Wang, S.; Ge, L.; Ge, S., A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination. Biosens. Bioelectron.2011,26,3284-3289.
    [54]Yu, J.; Ge, L.; Huang, J.; Wang, S.; Ge, S., Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab Chip 2011,11,1286-1291.
    [55]Wang, S.; Ge, L.; Song, X.; Yu, J.; Ge, S.; Huang, J.; Zeng, F., Paper-based chemiluminescence ELISA:Lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens. Bioelectron.2012,31,212-218.
    [56]Dungchai, W.; Chailapakul, O.; Henry, C. S., Electrochemical Detection for Paper-Based Microfluidics. Anal. Chem.2009,81,5821-5826.
    [57]Nie, Z.; Deiss, F.; Liu, X.; Akbulut, O.; Whitesides, G. M., Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip 2010,10,3163-3169.
    [58]Carvalhal, R. F.; Simao Kfouri, M.; de Oliveira Piazetta, M. H.; Gobbi, A. L.; Kubota, L. T., Electrochemical Detection in a Paper-Based Separation Device. Anal. Chem.2010,82,1162-1165.
    [59]Delaney, J. L.; Hogan, C. F.; Tian, J.; Shen, W., Electrogenerated Chemiluminescence Detection in Paper-Based Microfluidic Sensors. Anal. Chem. 2011,83,1300-1306.
    [60]Shi, C.-G.; Shan, X.; Pan, Z.-Q.; Xu, J.-J.; Lu, C; Bao, N.; Gu, H.-Y., Quantum Dot (QD)-Modified Carbon Tape Electrodes for Reproducible Electrochemiluminescence (ECL) Emission on a Paper-Based Platform. Anal. Chem. 2012,84,3033-3038.
    [61]Ge, L.; Yan, J.; Song, X.; Yan, M; Ge, S.; Yu, J., Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing. Biomaterials 2012,33,1024-1031.
    [62]Wang, S.; Dai, W.; Ge, L.; Yan, M.; Yu, J.; Song, X.; Ge, S.; Huang, I, Rechargeable battery-triggered electrochemiluminescence detection on microfluidic origami immunodevice based on two electrodes. Chem. Commun.2012,48, 9971-9973.
    [63]Wang, S.; Ge, L.; Zhang, Y.; Song, X.; Li, N.; Ge, S.; Yu, J., Battery-triggered microfluidic paper-based multiplex electrochemiluminescence immunodevice based on potential-resolution strategy. Lab Chip 2012,12,4489-4498.
    [64]Jia, S.; Liang, M.; Guo, L.-H., Photoelectrochemical Detection of Oxidative DNA Damage Induced by Fenton Reaction with Low Concentration and DNA-Associated Fe2+. J. Phys. Chem. B 2008,112,4461-4464.
    [65]Chen, D.; Zhang, H.; Li, X.; Li, J., Biofunctional Titania Nanotubes for Visible-Light-Activated Photoelectrochemical Biosensing. Anal. Chem.2010,82, 2253-2261.
    [66]Tu, W.; Dong, Y.; Lei, J.; Ju, H., Low-Potential Photoelectrochemical Biosensing Using Porphyrin-Functionalized TiO2 Nanoparticles. Anal. Chem.2010, 82,8711-8716.
    [67]Zhang, X.; Xu, Y.; Yang, Y.; Jin, X.; Ye, S.; Zhang, S.; Jiang, L., A New Signal-On Photoelectrochemical Biosensor Based on a Graphene/Quantum-Dot Nanocomposite Amplified by the Dual-Quenched Effect of Bipyridinium Relay and AuNPs. Chemistry-A European Journal 2012,18,16411-16418.
    [68]Freeman, R.; Gill, R.; Beissenhirtz, M.; Willner, I., Self-assembly of semiconductor quantum-dots on electrodes for photoelectrochemical biosensing. Photochem. Photobiol. Set 2007,6,416-422.
    [69]Lamprecht, B.; Thunauer, R.; Ostermann, M.; Jakopic, G.; Leising, G., Organic photodiodes on newspaper. Physica status solidi (a) 2005,202, R50-R52.
    [70]Liu, H.; Crooks, R. M., Paper-Based Electrochemical Sensing Platform with Integral Battery and Electrochromic Read-Out. Anal. Chem.2012,84,2528-2532.
    [71]Thorn, N. K.; Yeung, K.; Pillion, M. B.; Phillips, S. T., "Fluidic batteries" as low-cost sources of power in "paper-based microfluidic devices. Lab Chip 2012,12, 1768-1770.
    [72]Nystrom, G.; Razaq, A.; Stramme, M.; Nyholm, L.; Mihranyan, A., Ultrafast All-Polymer Paper-Based Batteries. Nano Letters 2009,9,3635-3639.
    [73]Mazzeo, A. D.; Kalb, W. B.; Chan, L.; Killian, M. G.; Bloch, J.-F.; Mazzeo, B. A.; Whitesides, G. M., Paper-Based, Capacitive Touch Pads. Adv. Mater.2012,24, 2850-2856.
    [74]Andersson, P.; Nilsson, D.; Svensson, P. O.; Chen, M.; Malmstrom, A.; Remonen, T.; Kugler, T.; Berggren, M., Active Matrix Displays Based on All-Organic Electrochemical Smart Pixels Printed on Paper. Adv. Mater.2002,14, 1460-1464.
    [75]Yuan, L.; Xiao, X.; Ding, T.; Zhong, J.; Zhang, X.; Shen, Y.; Hu, B.; Huang, Y.; Zhou, J.; Wang, Z. L., Paper-Based Supercapacitors for Self-Powered Nanosystems. Angew. Chem. Int. Ed.2012,51,4934-4938.
    [76]Simon, P.; Gogotsi, Y., Materials for electrochemical capacitors. Nat Mater 2008, 7,845-854.
    [77]Yuan, L.; Lu, X.-H.; Xiao, X.; Zhai, T.; Dai, J.; Zhang, F.; Hu, B.; Wang, X.; Gong, L.; Chen, J.; Hu, C.; Tong, Y.; Zhou, J.; Wang, Z. L., Flexible Solid-State Supercapacitors Based on Carbon Nanoparticles/MnO2 Nanorods Hybrid Structure. ACS Nano 2011,6,656-661.
    [78]Chen, H. M.; Huang, X. F. Xu, L.; Xu, J.; Chen, K. J.; Feng, D., Self-assembly and photoluminescence of CdS-mercaptoacetic clusters with internal structures. Superlattices and Microstructures 2000,27,1-5.
    [79]Wang, L.; Guo, S.; Huang, L.; Dong, S., Alternate assemblies of polyelectrolyte functionalized carbon nanotubes and platinum nanoparticles as tunable electrocatalysts for dioxygen reduction. Electrochem. Commun.2007,9,827-832.
    [80]Yan, J.; Ge, L.; Song, X.; Yan, M.; Ge, S.; Yu, J., Paper-Based Electrochemiluminescent 3D Immunodevice for Lab-on-Paper, Specific, and Sensitive Point-of-Care Testing. Chem. Eur. J.2012,18,4938-4945.
    [81]Saarela, J. M. S.; Heikkinen, S. M.; Fabritius, T. E. J.; Haapala, A. T.; Myllyla, R. A., Refractive index matching improves optical object detection in paper. Measurement Science and Technology 2008,19,055710-055716.
    [82]Zhou, Z.; Du, Y.; Dong, S., Double-Strand DNA-Templated Formation of Copper Nanoparticles as Fluorescent Probe for Label-Free Aptamer Sensor. Anal. Chem.2011,83,5122-5127.
    [83]Cui, L.; Zou, Y.; Lin, N.; Zhu, Z.; Jenkins, G.; Yang, C. J., Mass Amplifying Probe for Sensitive Fluorescence Anisotropy Detection of Small Molecules in Complex Biological Samples. Anal. Chem.2012,84,5535-5541.
    [84]Zhang, Z.; Sharon, E.; Freeman, R.; Liu, X.; Willner, I., Fluorescence Detection of DNA, Adenosine-5'-Triphosphate (ATP), and Telomerase Activity by Zinc(II)-Protoporphyrin IX/G-Quadruplex Labels. Anal. Chem.2012,84,4789-4797.
    [85]Tang, D.; Tang, J.; Li, Q.; Su, B.; Chen, G., Ultrasensitive Aptamer-Based Multiplexed Electrochemical Detection by Coupling Distinguishable Signal Tags with Catalytic Recycling of DNase I. Anal. Chem.2011,83,7255-7259.
    [86]Wang, L.; Xu, M.; Han, L.; Zhou, M.; Zhu, C; Dong, S., Graphene Enhanced Electron Transfer at Aptamer Modified Electrode and Its Application in Biosensing. Anal. Chem.2012,84,7301-7307.
    [87]Zhang, X.; Li, S.; Jin, X.; Zhang, S., A new photoelectrochemical aptasensor for the detection of thrombin based on functionalized graphene and CdSe nanoparticles multilayers. Chem. Commun.2011,47,4929-4931.
    [88]Li, M.; Zhang, J.; Suri, S.; Sooter, L. J.; Ma, D.; Wu, N., Detection of Adenosine Triphosphate with an Aptamer Biosensor Based on Surface-Enhanced Raman Scattering. Anal. Chem.2012,84,2837-2842.
    [89]Zhang, X.; Zhao, Y.; Li, S.; Zhang, S., Photoelectrochemical biosensor for detection of adenosine triphosphate in the extracts of cancer cells. Chem. Commun. 2010,46,9173-9175.
    [1]Martinez, A. W.; Phillips, S. T.; Whitesides, G. M., Diagnostics for the Developing World:Microfluidic Paper-Based Analytical Devices. Anal. Chem.2010, 82,3-10.
    [2]Whitesides, G. M., What Comes Next? Lab Chip 2011,11,191-193.
    [3]Ballerini, D. R.; Li, X.; Shen, W., Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics. Microfluid. Nanofluid.2012,13, 769-787.
    [4]Li, X.; Ballerini, D. R.; Shen, W., A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics 2012,6,011301-011313,.
    [5]Liana, D. D.; Raguse, B.; Gooding, J. J.; Chow, E., Recent Advances in Paper-Based Sensors. Sensors 2012,12,11505-11526.
    [6]Shah, P.; Zhu, X.; Li, C.-z., Development of paper-based analytical kit for point-of-care testing. Expert Review of Molecular Diagnostics 2012,13,83-91.
    [7]Mace, C. R.; Deraney, R. N., Manufacturing prototypes for paper-based diagnostic devices. Microfluid Nanofluid.2013, DOI:10.1007/s10404-013-1314-6.
    [8]Nery, E. W.; Kubota, L. T., Sensing approaches on paper-based devices:a review. Anal. Bioanal. Chem.2013,405,7573-7595.
    [9]Yetisen, A. K.; Akram, M. S.; Lowe, C. R., Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 2013,13,2210-2251.
    [10]Hu, J.; Wang, S.; Wang, L.; Li, F.; Pingguan-Murphy, B.; Lu, T. J.; Xu, F., Advances in paper-based point-of-care diagnostics. Biosens. Bioelectron.2014,54, 585-597.
    [11]Rozand, C, Paper-based analytical devices for point-of-care infectious disease testing. Eur J Clin Microbiol Infect Dis 2014,33,147-156.
    [12]Santhiago, M.; Nery, E. W.; Santos, G. P.; Kubota, L. T., Microfluidic paper-based devices for bioanalytical applications. Bioanatysis 2014,6,89-106.
    [13]Martinez, A. W.; Phillips, S. T.; Wiley, B. J.; Gupta, M.; Whitesides, G. M., FLASH:A rapid method for prototyping paper-based microfluidic devices. Lab Chip 2008,8,2146-2150.
    [14]Abe, K.; Suzuki, K.; Citterio, D., Inkjet-Printed Microfluidic Multianalyte Chemical Sensing Paper. Anal. Chem.2008,80,6928-6934.
    [15]Bruzewicz, D. A.; Reches, M.; Whitesides, G. M., Low-Cost Printing of Poly(dimethylsiloxane) Barriers To Define Microchannels in Paper. Anal. Chem. 2008,80,3387-3392.
    [16]Li, X.; Tian, J.; Nguyen, T.; Shen, W., Paper-Based Microfluidic Devices by Plasma Treatment. Anal. Chem.2008,80,9131-9134.
    [17]Carrilho, E.; Martinez, A. W.; Whitesides, G. M., Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics. Anal. Chem.2009, 81,7091-7095.
    [18]Fenton, E. M.; Mascarenas, M. R.; Lopez, G. P.; Sibbett, S. S., Multiplex Lateral-Flow Test Strips Fabricated by Two-Dimensional Shaping. ACS Appl. Mater. Interfaces 2009,1,124-129.
    [19]Lu, Y.; Shi, W.; Qin, J.; Lin, B., Fabrication and Characterization of Paper-Based Microfluidics Prepared in Nitrocellulose Membrane By Wax Printing. Anal. Chem. 2009,82,329-335.
    [20]Olkkonen, J.; Lehtinen, K.; Erho, T., Flexographically Printed Fluidic Structures in Paper. Anal. Chem.2010,82,10246-10250.
    [21]Lewis, G. G.; DiTucci, M. J.; Baker, M. S.; Phillips, S. T., High throughput method for prototyping three-dimensional, paper-based microfluidic" devices. Lab Chip 2012,12,2630-2633.
    [22]Schilling, K. M.; Jauregui, D.; Martinez, A. W., Paper and toner three-dimensional fluidic devices:programming fluid flow to improve point-of-care diagnostics. Lab Chip 2013,13,628-631.
    [23]Nie, J.; Liang, Y.; Zhang, Y.; Le, S.; Li, D.; Zhang, S., One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices. Analyst 2013,138,671-676.
    [24]Nie, J.; Zhang, Y.; Lin, L.; Zhou, C; Li, S.; Zhang, L.; Li, J., Low-Cost Fabrication of Paper-Based Microfluidic Devices by One-Step Plotting. Anal. Chem. 2012,84,6331-6335.
    [25]Carrilho, E.; Phillips, S. T.; Vella, S. J.; Martinez, A. W.; Whitesides, G. M., Paper Microzone Plates. Anal. Chem.2009,81,5990-5998.
    [26]Hossain, S. M. Z.; Luckham, R. E.; McFadden, M. J.; Brennan, J. D., Reagentless Bidirectional Lateral Flow Bioactive Paper Sensors for Detection of Pesticides in Beverage and Food Samples. Anal. Chem.2009,81,9055-9064.
    [27]Kauffman, P.; Fu, E.; Lutz, B.; Yager, P., Visualization and measurement of flow in two-dimensional paper networks. Lab Chip 2010,10,2614-2617.
    [28]Li, X.; Zwanenburg, P.; Liu, X., Magnetic Timing Valves for Fluid Control in Paper-Based Microfluidics. Lab Chip 2013,13,2609-2614.
    [29]Noh, H.; Phillips, S. T., Metering the Capillary-Driven Flow of Fluids in Paper-Based Microfluidic Devices. Anal. Chem.2010,82,4181-4187.
    [30]Hwang, H.; Kim, S.-H.; Kim, T.-H.; Park, J.-K.; Cho, Y.-K., Paper on a disc: balancing the capillary-driven flow with a centrifugal force. Lab Chip 2011,11, 3404-4306.
    [31]Lutz, B. R.; Trinh, P.; Ball, C; Fu, E.; Yager, P., Two-dimensional paper networks:programmable fluidic disconnects for multi-step processes in shaped paper. Lab Chip 2011,11,4274-4278.
    [32]Tao, H.; Chieffo, L. R.; Brenckle, M. A.; Siebert, S. M.; Liu, M.; Strikwerda, A. C; Fan, K.; Kaplan, D. L.; Zhang, X.; Averitt, R. D.; Omenetto, F. G., Metamaterials on Paper as a Sensing Platform. Adv. Mater.2011,23,3197-3201.
    [33]Govindarajan, A. V.; Ramachandran, S.; Vigil, G. D.; Yager, P.; Bohringer, K. F., A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami. Lab Chip 2012,12, 174-181.
    [34]Jahanshahi-Anbuhi, S.; Chavan, P.; Sicard, C; Leung, V.; Hossain, S. M. Z.; Pelton, R.; Brennan, J. D.; Filipe, C. D. M., Creating fast flow channels in paper fluidic devices to control timing of sequential reactions. Lab Chip 2012,12, 5079-5085.
    [35]Martinez, A. W.; Phillips, S. T.; Carrilho, E.; Thomas, S. W.; Sindi, H.; Whitesides, G. M., Simple Telemedicine for Developing Regions:Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site Diagnosis. Anal. Chem.2008,80,3699-3707.
    [36]Zhao, W.; Ali, M. M.; Aguirre, S. D.; Brook, M. A.; Li, Y., Paper-Based Bioassays Using Gold Nanoparticle Colorimetric Probes. Anal. Chem.2008,80, 8431-8437.
    [37]Ellerbee, A. K.; Phillips, S. T.; Siegel, A. C; Mirica, K. A.; Martinez, A. W.; Striehl, P.; Jain, N.; Prentiss, M.; Whitesides, G. M., Quantifying Colorimetric Assays in Paper-Based Microfluidic Devices by Measuring the Transmission of Light through Paper. Anal. Chem.2009,81,8447-8452.
    [38]Hossain, S. M. Z.; Luckham, R. E.; Smith, A. M.; Lebert, J. M.; Davies, L. M.; Pelton, R. H.; Filipe, C. D. M.; Brennan, J. D., Development of a Bioactive Paper Sensor for Detection of Neurotoxins Using Piezoelectric InkJet Printing of Sol-Gel-Derived Bioinks.Anal. Chem.2009,81,5474-5483.
    [39]Cheng, C.-M.; Martinez, A. W.; Gong, J.; Mace, C. R.; Phillips, S. T.; Carrilho, E.; Mirica, K. A.; Whitesides, G. M., Paper-Based ELISA. Angew. Chem. Int. Ed. 2010,49, 4771-4774.
    [40]Noh, H.; Phillips, S. T., Fluidic Timers for Time-Dependent, Point-of-Care Assays on Paper. Anal. Chem.2010,82,8071-8078.
    [41]Li, C.-z.; Vandenberg, K.; Prabhulkar, S.; Zhu, X.; Schneper, L.; Methee, K.; Rosser, C. J.; Almeide, E., Paper based point-of-care testing disc for multiplex whole cell bacteria analysis. Biosens. Bioelectron.2011,26,4342-4348.
    [42]Ali, M. M.; Aguirre, S. D.; Xu, Y.; Filipe, C. D. M.; Pelton, R.; Li, Y., Detection of DNA using bioactive paper strips. Chem. Commun.2009,45,6640-6642.
    [43]Yang, X.; Wang, E., A Nanoparticle Autocatalytic Sensor for Ag+and Cu2+Ions in Aqueous Solution with High Sensitivity and Selectivity and Its Application in Test Paper. Anal. Chem.2011,83,5005-5011.
    [44]Alkasir, R. S. J.; Ornatska, M.; Andreescu, S., Colorimetric Paper Bioassay for the Detection of Phenolic Compounds. Anal. Chem.2012,84,9729-9737.
    [45]Yu, J.; Ge, L.; Huang, J.; Wang, S.; Ge, S., Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab Chip 2011,11,1286-1291.
    [46]Ge, L.; Yan, J.; Song, X.; Yan, M.; Ge, S.; Yu, J., Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing. Biomaterials 2012,33,1024-1031.
    [47]Zang, D.; Ge, L.; Yan, M.; Song, X.; Yu, J., Electrochemical immunoassay on a 3D microfluidic paper-based device. Chem. Commun.2012,48,4683-4685.
    [48]Dungchai, W.; Chailapakul, O.; Henry, C. S., Use of multiple colorimetric indicators for paper-based microfluidic devices. Anal. Chim. Acta 2010,674,227-233.
    [49]Fu, E.; Liang, T.; Houghtaling, J.; Ramachandran, S.; Ramsey, S. A.; Lutz, B.; Yager, P., Enhanced Sensitivity of Lateral Flow Tests Using a Two-Dimensional Paper Network Format. Anal. Chem.2011,83,7941-7946.
    [50]Liang, J.; Wang, Y.; Liu, B., Paper-based fluoroimmunoassay for rapid and sensitive detection of antigen. RSCAdv.2012,2,3878-3884.
    [51]Liu, J.; Mazumdar, D.; Lu, Y., A Simple and Sensitive "Dipstick" Test in Serum Based on Lateral Flow Separation of Aptamer-Linked Nanostructures. Angew. Chem. Int. Ed.2006,45,7955-7959.
    [52]Busbee, B. D.; Obare, S. O.; Murphy, C. J., An Improved Synthesis of High-Aspect-Ratio Gold Nanorods. Adv. Mater.2003,15,414-416.
    [53]Haupt, K.; Mosbach, K., Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors. Chem. Rev.2000,100,2495-2504.
    [54]Apilux, A.; Dungchai, W.; Siangproh, W.; Praphairaksit, N.; Henry, C. S.; Chailapakul, O., Lab-on-Paper with Dual Electrochemical/Colorimetric Detection for Simultaneous Determination of Gold and Iron. Anal. Chem.2010,82,1727-1732.
    [55]Nie, Z.; Nijhuis, C. A.; Gong, J.; Chen, X.; Kumachev, A.; Martinez, A. W.; Narovlyansky, M.; Whitesides, G. M., Electrochemical sensing in paper-based microfluidic devices. Lab Chip 2010,10,477-483.
    [56]Nie, Z.; Deiss, F.; Liu, X.; Akbulut, O.; Whitesides, G. M., Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip 2010,20,3163-3169.
    [57]Wang, P.; Ge, L.; Yan, M.; Song, X.; Ge, S.; Yu, J., Paper-based three-dimensional electrochemical immunodevice based on multi-walled carbon nanotubes functionalized paper for sensitive point-of-care testing. Biosens. Bioelectron.2012,32,238-243.
    [58]Holden, C, Excited by Glutamate. Science 2003,300,1866-1868.
    [59]Lu, J.; Ge, S.; Ge, L.; Yan, M.; Yu, J., Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing. Electrochim. Acta 2012,80,334-341.
    [60]Yan, J.; Ge, L.; Song, X.; Yan, M.; Ge, S.; Yu, J., Paper-Based Electrochemiluminescent 3D Immunodevice for Lab-on-Paper, Specific, and Sensitive Point-of-Care Testing. Chem. Eur. J.2012,18,4938-4945.
    [61]Zayats, M.; Baron, R.; Popov, I.; Willner, I., Biocatalytic Growth of Au Nanoparticles:From Mechanistic Aspects to Biosensors Design. Nano Letters 2004, 5,21-25.
    [62]Pelton, R., Bioactive paper provides a low-cost platform for diagnostics. TrAC, Trends Anal. Chem.2009,28,925-942.
    [63]Liu, K.; Wei, W.-Z.; Zeng, J.-X.; Liu, X.-Y.; Gao, Y.-P., Application of a novel electrosynthesized polydopamine-imprinted film to the capacitive sensing of nicotine. Anal. Bioanal. Chem.2006,385,724-729.
    [1]Pelton, R., Bioactive paper provides a low-cost platform for diagnostics. TrAC, Trends Anal Chem.2009,28,925-942.
    [2]Sia, S. K.; Kricka, L. J., Lab on paper. Lab Chip 2008,8,1988-1991.
    [3]Martinez, A. W.; Phillips, S. T.; Butte, M. J.; Whitesides, G. M., Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays. Angew. Chem. Int. Ed.2007,46,1318-1320.
    [4]Martinez, A. W.; Phillips, S. T.; Whitesides, G. M., Diagnostics for the Developing World:Microfluidic Paper-Based Analytical Devices. Anal. Chem.2010, 82,3-10.
    [5]Whitesides, G. M., What Comes Next? Lab Chip 2011,11,191-193.
    [6]Abe, K.; Suzuki, K.; Citterio, D., Inkjet-Printed Microfluidic Multianalyte Chemical Sensing Paper. Anal. Chem.2008,80,6928-6934.
    [7]Bruzewicz, D. A.; Reches, M.; Whitesides, G. M., Low-Cost Printing of Poly(dimethylsiloxane) Barriers To Define Microchannels in Paper. Anal. Chem. 2008,80,3387-3392.
    [8]Li, X.; Tian, J.; Nguyen, T.; Shen, W., Paper-Based Microfluidic Devices by Plasma Treatment. Anal. Chem.2008,80,9131-9134.
    [9]Martinez, A. W.; Phillips, S. T.; Wiley, B. J.; Gupta, M.; Whitesides, G. M., FLASH:A rapid method for prototyping paper-based microfluidic devices. Lab Chip 2008,8,2146-2150.
    [10]Carrilho, E.; Martinez, A. W.; Whitesides, G. M., Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics. Anal. Chem.2009, 81,7091-7095.
    [11]Fenton, E. M.; Mascarenas, M. R.; Lopez, G. P.; Sibbett, S. S., Multiplex Lateral-Flow Test Strips Fabricated by Two-Dimensional Shaping. ACS Appl. Mater. Interfaces 2009,1,124-129.
    [12]Olkkonen, J.; Lehtinen, K.; Erho, T., Flexographically Printed Fluidic Structures in Paper. Anal. Chem.2010,82,10246-10250.
    [13]He, Q.; Ma, C; Hu, X.; Chen, H., Method for Fabrication of Paper-Based Microfluidic Devices by Alkylsilane Self-Assembling and UV/O3-Patterning. Anal. Chem.2012,85,1327-1331.
    [14]Nie, J.; Zhang, Y.; Lin, L.; Zhou, C; Li, S.; Zhang, L.; Li, J., Low-Cost Fabrication of Paper-Based Microfluidic Devices by One-Step Plotting. Anal. Chem. 2012,84,6331-6335.
    [15]Maejima, K.; Tomikawa, S.; Suzuki, K.; Citterio, D., Inkjet printing:An integrated and green chemical approach to microfluidic paper-based analytical devices. RSC Adv.2013,3,9258-9263.
    [16]Nie, J.; Liang, Y.; Zhang, Y.; Le, S.; Li, D.; Zhang, S., One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices. Analyst 2013,138,671-676.
    [17]Siegel, A. C; Phillips, S. T.; Wiley, B. J.; Whitesides, G. M., Thin, lightweight, foldable thermochromic displays on paper. Lab Chip 2009,9,2775-2781.
    [18]Martinez, A. W.; Phillips, S. T.; Nie, Z.; Cheng, C.-M.; Carrilho, E.; Wiley, B. J.; Whitesides, G. M., Programmable diagnostic devices made from paper and tape. Lab Chip 2010,10,2499-2504.
    [19]Hwang, H.; Kim, S.-H.; Kim, T.-H.; Park, J.-K.; Cho, Y.-K., Paper on a disc: balancing the capillary-driven flow with a centrifugal force. Lab Chip 2011,11, 3404-4306.
    [20]Chen, H.; Cogswell, J.; Anagnostopoulos, C; Faghri, M., A fluidic diode, valves, and a sequential-loading circuit fabricated on layered paper. Lab Chip 2012,12, 2909-2913.
    [21]Kwong, P.; Gupta, M., Vapor Phase Deposition of Functional Polymers onto Paper-Based Microfluidic Devices for Advanced Unit Operations. Anal. Chem.2012, 84,10129-10135.
    [22]Rezk, A. R.; Qi, A.; Friend, J. R.; Li, W. H.; Yeo, L. Y., Uniform mixing in paper-based microfluidic systems using surface acoustic waves. Lab Chip 2012,12, 773-779.
    [23]Schilling, K. M; Lepore, A. L.; Kurian, J. A.; Martinez, A. W., Fully Enclosed Microfluidic Paper-Based Analytical Devices. Anal. Chem.2012,84,1579-1585.
    [24]Songjaroen, T.; Dungchai, W.; Chailapakul, O.; Henry, C. S.; Laiwattanapaisal, W., Blood separation on microfluidic paper-based analytical devices. Lab Chip 2012, 12,3392-3398.
    [25]Yang, X.; Forouzan, O.; Brown, T. P.; Shevkoplyas, S. S., Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab Chip 2012,12,274.
    [26]Yuan, L.; Xiao, X.; Ding, T.; Zhong, J.; Zhang, X.; Shen, Y.; Hu, B.; Huang, Y.; Zhou, J.; Wang, Z. L., Paper-Based Supercapacitors for Self-Powered Nanosystems. Angew. Chem. Lnt. Ed.2012,51,4934-4938.
    [27]Zhang, L.; Zhou, M.; Wen, D.; Bai, L.; Lou, B.; Dong, S., Small-size biofuel cell on paper. Biosens. Bioelectron.2012,35,155-159.
    [28]Kurra, N.; Dutta, D.; Kulkarni, G. U., Field effect transistors and RC filters from pencil-trace on paper. Phys. Chem. Chem. Phys.2013,15,8367-8372.
    [29]Leijonmarck, S.; Cornell, A.; Lindbergh, G.; Wagberg, L., Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. J. Mater. Chem. A 2013,1,4671-4677.
    [30]Li, X.; Zwanenburg, P.; Liu, X., Magnetic Timing Valves for Fluid Control in Paper-Based Microfluidics. Lab Chip 2013,13,2609-2614.
    [31]Santhiago, M.; Wydallis, J. B.; Kubota, L. T.; Henry, C. S., Construction and Electrochemical Characterization of Microelectrodes for Improved Sensitivity in Paper-Based Analytical Devices. Anal. Chem.2013,85,5233-5239.
    [32]Thorn, N. K.; Lewis, G. G.; DiTucci, M. J.; Phillips, S. T., Two general designs for fluidic batteries in paper-based microfluidic devices that provide predictable and tunable sources of power for on-chip assays. RSC Adv.2013,3,6888-6895.
    [33]Zhong, Q.; Zhong, J.; Hu, B.; Hu, Q.; Zhou, J.; Wang, Z., Paper-based Nanogenerator As Power Source and Active Sensor. Energy Environ. Sci.2013,6, 1779-1784.
    [34]Martinez, A. W.; Phillips, S. T.; Whitesides, G. M., Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Nat. Acad. Sci.2008, 105,19606-19611.
    [35]Carrilho, E.; Phillips, S. T.; Vella, S. J.; Martinez, A. W.; Whitesides, G. M., Paper Microzone Plates. Anal. Chem.2009,81,5990-5998.
    [36]Ellerbee, A. K.; Phillips, S. T.; Siegel, A. C; Mirica, K. A.; Martinez, A. W.; Striehl, P.; Jain, N.; Prentiss, M.; Whitesides, G. M., Quantifying Colorimetric Assays in Paper-Based Microfluidic Devices by Measuring the Transmission of Light through Paper. Anal. Chem.2009,81,8447-8452.
    [37]Fu, E.; Liang, T.; Houghtaling, J.; Ramachandran, S.; Ramsey, S. A.; Lutz, B.; Yager, P., Enhanced Sensitivity of Lateral Flow Tests Using a Two-Dimensional Paper Network Format. Anal. Chem.2011,83,7941-7946.
    [38]Liu, H.; Crooks, R. M., Three-Dimensional Paper Microfluidic Devices Assembled Using the Principles of Origami. J. Am. Chem. Soc.2011,133, 17564-17566.
    [39]Lutz, B. R.; Trinh, P.; Ball, C; Fu, E.; Yager, P., Two-dimensional paper networks:programmable fluidic disconnects for multi-step processes in shaped paper. Lab Chip 2011,11,4274-4278.
    [40]Apilux, A.; Ukita, Y.; Chikae, M.; Chilapakul, O.; Takamura, Y., Development of Automated Paper-Based Devices for Sequential Multistep Sandwich Enzyme-Linked Immunosorbent Assays Using Inkjet Printing. Lab Chip 2012,13, 126-135.
    [41]Lewis, G. G.; DiTucci, M. J.; Phillips, S. T., Quantifying Analytes in Paper-Based Microfluidic Devices Without Using External Electronic Readers. Angew. Chem. Int. Ed.2012,51,12707-12710.
    [42]Liu, H.; Xiang, Y.; Lu, Y.; Crooks, R. M., Aptamer-Based Origami Paper Analytical Device for Electrochemical Detection of Adenosine. Angew. Chem. Int. Ed. 2012,51,6925-6928.
    [43]Sameenoi, Y.; Panymeesamer, P.; Supalakorn, N.; Koehler, K.; Chailapakul, O.; Henry, C. S.; Volckens, J., Microfluidic Paper-Based Analytical Device for Aerosol Oxidative Activity. Environ. Sci. Technol.2012,47,932-940.
    [44]Vella, S. J.; Beattie, P.; Cademartiri, R.; Laromaine, A.; Martinez, A. W.; Phillips, S. T.; Mirica, K. A.; Whitesides, G. M., Measuring Markers of Liver Function Using a Micropatterned Paper Device Designed for Blood from a Fingerstick. Anal. Chem.2012,84,2883-2891.
    [45]Cate, D.; Dungchai, W.; Cunningham, J.; Volckens, J.; Henry, C, Simple, Distance-Based Measurement for Paper Analytical Devices. Lab Chip 2013,13, 2397-2404.
    [46]Liu, H.; Li, X.; Crooks, R. M., Paper-Based SlipPAD for High-Throughput Chemical Sensing. Anal. Chem.2013,85,4263-4267.
    [47]Lutz, B.; Liang, T.; Fu, E.; Ramachandran, S.; Kauffman, P.; Yager, P., Dissolvable fluidic time delays for programming multi-step assays in paper diagnostics. Lab Chip 2013,13,2840-2847.
    [48]Oh, Y. K.; Joung, H.-A.; Kim, S.; Kim, M.-G., Vertical flow immunoassay (VFA) biosensor for a rapid one-step immunoassay. Lab Chip 2013,13,768-772.
    [49]Parolo, C; Medina-Sanchez, M.; de la Escosura-Muniz, A.; Merkoci, A., Simple paper architecture modifications lead to enhanced sensitivity in nanoparticle based lateral flow immunoassays. Lab Chip 2013,13,386-390.
    [50]Wang, H.-K.; Tsai, C.-H.; Chen, K.-H.; Tang, C.-T.; Leou, J.-S.; Li, P.-C; Tang, Y.-L.; Hsieh, H.-J.; Wu, H.-C; Cheng, C.-M., Cellulose-Based Diagnostic Devices for Diagnosing Serotype-2 Dengue Fever in Human Serum. Adv. Healthc. Mater. 2014,3,187-196.
    [51]Carvalhal, R. F.; Simao Kfouri, M.; de Oliveira Piazetta, M. H.; Gobbi, A. L.; Kubota, L. T., Electrochemical Detection in a Paper-Based Separation Device. Anal. Chem.2010,82,1162-1165.
    [52]Mandal, P.; Dey, R.; Chakraborty, S., Electrokinetics with "paper-and-pencil" devices. Lab Chip 2012,12,4026-4028.
    [53]Gu, Z.; Zhao, M; Sheng, Y.; Bentolila, L. A.; Tang, Y., Detection of Mercury Ion by Infrared Fluorescent Protein and Its Hydrogel-Based Paper AsssysAnal. Chem. 2011,83,2324-2329.
    [54]Ma, Y.; Li, H.; Peng, S.; Wang, L., Highly Selective and Sensitive Fluorescent Paper Sensor for Nitroaromatic Explosive Detection. Anal. Chem.2012,84, 8415-8421.
    [55]Noor, M. O.; Shahmuradyan, A.; Krull, U. J., Paper-Based Solid-Phase Nucleic Acid Hybridization Assay Using Immobilized Quantum Dots as Donors in Fluorescence Resonance Energy Transfer. Anal. Chem.2012,85,1860-1867.
    [56]Miranda, B. S.; Linares, E. M.; Thalhammer, S.; Kubota, L. T., Development of a disposable and highly sensitive paper-based immunosensor for early diagnosis of Asian soybean rust. Biosens. Bioelectron.2013,45,123-128.
    [57]Yu, J.; Ge, L.; Huang, J.; Wang, S.; Ge, S., Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab Chip 2011,11,1286-1291.
    [58]Ge, L.; Wang, S.; Song, X.; Ge, S.; Yu, J.,3D Origami-based multifunction-integrated immunodevice:low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab Chip 2012,12,3150-3158.
    [59]Dungchai, W.; Chailapakul, O.; Henry, C. S., Electrochemical Detection for Paper-Based Microfluidics. Anal. Chem.2009,81,5821-5826.
    [60]Nie, Z.; Nijhuis, C. A.; Gong, J.; Chen, X.; Kumachev, A.; Martinez, A. W.; Narovlyansky, M.; Whitesides, G. M., Electrochemical sensing in paper-based microfluidic devices. Lab Chip 2010,10,477-483.
    [61]Dossi, N.; Toniolo, R.; Pizzariello, A.; Carrilho, E.; Piccin, E.; Battiston, S.; Bontempelli, G., An electrochemical gas sensor based on paper supported room temperature ionic liquids. Lab Chip 2012,12,153-158.
    [62]Zang, D.; Ge, L.; Yan, M.; Song, X.; Yu, J., Electrochemical immunoassay on a 3D microfluidic paper-based device. Chem. Commun.2012,48,4683-4685.
    [63]Ge, S.; Ge, L.; Yan, M.; Song, X.; Yu, J.; Huang, J., A disposable paper-based electrochemical sensor with an addressable electrode array for cancer screening. Chem. Commun.2012,48,9397-9399.
    [64]Wang, S.; Ge, L.; Zhang, Y.; Song, X.; Li, N.; Ge, S.; Yu, J., Battery-triggered microfluidic paper-based multiplex electrochemiluminescence immunodevice based on potential-resolution strategy. Lab Chip 2012,12,4489-4498.
    [65]Wang, S.; Dai, W.; Ge, L.; Yan, M.; Yu, J.; Song, X.; Ge, S.; Huang, J., Rechargeable battery-triggered electrochemiluminescence detection on microfluidic origami immunodevice based on two electrodes. Chem. Commun.2012,48, 9971-9973.
    [66]Delaney, J. L.; Hogan, C. F.; Tian, J.; Shen, W., Electrogenerated Chemiluminescence Detection in Paper-Based Microfluidic Sensors. Anal. Chem. 2011,83,1300-1306.
    [67]Yan, J.; Ge, L.; Song, X.; Yan, M.; Ge, S.; Yu, J., Paper-Based Electrochemiluminescent 3D Immunodevice for Lab-on-Paper, Specific, and Sensitive Point-of-Care Testing. Chem. Eur. J.2012,18,4938-4945.
    [68]Ge, L.; Yan, J.; Song, X.; Yan, M.; Ge, S.; Yu, J., Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing. Biomaterials 2012,33,1024-1031.
    [69]Shi, C.-G.; Shan, X.; Pan, Z.-Q.; Xu, J.-J.; Lu, C; Bao, N.; Gu, H.-Y., Quantum Dot (QD)-Modified Carbon Tape Electrodes for Reproducible Electrochemiluminescence (ECL) Emission on a Paper-Based Platform. Anal. Chem. 2012,84,3033-3038.
    [70]Yan, J.; Yan, M.; Ge, L.; Yu, J.; Ge, S.; Huang, J., A microfluidic origami electrochemiluminescence aptamer-device based on a porous Au-paper electrode and a phenyleneethynylene derivative. Chem. Commun.2013,49,1383-1385.
    [71]Mani, V.; Kadimisetty, K.; Malla, S.; Joshi, A. A.; Rusling, J. F., Paper-Based Electrochemiluminescent Screening for Genotoxic Activity in the Environment. Environ. Sci. Technol.2013,47,1937-1944.
    [72]Ge, L.; Wang, P.; Ge, S.; Li, N.; Yu, J.; Yan, M.;Huang, J., Photoelectrochemical Lab-on-Paper Device Based on Integrated Paper Supercapacitor and Internal Light Source. Anal. Chem.2013,85,3961-3970.
    [73]Yu, W. W.; White, I. M., Inkjet Printed Surface Enhanced Raman Spectroscopy Array on Cellulose Paper. Anal. Chem.2010,82,9626-9630.
    [74]Lee, C. H.; Tian, L.; Singamaneni, S., Paper-Based SERS Swab for:;Rapid Trace Detection on Real-World Surfaces. ACSAppl. Mater. Interfaces 2010,2,3429-3435.
    [75]Yu, W. W.; White, I. M., Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 2013,138,1020-1025.
    [76]Meng, Y.; Lai, Y.; Jiang, X.; Zhao, Q.; Zhan, J., Silver nanoparticles decorated filter paper via self-sacrificing reduction for membrane extraction surface-enhanced Raman spectroscopy detection. Analyst 2013,138,2090-2095.
    [77]Abbas, A.; Brimer, A.; Slocik, J. M.; Tian, L.; Naik, R. R.; Singamaneni, S., Multifunctional Analytical Platform on a Paper Strip:Separation, Preconcentration, and Subattomolar Detection. Anal. Chem.2013,85,3977-3983.
    [78]Lee, C. H.; Hankus, M. E.; Tian, L.; Pellegrino, P. M.; Singamaneni, S., Highly Sensitive Surface Enhanced Raman Scattering Substrates Based on Filter Paper Loaded with Plasmonic Nanostructures. Anal. Chem.2011,83,8953-8958.
    [79]Tian, L.; Morrissey, J. J.; Kattumenu, R.; Gandra, N.; Kharasch, E. D.; Singamaneni, S., Bioplasmonic Paper as a Platform for Detection of Kidney Cancer Biomarkers. Anal. Chem.2012,84,9928-9934.
    [80]Ho, J.; Tan, M. K.; Go, D. B.; Yeo, L. Y.; Friend, J. R.; Chang, H.-C, Paper-Based Microfluidic Surface Acoustic Wave Sample Delivery and Ionization Source for Rapid and Sensitive Ambient Mass Spectrometry. Anal. Chem.2011, 3260-3266.
    [81]Su, M.; Wei, W.; Liu, S., Analytical applications of the electrochemiluminescence of tris(2,2'-bipyridyl)ruthenium(Ⅱ) coupled to capillary/microchip electrophoresis:A review. Anal. Chim. Acta 2011,704,16-32.
    [82]Wu, M.-S.; Xu, B.-Y.; Shi, H.-W.; Xu, J.-J.; Chen, H.-Y., Electrochemiluminescence analysis of folate receptors on cell membrane with on-chip bipolar electrode. Lab Chip 2011,11,2720-2724.
    [83]Wu, M.-S.; Qian, G.-s.; Xu, J.-J.; Chen, H.-Y., Sensitive Electrochemiluminescence Detection of c-Myc mRNA in Breast Cancer Cells on a Wireless Bipolar Electrode. Anal. Chem.2012,84,5407-5414.
    [84]Wu, M.-S.; Yuan, D.-J.; Xu, J.-J.; Chen, H.-Y., Electrochemiluminescence on bipolar electrodes for visual bioanalysis. Chem. Set 2013,4,1182-1188.
    [85]Zhang, X.; Chen, C; Li, J.; Zhang, L.; Wang, E., New Insight into a Microfluidic-Based Bipolar System for an Electrochemiluminescence Sensing Platform. Anal. Chem.2013,85,5335-5339.
    [86]Chen, H. M.; Huang, X. F.; Xu, L.; Xu, J.; Chen, K. J.; Feng, D., Self-assembly and photoluminescence of CdS-mercaptoacetic clusters with internal structures. Superlattices and Microstructures 2000,27,1-5.
    [87]Lu, Y.; Shi, W.; Qin, J.; Lin, B., Fabrication and Characterization of Paper-Based Microfluidics Prepared in Nitrocellulose Membrane By Wax Printing. Anal. Chem. 2009,82,329-335.
    [88]Wang, L.; Guo, S.; Huang, L.; Dong, S., Alternate assemblies of polyelectrolyte functionalized carbon nanotubes and platinum nanoparticles as tunable electrocatalysts for dioxygen reduction. Electrochem. Commun.2007,9,827-832.
    [89]Zhan, W.; Alvarez, J.; Crooks, R. M., Electrochemical Sensing in Microfluidic Systems Using Electrogenerated Chemiluminescence as a Photonic Reporter of Redox Reactions.J. Am. Chem. Soc.2002,124,13265-13270.
    [90]Mavre, F. o.; Chow, K.-F.; Sheridan, E.; Chang, B.-Y.; Crooks, J. A.; Crooks, R. M., A Theoretical and Experimental Framework for Understanding Electrogenerated Chemiluminescence (ECL) Emission at Bipolar Electrodes. Anal. Chem.2009,81, 6218-6225.
    [91]Ye, J.; Baldwin, R. P., Determination of Amino Acids and Peptides by Capillary Electrophoresis and Electrochemical Detection at a Copper Electrode. Analytical Chemistry 1994,66,2669-2674.
    [92]Wang, G.-L.; Yu, P.-P.; Xu, J.-J.; Chen, H.-Y., A. Label-Free Photoelectrochemical Immunosensor Based on Water-Soluble CdS Quantum Dots. J. Phys. Chem. C2009,113,11142-11148.
    [93]Jie, G.; Wang, L.; Yuan, J.; Zhang, S., Versatile Electrochemiluminescence Assays for Cancer Cells Based on Dendrimer/CdSe-ZnS-Quantum Dot Nanoclusters. Anal. Chem.2011,83,3873-3880.
    [1]Ikeda, A.; Nakasu, M.; Ogasawara, S.; Nakanishi, H.; Nakamura, M.; Kikuchi, J.-i., Photoelectrochemical Sensor with Porphyrin-Deposited Electrodes for Determination of Nucleotides in Water. Organic Letters 2009,11,1163-1166.
    [2]Wang, G.-L.; Xu, J.-J.; Chen, H.-Y.; Fu, S.-Z., Label-free photoelectrochemical immunoassay for a-fetoprotein detection based on TiO2/CdS hybrid. Biosens. Bioelectron.2009,25,791-796.
    [3]Haddour, N.; Chauvin, J.; Gondran, C; Cosnier, S., Photoelectrochemical Immunosensor for Label-Free Detection and Quantification of Anti-cholera Toxin Antibody. J. Am. Chem. Soc.2006,128,9693-9698.
    [4]Wang, G.-L.; Yu, P.-P.; Xu, J.-J.; Chen, H.-Y., A Label-Free Photoelectrochemical Immunosensor Based on Water-Soluble CdS Quantum Dots. J. Phys. Chem. C2009,113,11142-11148.
    [5]Hojeij, M.; Su, B.; Tan, S.; Meriguet, G.; Girault, H. H., Nanoporous Photocathode and Photoanode Made by Multilayer Assembly of Quantum Dots. ACS Nano 2008,2,984-992.
    [6]Jie, G.; Wang, L.; Yuan, J.; Zhang, S., Versatile Electrochemiluminescence Assays for Cancer Cells Based on Dendrimer/CdSe-ZnS-Quantum Dot Nanoclusters. Anal. Chem.2011,83,3873-3880.
    [7]Su, B.; Fermin, D. J.; Abid, J.-P.; Eugster, N.; Girault, H. H., Adsorption and photoreactivity of CdSe nanoparticles at liquid|liquid interfaces. J. Electroanal. Chem. 2005,583,241-247.
    [8]Pardo-Yissar, V.; Katz, E.; Wasserman, J.; Willner, I., Acetylcholine Esterase-Labeled CdS Nanoparticles on Electrodes:Photoelectrochemical Sensing of the Enzyme Inhibitors. J. Am. Chem. Soc.2002,125,622-623.
    [9]Zhang, X.; Li, S.; Jin, X.; Zhang, S., A new photoelectrochemical aptasensor for the detection of thrombin based on functionalized graphene and CdSe nanoparticles multilayers. Chem. Commun.2011,47,4929-4931.
    [10]Shen, Q.; Zhao, X.; Zhou, S.; Hou, W.; Zhu, J.-J., ZnO/CdS Hierarchical Nanospheres for Photoelectrochemical Sensing of Cu2+. J. Phys. Chem. C 2011,115, 17958-17964.
    [11]Lu, W.; Jin, Y.; Wang, G.; Chen, D.; Li, J., Enhanced photoelectrochemical method for linear DNA hybridization detection using Au-nanopaticle labeled DNA as probe onto titanium dioxide electrode. Biosens. Bioelectron.2008,23,1534-1539.
    [12]Chen, D.; Zhang, H.; Hu, S.; Li, J., Preparation and Enhanced Photoelectrochemical Performance of Coupled Bicomponent ZnO-TiO2 Nanocomposites. J. Phys. Chem. C2007,112,117-122.
    [13]Chen, D.; Zhang, H.; Li, X.; Li, J., Biofunctional Titania Nanotubes for Visible-Light-Activated Photoelectrochemical Biosensing. Anal. Chem.2010,82, 2253-2261.
    [14]Ao, Y.; Xu, J.; Fu, D.; Yuan, C, Photoelectrochemical application of hollow titania film. Electrochem. Commun.2008,10,1812-1814.
    [15]Liu, Y.; Li, J.; Zhou, B.; Bai, J.; Zheng, Q.; Zhang, J.; Cai, W., Comparison of photoelectrochemical properties of TiO2-nanotube-array photoanode prepared by anodization in different electrolyte. Environmental Chemistry Letters 2009,7, 363-368.
    [16]Zhang, Z.; Yuan, Y.; Fang, Y.; Liang, L.; Ding, H.; Shi, G.; Jin, L., Photoelectrochemical oxidation behavior of methanol on highly ordered TiO2 nanotube array electrodes. J. Electroanal. Chem.2007,610,179-185.
    [17]Perinoto, A. C; Maki, R. M.; Colhone, M. C; Santos, F. R.; Migliaccio, V.; Daghastanli, K. R.; Stabeli, R. G.; Ciancaglini, P.; Paulovich, F. V.; de Oliveira, M. C. F.; Oliveira, O. N.; Zucolotto, V., Biosensors for Efficient Diagnosis of Leishmaniasis: Innovations in Bioanalytics for a Neglected Disease. Anal. Chem.2010,82, 9763-9768.
    [18]Wilson, M. S.; Nie, W., Multiplex Measurement of Seven Tumor Markers Using an Electrochemical Protein Chip. Anal. Chem.2006,78,6476-6483.
    [19]Zhang, M.; Ge, S.; Li, W.; Yan, M.; Song, X.; Yu, J.; Xu, W.; Huang, J., Ultrasensitive electrochemiluminescence immunoassay for tumor marker detection using functionalized Ru-silica@nanoporous gold composite as labels. Analyst 2012, 137,680-685.
    [20]Laing, S.; Hernandez-Santana, A.; Sassmannshausen, J. r.; Asquith, D. L.; McInnes, I. B.; Faulds, K.; Graham, D., Quantitative Detection of Human Tumor Necrosis Factor a by a Resonance Raman Enzyme-Linked Immunosorbent Assay. Anal. Chem.2010,83,297-302.
    [21]Wang, G.; Lipert, R. J.; Jain, M.; Kaur, S.; Chakraboty, S.; Torres, M. P.; Batra, S. K.; Brand, R. E.; Porter, M. D., Detection of the Potential Pancreatic Cancer Marker MUC4 in Serum Using Surface-Enhanced Raman Scattering. Anal. Chem. 2011,83,2554-2561.
    [22]Fu, Z.; Yan, F.; Liu, H.; Yang, Z.; Ju, H., Channel-resolved multianalyte immunosensing system for flow-through chemiluminescent detection of a-fetoprotein and carcinoembryonic antigen. Biosens. Bioelectron.2008,23,1063-1069.
    [23]Zang, D.; Ge, L.; Yan, M.; Song, X.; Yu, J., Electrochemical immunoassay on a 3D microfluidic paper-based device. Chem. Commun.2012,48,4683-4685.
    [24]Hu, S.; Zhang, S.; Hu, Z.; Xing, Z.; Zhang, X., Detection of Multiple Proteins on One Spot by Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Application to Immuno-Microarray with Element-Tagged Antibodies. Anal. Chem. 2007,79,923-929.
    [25]Zhang, B.; Guo, L.-H.; Greenberg, M. M., Quantification of 8-OxodGuo Lesions in Double-Stranded DNA Using a Photoelectrochemical DNA Sensor. Anal. Chem. 2012,84,6048-6053.
    [26]Liang, M.; Liu, S.; Wei, M.; Guo, L.-H., Photoelectrochemical Oxidation of DNA by Ruthenium Tris(bipyridine) on a Tin Oxide Nanoparticle Electrode. Anal. Chem.2005,78,621-623.
    [27]Li, Y.-J.; Ma, M.-J.; Zhu, J.-J., Dual-Signal Amplification Strategy for Ultrasensitive Photoelectrochemical Immunosensing of a-Fetoprotein. Anal. Chem. 2012,84,10492-10499.
    [28]Wu, Y.; Zhang, B.; Guo, L.-H., Label-Free and Selective Photoelectrochemical Detection of Chemical DNA Methylation Damage Using DNA Repair Enzymes. Anal. Chem.2013,85,6908-14.
    [29]Zhang, B.; Guo, L.-H., Highly sensitive and selective photoelectrochemical DNA sensor for the detection of Hg2+in aqueous solutions. Biosens. Bioelectron.2012,37, 112-115.
    [30]Chen, D.; Zhang, H.; Liu, Y.; Li, J., Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications. Energy Environ. Sci.2013,6,1362-1387.
    [31]Chang, H.; Liu, Y.; Zhang, H.; Li, J., Pyrenebutyrate-functionalized graphene/poly(3-octyl-thiophene) nanocomposites based photoelectrochemical cell. J. Electroanal. Chem.2011,656,269-273.
    [32]Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A., Graphene: The New Two-Dimensional Nanomaterial. Angew. Chem. Int. Ed.2009,48, 7752-7777.
    [33]Chen, D.; Tang, L.; Li, J., Graphene-based materials in electrochemistry. Chemical Society Reviews 2010,39,3157-3180.
    [34]Zhu, M; Dong, Y.; Xiao, B.; Du, Y.; Yang, P.; Wang, X., Enhanced photocatalytic hydrogen evolution performance based on Ru-trisdicarboxybipyridine-reduced graphene oxide hybrid. J. Mater. Chem.2012,22, 23773-23779.
    [35]Yan, M.; Zang, D.; Ge, S.; Ge, L.; Yu, J., A disposable electrochemical immunosensor based on carbon screen-printed electrodes for the detection of prostate specific antigen. Biosens. Bioelectron.2012,38,355-361.
    [36]Jun, Y.-w.; Casula, M. F.; Sim, J.-H.; Kim, S. Y.; Cheon, J.; Alivisatos, A. P., Surfactant-Assisted Elimination of a High Energy Facet as a Means of Controlling the Shapes of TiO2 Nanocrystals. J. Am. Chem. Soc.2003,125,15981-15985.
    [37]Joo, J.; Kwon, S. G.; Yu, T.; Cho, M.; Lee, J.; Yoon, J.; Hyeon, T., Large-Scale Synthesis of TiO2 Nanorods via Nonhydrolytic Sol-Gel Ester Elimination Reaction and Their Application to Photocatalytic Inactivation of E. coli. The Journal of Physical Chemistry B 2005,109,15297-15302.
    [38]Sugimoto, T.; Zhou, X.; Muramatsu, A., Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method:4. Shape control. J. Colloid Interface Sci.2003,259, 53-61.
    [39]Nethravathi, C; Nisha, T.; Ravishankar, N.; Shivakumara, C; Rajamathi, M., Graphene-nanocrystalline metal sulphide composites produced by a one-pot reaction starting from graphite oxide. Carbon 2009,47,2054-2059.
    [40]Guo, H.-L.; Wang, X.-F.; Qian, Q.-Y.; Wang, F.-B.; Xia, X.-H., A Green Approach to the Synthesis of Graphene Nanosheets. ACS Nano 2009,3,2653-2659.
    [41]Si, Y.; Samulski, E. T., Synthesis of Water Soluble Graphene. Nano Letters 2008, 8,1679-1682.
    [42]Tan, F.; Yan, F.; Ju, H., A designer ormosil gel for preparation of sensitive immunosensor for carcinoembryonic antigen based on simple direct electron transfer. Electrochem. Commun.2006,8,1835-1839.
    [43]Lai, G.; Yan, F.; Ju, H., Dual Signal Amplification of Glucose Oxidase-Functionalized Nanocomposites as a Trace Label for Ultrasensitive Simultaneous Multiplexed Electrochemical Detection of Tumor Markers. Anal. Chem. 2009,81,9730-9736.
    [44]Tang, D.; Yuan, R.; Chai, Y., Ultrasensitive Electrochemical Immunosensor for Clinical Immunoassay Using Thionine-Doped Magnetic Gold Nanospheres as Labels and Horseradish Peroxidase as Enhancer. Anal. Chem.2008,80,1582-1588.
    [45]Yang, Z.; Xie, Z.; Liu, H.; Yan, F.; Ju, H., Streptavidin-Functionalized Three-Dimensional Ordered Nanoporous Silica Film for Highly Efficient Chemiluminescent Immunosensing. Adv. Funct. Mater.2008,18,3991-3998.
    [1]Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Graetzel, M., Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ⅱ) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc.1993,115,6382-6390.
    [2]O'Regan, B.; Gratzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991,353,737-740.
    [3]Hoffmann, M. R; Martin, S. T.; Choi, W.; Bahnemann, D. W., Environmental Applications of Semiconductor Photocatalysis. Chem. Rev.1995,95,69-96.
    [4]Wang, Y.; Li, L.; Yang, K.; Samuelson, L. A.; Kumar, J., Nanocrystalline TiO2-Catalyzed Solid-State Polymerization of Diacetylene in the Visible Region. J. Am. Chem. Soc.2007,129,7238-7239.
    [5]Wang, P.; Klein, C; Humphry-Baker, R.; Zakeeruddin, S. M.; Gratzel, M., A High Molar Extinction Coefficient Sensitizer for Stable Dye-Sensitized Solar Cells. J. Am. Chem. Soc.2004,127,808-809.
    [6]Lu, Z.-X.; Zhang, Z.-L.; Zhang, M.-X.; Xie, H.-Y.; Tian, Z.-Q.; Chen, P.; Huang, H.; Pang, D.-W., Core/Shell Quantum-Dot-Photosensitized Nano-TiO2 Films: Fabrication and Application to the Damage of Cells and DNA. The Journal of Physical Chemistry B 2005,109,22663-22666.
    [7]Ren, Y.; Ma, Z.; Bruce, P. G., Ordered mesoporous metal oxides:synthesis and applications. Chemical Society Reviews 2012,41,4909-4927.
    [8]Yang, P.; Gai, S.; Lin, J., Functionalized mesoporous silica materials for controlled drug delivery. Chemical Society Reviews 2012,41,3679-3698.
    [9]Pijpers, J. J. H.; Koole, R.; Evers, W. H.; Houtepen, A. J.; Boehme, S.; de Mello Donega, C; Vanmaekelbergh, D.; Bonn, M., Spectroscopic Studies of Electron Injection in Quantum Dot Sensitized Mesoporous Oxide Films. J. Phys. Chem. C 2010,114,18866-18873.
    [10]Vogel, R.; Hoyer, P.; Weller, H., Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors. The Journal of Physical Chemistry 1994,98,3183-3188.
    [11]Yuan, Z.; Ma, Q.; Zhang, A.; Cao, Y.; Yang, J.; Yang, P., Synthesis of highly luminescent CdTe/ZnO core/shell quantum dots in aqueous solution. Journal of Materials Science 2012,47,3770-3776.
    [12]Galoppini, E., Linkers for anchoring sensitizers to semiconductor nanoparticles. Coordination Chemistry Reviews 2004,248,1283-1297.
    [13]Robel, I.; Kuno, M.; Kamat, P. V., Size-Dependent Electron Injection from Excited CdSe Quantum Dots into TiO2 Nanoparticles. J. Am. Chem. Soc.2007,129, 4136-4137.
    [14]Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V., Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films. J. Am. Chem. Soc.2006,128,2385-2393.
    [15]Bullen, C; Mulvaney, P., The Effects of Chemisorption on the Luminescence of CdSe Quantum Dots. Langmuir 2006,22,3007-3013.
    [16]Kim, J.; Choi, S.; Noh, J.; Yoon, S.; Lee, S.; Noh, T.; Frank, A. J.; Hong, K., Synthesis of CdSe-TiO2 Nanocomposites and Their Applications to TiO2 Sensitized Solar Cells. Langmuir 2009,25,5348-5351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700