用户名: 密码: 验证码:
金纳米粒子的特殊光学性质研究及其在重金属离子和氨基酸分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以金纳米粒子为研究对象,探讨了金纳米粒子的特殊光学性质,并基于其局域表面等离子体共振散射和吸收性质,将金纳米粒子用于生化分析,建立了一系列分析方法。研究论文的主要内容概括如下:
     1.采用文献报道的方法,制备了表面修饰乙二胺端基的环糊精衍生物。由于Au-N原子之间的亲和力,修饰上的氨基可被用来捕获游离的金离子。在外加还原剂的情况下,其空腔结构可使生成的金纳米粒子主要以与空腔直径大小相当的金纳米簇形式存在。实验发现,采用不同还原能力的还原剂,可以得到不同荧光发射波长的金纳米簇溶液。用强还原剂硼氢化钠制得的金簇主要是Au7形式,用温和的还原剂抗坏血酸制得的金簇溶液包含三种发射波长,其中又以470 nm的发射为最强。所得到的金纳米簇的荧光量子产率可达5.2%。本文还探讨了反应时间、模板浓度、还原剂用量和不同制备方法对金纳米簇荧光强度的影响。这一研究将增大金纳米簇在分析测定和荧光共振能量转移方面的潜在应用。
     2.根据荧光染料在金纳米粒子表面的能量转移,建立了测定氨基酸及水溶液中铅离子的灵敏方法。研究表明,通过静电作用吸附在柠檬酸根包被的金纳米粒子表面的阳离子荧光染料如罗丹明B分子在受光激发时,发生从荧光染料到金属纳米微粒的能量转移,导致荧光染料的荧光猝灭。但当体系中存在半胱氨酸时,由于半胱氨酸与金纳米粒子之间具有更强的共价作用,导致罗丹明B分子远离金纳米粒子表面,降低了能量转移效率,使得罗丹明B的荧光得到恢复。恢复的荧光强度与0.025-4.5μmol/L半胱氨酸呈很好的线性关系,检测限为8.0 nmol/L(3σ),而其它十九种基本氨基酸的响应非常微弱。运用同样的原理,采用铅离子诱导TBA产生构象转变来控制荧光染料与金纳米粒子之间的距离,从而控制二者之间能量转移的效率。使得这个与铅离子浓度相关的构象转变过程可以用通过荧光强度的变化来监测。以此建立起线性响应范围在12.5-100 nmol/L,检测限达10 nmol/L(3σ)的水溶液中铅离子的灵敏检测方法。
     3.局域表面等离子体共振光散射(LSPR-LS)和动态光散射(DLS)技术是两种监测粒子聚集过程的有力手段。随着纳米技术的发展,两者都广泛应用于高灵敏的定量分析中。本文采用汞离子诱导金纳米粒子聚集为模式体系,对两种光散射技术进行了对比研究。研究发现,柠檬酸盐稳定的AuNPs由于在汞离子存在下的螯合过程而发生聚集,导致LSPR-LS信号的剧烈增强和平均水合直径的增大。加强的LSPR-LS强度(ΔI)与汞离子浓度在0.4-2.5μmol/L范围内成很好的线性关系,其线性回归方程为ΔI=125.7+569.5c,相关系数0.992(n=6),检测限达(3σ)94.3nmol/L。然而,用DLS检测到的平均水合直径的增加只在汞离子浓度大于1.0μmol/L时才有响应,并以相关系数为0.994遵循d=-6.16+45.9c关系式。在此条件下,LSPR-LS信号由于具有高灵敏度和高选择性,被进一步用于湖水样中汞含量分析。
     4.通过没食子酸(Gallic acid, GA)在弱碱性条件下对四氯金酸进行还原,制得表面包被没食子酸的球形金纳米粒子溶胶,其粒径均匀,平均粒径在15 nm左右。并对其形成机理进行了探讨。由于没食子酸的刚性结构,该金纳米粒子能对铅离子选择性配位。在铅离子浓度处于0.2-1.0μmol/L之间时,由体系聚集程度的增加而导致其局域表面等离子体共振光散射信号的增强与铅离子浓度存在良好的线性关系。并据此建立一个基于金纳米粒子局域表面等离子体共振光散射的水环境中铅离子检测方法。此研究对于拓展LSPR散射在普通生化分析方面具有一定的意义。
     总之,本文建立了一系列基于金纳米粒子的局域表面等离子体共振特性的分析方法,并探索了几个原子的金纳米粒子的合成及其荧光性质研究。这将拓宽金纳米粒子在光分析化学中的应用。
In this thesis, gold nanoparticles (Au-NPs), which have unique optical properties, have been investigated. Thus, new analytical methods based on the LSPR absorption and scattering properties of Au-NPs have been established. The mainly points are as follows:
     1. An ethylenediamine terminated (3-cyclodextrin derivate was synthesized according to the literature. Because of the affinity of Au-N atom, the amino group can capture the dissociative gold ions. By using additional reductant, we can obtain the gold nanoclusters whose size was relative to the size of the cavity ofβ-cyclodextrin. Different reducing capability of the reductant would make the fluorescence emission of the acquisition solution be different. For example, the gold nanocluster was dominated in Au7 by employing sodium borohydride which has a strong reducing ability, the obtained solution which was reduced by ascorbic acid, a mild reducing agent, contained three kinds of emission wavelength, and the emission intensity of 470 nm is the strongest. The quantum yield of the obtained gold nanocluster solution is 5.2%. The influence of reaction time, the concentration of template and various reductant were investigated. This research will enhance the potential application of gold nanoclusters in biochemical analysis and fluorescence resonance energy transfer.
     2. According to the energy transfer between fluorescent dye and gold nanoparticle surface, sensitive detections of amino acid and aqueous lead were developed. The research shows, when the fluorescent dye, such as Rhodamine B, which was absorbed on the surface of citrate stabilized gold nanoparticles through the electrostatic interaction was excitated by the light, the fluorescence of the Rhodamine B gets quenched because of the occurrence of surface energy transfer from the fluorophore of Rhodamine B to the gold nanoparticles. However, with the addition of cysteine, the strong covalent combination between the mercapto group of cysteine and gold nanoparticles drives Rhodamine B molecular apart from the gold nanoparticles surface, which reduce the energy transfer efficiency and result in a significantly increase of fluorescence of the solution. It was found that the fluorescence gets increased linearly with the concentration of cysteine ranging from 0.025μmol/L to 4.5μmol/L. This phenomenon allows sensitive detection of cysteine with a limit of detection of 8.0 nmol/L (3σ). Other 19 kinds of natural amino acids have a weak influence on the surface energy transfer. According to the same principle, the efficiency of surface energy transfer can be controlled through the conformation transition of thrombin-binding aptamer (TBA) induced by lead ion, which changed the distance between gold nanoparticles and the dye molecule. This make the lead ion-dependent conformation transition process can be monitored based on the change of the fluorescent intensity. The sensitive detection of lead ion with a limit of detection of 10 nmol/L (3σ) and linear range from 12.5 nmol/L to 100nmol/L was provided.
     3. Both localized surface plasmon resonance light scattering (LSPR-LS) and dynamic light scattering (DLS) techniques are powerful tool to monitor the aggregation of particles. With the development of nanosciences, both of them have been widely used for quantitative purposes with high sensitivity. In this contribution, we make a comparison of the two light scattering techniques by employing gold nanoparticles (AuNPs) aggregation induced by mercuric ions. It was found that citrate-stabilized AuNPs get aggregated in aqueous medium in the presence of mercuric ions through a chelation process, resulting in greatly enhanced LSPR-LS signals and increased hydrodynamic diameter. The enhanced LSPR-LS intensity (ΔI) is proportional to the concentration of mercuric ions in the range of 0.4-2.5μmol/L following the linear regression equation ofΔI=125.7+569.5c with the correlation coefficient of 0.992 (n=6) and the limit of determination (3σ) about 94.3 nmol/L However, the increased hydrodynamic diameter can be identified by the DLS signals only with a concentration of Hg2+ beyond 1.0μmol/L, and a linear relationship between the average hydrodynamic diameters of the resulted aggregates and the concentration of Hg2+ can be expressed as d=-6.16+45.9c with correlation coefficient of 0.994. In such case, LSPR-LS signals were further applied to the selective determination of mercuric ions in lake water samples with high sensitivity and simple operation.
     4. We synthesized gallic acid-capped gold nanoparticles (GA-AuNPs) by reducing chloroauric acid trihydrate using gallic acid in the alkalescent condition. The average diameter of the synthesized GA-AuNPs is about 15 nm and size distribution is narrow. Because of the rigid structure of gallic acid molecule, it can selectively bind lead ions. The enhanced LSPR-LS intensity (ΔI) caused by the increase of aggregation is proportional to the concentration of lead ions in the range of 0.2-1.0μmol/L. A LSPR light scattering method for detecting aqueous lead ions based on gold nanoparticles was developed. This research promoted the application of LSPR light scattering to common biochemical analysis.
     In conclusion, a series novel analytical methods based on localized surface plasmon resonance properties of gold nanoparticles were established in this thesis. A few-atoms gold nanoparticle was synthesized and its fluorescene property was also investigated. This will improve the the application of AuNPs in optical analytical chemistry.
引文
[1]Willets, K. A., Duyne, R. P. V. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem.,2007,58,267-297.
    [2]Daniel, M. C., Astruc, D. Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.,2004,104,293-346.
    [3]Ghosh, S. K., Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles:From theory to applications. Chem Rev,2007, 107,4797-862.
    [4]Murphy, C. J., Gole, A. M., Stone, J. W., Sisco, P. N., Alkilany, A. M., Goldsmith, E. C., Baxter, S. C. Gold nanoparticles in biology:Beyond toxicity to cellular imaging. Acc. Chem. Res.,2008,41,1721-1730.
    [5]Yguerabide, J., Yguerabide, E. E. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications i. Theory. Anal. Biochem.,1998,262,137-156.
    [6]Yguerabide, J., Yguerabide, E. E. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications Ⅱ. Experimental characterization. Anal. Biochem.,1998, 262,157-176.
    [7]Boisselier, E., Astruc, D. Gold nanoparticles in nanomedicine:Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev.,2009,38,1759-1782.
    [8]Wang, Z., Ma, L. Gold nanoparticle probes. Coord. Chem. Rev.,2009,253, 1607-1618.
    [9]Sardar, R., Funston, A. M., Mulvaney, P., Murray, R. W. Gold nanoparticles: Past, present, and future. Langmuir,2009,25,13840-13851.
    [10]Knecht, M. R., Sethi, M. Bio-inspired colorimetric detection of Hg2+ and Pb2+ heavy metal ions using au nanoparticles. Anal Bioanal Chem,2009,394,33-46.
    [11]Zhao, W., Brook, M. A., Li, Y. Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem,2008,9,2363-2371.
    [12]Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L., Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science,1997,277,1078-1081.
    [13]Storhoff, J. J., Elghanian, R., Mucic, R. C., Mirkin, C. A., Letsinger, R. L One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc.,1998,120, 1959-1964.
    [14]Reynolds, R. A., Mirkin, C. A., Letsinger, R. L. Homogeneous, nanoparticle-based quantitative colorimetric detection of oligonucleotides. J. Am. Chem. Soc, 2000,122,3795-3796.
    [15]Hurst, S. J., Han, M. S., Lytton-Jean, A. K. R., Mirkin, C. A. Screening the sequence selectivity of DNA-binding molecules using a gold nanoparticle-based colorimetric approach. Anal. Chem.,2007,79,7201-7205.
    [16]Lee, J. S., Ulmann, P. A., Han, M. S., Mirkin, C. A. A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Lett., 2008,8,529-533.
    [17]Lee, J. S., Mirkin, C. A. Chip-based scanometric detection of mercuric ion using DNA-functionalized gold nanoparticles. Anal. Chem.,2008,80,6805-6808.
    [18]Lee, J. S., Han, M. S., Mirkin, C. A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. Int. Ed.,2007,46,4093-4096.
    [19]Xue, X., Wang, F., Liu, X. One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J. Am. Chem. Soc. 2008,130,3244-3245.
    [20]Li, F., Zhang, J., Cao, X., Wang, L., Li, D., Song, S., Ye, B., Fan, C. Adenosine detection by using gold nanoparticles and designed aptamer sequences. Analyst,2009,134,1355-1360.
    [21]Li, L., Li, B. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes. Analyst,2009,134,1361-1365.
    [22]Kim, S., Park, J. W., Kim, D., Kim, D., Lee, I.-H., Jon, S. Bioinspired colorimetric detection of calcium(Ⅱ) ions in serum using calsequestrin-functionalized gold nanoparticles. Angew. Chem. Int. Ed.,2009,48,4138-4141.
    [23]Zhu, Z., Su, Y., Li, J., Li, D., Zhang, J., Song, S., Zhao, Y., Li, G., Fan, C. Highly sensitive electrochemical sensor for mercury(Ⅱ) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplifica-tion. Anal. Chem.,2009,81,7660-7666.
    [24]Huang, C. C., Chang, H. T. Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles. Chem. Commun.,2007,1215-1217.
    [25]Dang, Y. Q., Li, H. W., Wang, B., Li, L., Wu, Y. Selective detection of trace Cr3+ in aqueous solution by using 5,5'-dithiobis (2-nitrobenzoic acid)-modified gold nanoparticles. ACS Applied Materials & Interfaces,2009,1,1533-1538.
    [26]Medley, C. D., Smith, J. E., Tang, Z., Wu, Y., Bamrungsap, S., Tan, W. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal. Chem.,2008,80,1067-1072.
    [27]Slocik, J. M., Zabinski, J. S., Phillips, D. M., Naik, R. R. Colorimetric response of peptide-functionalized gold nanoparticles to metal ions. Small,2008,4, 548-551.
    [28]Yang, W., Gooding, J. J., He, Z., Li, Q., Chen, G. Fast colorimetric detection of copper ions using L-cysteine functionalized gold nanoparticles. J. Nanosci. Nanotechnol.,2007,7,712-716.
    [29]Huang, C. C., Huang, Y. F., Cao, Z., Tan, W., Chang, H. T. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal. Chem.,2005,77,5735-5741.
    [30]Pavlov, V., Xiao, Y., Shlyahovsky, B., Willner, I. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. J. Am. Chem. Soc., 2004,126,11768-11769.
    [31]Kalluri, J. R., Arbneshi, T., Afrin Khan, S., Neely, A., Candice, P., Varisli, B., Washington, M., McAfee, S., Robinson, B., Banerjee, S., Singh, A. K. Senapati, D., Ray, P. C. Use of gold nanoparticles in a simple colorimetric and ultrasensitive dynamic light scattering assay:Selective detection of arsenic in groundwater. Angew Chem Int Ed Engl,2009,48,9668-9671.
    [32]Wang, Z., Levy, R., Fernig, D. G., Brust, M. Kinase-catalyzed modification of gold nanoparticles:A new approach to colorimetric kinase activity screening. J. Am. Chem. Soc,2006,128,2214-2215.
    [33]Jiang, Y., Zhao, H., Zhu, N., Lin, Y., Yu, P., Mao, L. A simple assay for direct colorimetric visualization of trinitrotoluene at picomolar levels using gold nanoparticles. Angew. Chem. Int. Ed.,2008,47,8601-8604.
    [34]Wang, Z., Lee, J. H., Lu, Y. Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and dnazyme. Adv. Mater.,2008,20,3263-3267.
    [35]Liu, J., Lu, Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc,2003,125,6642-6643.
    [36]Liu, J., Lu, Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew. Chem. Int. Ed.,2006,45,90-94.
    [37]Liu, J., Lu, Y. Smart nanomaterials responsive to multiple chemical stimuli with controllable cooperativity. Adv. Mater.,2006,18,1667-1671.
    [38]Xu, X., Han, M. S., Mirkin, C. A. A gold-nanoparticle-based real-time colorimetric screening method for endonuclease activity and inhibition. Angew. Chem. Int. Ed.,2007,46,3468-3470.
    [39]Park, J. H., Ganbold, E. O., Uuriintuya, D., Lee, K., Joo, S. W. Hydrogen bonding-induced color recovery of gold nanoparticles upon conjugation of amino acids. Chem. Commun.,2009,7354-7356.
    [40]Tsai, C. S., Yu, T. B., Chen, C. T. Gold nanoparticle-based competitive colorimetric assay for detection of protein-protein interactions. Chem. Commun.,2005,4273-4275.
    [41]Wang, W., Liu, H., Liu, D., Xu, Y., Yang, Y., Zhou, D. Use of the interparticle i-motif for the controlled assembly of gold nanoparticles. Langmuir,2007,23, 11956-11959.
    [42]Liu, J., Lu, Y. Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Anal. Chem.,2004, 76,1627-1632.
    [43]Liu, J., Lu, Y. Colorimetric Cu2+ detection with a ligation DNAzyme and nanoparticles. Chem. Commun.,2007,4872-4874.
    [44]Daniel, W. L., Han, M. S., Lee, J. S., Mirkin, C. A. Colorimetric nitrite and nitrate detection with gold nanoparticle probes and kinetic end points. J. Am. Chem. Soc,2009,131,6362-6363.
    [45]Xu, X., Daniel, W. L., Wei, W., Mirkin, C. A. Colorimetric Cu2+ detection using DNA-modified gold-nanoparticle aggregates as probes and click chemistry. Small,2010,6,623-626.
    [46]Li, H., Rothberg, L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. USA,2004,101,14036-14039.
    [47]Li, H., Rothberg, L. J. Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J. Am. Chem. Soc, 2004 126,10958-10961.
    [48]Xin, A. P., Dong, Q. P., Xiong, C., Ling, L. S. Colorimetric recognition of DNA intercalators with unmodified gold nanoparticles. Chem. Commun.,2009, 1658-1660.
    [49]Wang, L., Zhang, J., Wang, X., Huang, Q., Pan, D., Song, S., Fan, C. Gold nanoparticle based optical probes for target-responsive DNA structures. Gold Bull,2008,41,37-41.
    [50]Zhang, J., Wang, L. H., Pan, D., Song, S. P., Boey, F. Y. C., Zhang, H., Fan, C. H. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small,2008,4,1196-1200.
    [51]Wei, H., Li, B., Li, J., Wang, E., Dong, S. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem. Commun.,2007,3735-3737.
    [52]Wei, H., Li, B., Li, J., Dong, S., Wang, E. DNAzyme-based colorimetric sensing of lead (Pb2+) using unmodified gold nanoparticle probes. Nanotechnology, 2008,19,095501.
    [53]Miyake, Y., Togashi, H., Tashiro, M., Yamaguchi, H., Oda, S., Kudo, M., Tanaka, Y., Kondo, Y., Sawa, R., Fujimoto, T., Machinam, T., Ono, A. MercuryⅡ-mediated formation of thymine-HgⅡ-thymine base pairs in DNA duplexes. J. Am. Chem. Soc.,2006,128,2172-2173.
    [54]Liu, C. W., Hsieh, Y. T., Huang, C. C., Lina, Z. H., Chang, H. T. Detection of mercury(II) based on Hg2+-DNA complexes inducing the aggregation of gold nanoparticles. Chem. Commun.,2008,2242-2244.
    [55]Li, L., Li, B., Qi, Y., Jin, Y. Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Anal Bioanal Chem,2009,393,2051-2057.
    [56]Li, B., Du, Y., Dong, S. DNA based gold nanoparticles colorimetric sensors for sensitive and selective detection of Ag(Ⅰ) ions. Anal. Chim. Acta,2009,644, 78-82.
    [57]Chen, Y. M., Yu, C. J., Cheng, T. L., Tseng, W. L. Colorimetric detection of lysozyme based on electrostatic interaction with human serum albumin-modified gold nanoparticles. Langmuir,2008,24,3654-3660.
    [58]Zhao, W., Chiuman, W., Lam, J. C. F., McManus, S. A., Chen, W., Cui, Y., Pelton, R., Brook, M. A., Li, Y. DNA aptamer folding on gold nanoparticles: From colloid chemistry to biosensors. J. Am. Chem. Soc,2008,130,3610-3618.
    [59]Zhao, W., Lam, J. C. F., Chiuman, W., Brook, M. A., Li, Y. Enzymatic cleavage of nucleic acids on gold nanoparticles:A generic platform for facile colorimetric biosensors. small,2008,4,810-816.
    [60]Ray, P. C., Darbha, G. K., Ray, A., Walker, J., Hardy, W. Gold nanoparticle based FRET for DNA detection. Plasmonics,2007,2,173-183.
    [61]Ray, P. C., Fortner, A., Darbha, G. K. Gold nanoparticle based FRET asssay for the detection of DNA cleavage. J. Phys. Chem. B,2006,110,20745-20748.
    [62]Kim, J. H., Estabrook, R. A., Braun, G., Lee, B. R., Reich, N. O. Specific and sensitive detection of nucleic acids and rnases using gold nanoparticle-RNA-fluorescent dye conjugates. Chem. Commun.,2007,4342-4344.
    [63]Tang, B., Zhang, N., Chen, Z., Xu, K., Zhuo, L., An, L., Yang, G. Probing hydroxyl radicals and their imaging in living cells by use of FAM-DNA-Au nanoparticles. Chem. Eur. J.,2008,14,522-528.
    [64]Shan, Y., Xu, J. J., Chen, H. Y. Distance-dependent quenching and enhancing of electrochemiluminescence from a CdS:Mn nanocrystal film by Au nanoparticles for highly sensitive detection of DNA. Chem. Commun.,2009, 905-907.
    [65]Maxwell, D. J., Taylor, J. R., Nie, S. Self-assembled nanoparticle probes for recognition and detection of biomolecules. J. Am. Chem. Soc,2002,124, 9606-9612.
    [66]Wang, H., Wang, Y., Jin, J., Yang, R. Gold nanoparticle-based colorimetric and "turn-on" fluorescent probe for mercury(Ⅱ) ions in aqueous solution. Anal. Chem.,2008,80,9021-9033.
    [67]Li, H., Rothberg, L. J. DNA sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal. Chem., 2004,76,5414-5417.
    [68]Griffin, J., Singh, A. K., Senapati, D., Rhodes, P., Mitchell, K., Robinson, B., Yu, E., Ray, P. C. Size-and distance-dependent nanoparticle surface-energy transfer (NSET) method for selective sensing of hepatitis C virus RNA. Chem. Eur. J.,2009,15,342-351.
    [69]Liu, C. W., Huang, C. C., Chang, H. T. Control over surface DNA density on gold nanoparticles allows selective and sensitive detection of mercury(Ⅱ). Langmuir,2008,24,8346-8350.
    [70]Wang, W., Chen, C., Qian, M., Zhao, X. S. Aptamer biosensor for protein detection using gold nanoparticles. Anal. Biochem.,2008,373,213-219.
    [71]Jin, Y., Li, H., Bai, J. Homogeneous selecting.of a quadruplex-binding ligand-based gold nanoparticle fluorescence resonance energy transfer assay. Anal. Chem.,2009,81,5709-5714.
    [72]Kim, J. H., Chung, B. H. Proteolytic fluorescent signal amplification on gold nanoparticles for a highly sensitive and rapid protease assay. Small,2010,6, 126-131.
    [73]Zhang, J., Wang, L., Zhang, H., Boey, F., Song, S., Fan, C. Aptamer-based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution. Small,2010,6,201-204.
    [74]Oh, E., Hong, M. Y., Lee, D., Nam, S. H., Yoon, H. C., Kim, H. S. Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. J. Am. Chem. Soc,2005,127, 3270-3271.
    [75]Tang, B., Cao, L., Xu, K., Zhuo, L., Ge, J., Li, Q., Yu, L. A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles. Chem. Eur. J.,2008,14,3637-3644.
    [76]Zhang, N., Liu, Y., Tong, L., Xu, K., Zhuo, L., Tang, B. A novel assembly of Au NPs-β-CDs-FL for the fluorescent probing of cholesterol and its application in blood serum. Analyst,2008,133,1176-1181.
    [77]Goldman, E. R., Medintz, I. L., Whitley, J. L., Hayhurst, A., Clapp, A. R., Uyeda, H. T., Deschamps, J. R., Lassman, M. E., Mattoussi, H. A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based tnt sensor. J. Am. Chem. Soc,2005,127,6744-6751.
    [78]Franzen, S., Folmer, J. C. W., Glomm, W. R., O'Neal, R. Optical properties of dye molecules adsorbed on single gold and silver nanoparticles. J. Phys. Chem. A,2002,106,6533-6540.
    [79]Shang, L., Jin, L., Dong, S. Sensitive turn-on fluorescent detection of cyanide based on the dissolution of fluorophore functionalized gold nanoparticles. Chem Commun (Camb),2009,3077-9.
    [80]Zheng, A., Chen, J., Wu, G., Wei, H., He, C., Kai, X., Wu, G., Chen, Y. Optimization of a sensitive method for the "switch-on" determination of mercury(Ⅱ) in waters using rhodamine B capped gold nanoparticles as a fluorescence sensor. Microchim Acta,2009,164,17-27.
    [81]Darbha, G. K., Ray, A., Ray, P. C. Gold nanoparticle-based miniaturized nanomaterial surface energy transfer probe for rapid and ultrasensitive detection of mercury in soil, water, and fish. ACS Nano,2007,1,208-214.
    [82]Chen, J., Zheng, A., Chen, A., Gao, Y., He, C., Kai, X., Wu, G., Chen, Y. A functionalized gold nanoparticles and rhodamine 6G based fluorescent sensor for high sensitive and selective detection of mercury(Ⅱ) in environmental water samples. Anal. Chim. Acta,2007,599,134-142.
    [83]Wang, X., Guo, X. Ultrasensitive Pb2+ detection based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. Analyst,2009,134,1348-1354.
    [84]Ling, J., Huang, C. Z., Li, Y. F., Long, Y. F., Liao, Q. G. Recent developments of the resonance light scattering technique:Technical evolution, new probes and applications. Appl.Spectrosc.Rev.,2007,42,177-201.
    [85]Ling, J., Huang, C. Z., Li, Y. F., Zhang, L., Chen, L. Q., Zhen, S. J. Light-scattering signals from nanoparticles in biochemical assay, pharmaceutical analysis and biological imaging. TrAC Trends in Analytical Chemistry,2009,28,447-453.
    [86]Pastemack, R. F., Bustamante, C., Collings, P. J., Giannetto, A., Gibbs, E. J. Porphyrin assemblies on DNA as studiedby resonance light-scattering technique. J. Am. Chem. Soc.,1993,115,5393-5399.
    [87]Pasternack, R. F., Collings, P. J. Resonance light-scattering-a new technique for studying chromophore aggregation. Science,1995,269,935-939.
    [88]Liu, Z. D., Huang, C. Z., Li, Y. F., Long, Y. F. Enhanced plasmon resonance. light scattering signals of colloidal gold resulted from its interactions with organic small molecules using captopril as an example. Anal. Chim. Acta,2006, 577,244-249.
    [89]Huang, C. Z., Liao, Q. G., Gan, L. H., Guo, F. L., Li, Y. F. Telomere DNA conformation change induced aggregation of gold nanoparticles as detected by plasmon resonance light scattering technique. Anal. Chim. Acta,2007,604, 165-169.
    [90]He, W., Li, Y. F., Huang, C. Z., Xie, J. P., Yang, R. G., Zhou, P. F., Wang, J. A one-step label-free optical genosensing system for sequence-specific DNA related to the human immunodeficiency virus based on the measurements of light scattering signals of gold nanorods. Anal. Chem.,2008,80,8424-8430.
    [91]Wang, J., Li, Y. F., Huang, C. Z., Wu, T. Rapid and selective detection of cysteine based on its induced aggregates of cetyltrimethylammonium bromide capped gold nanoparticles. Anal. Chim. Acta,2008,626,37-43.
    [92]Liu, Z. D., Li, Y. F., Ling, J., Huang, C. Z. A localized surface plasmon resonance light-scattering assay of mercury (Ⅱ) on the basis of Hg2+ -DNA complex induced aggregation of gold nanoparticles. Environ. Sci. Technol., 2009,43,5022-5027.
    [93]Wu, L. P., Li, Y. F., Huang, C. Z., Zhang, Q. Visual detection of sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles. Anal. Chem.,2006,78,5570-5577.
    [94]Wang, H. Y., Li, Y. F., Huang, C. Z. Detection of ferulic acid based on the plasmon resonance light scattering of silver nanoparticles. Talanta 2007,72, 1698-1703.
    [95]Aslan, K., Holley, P., Davies, L., Lakowicz, J. R., Geddes, C. D. Angular-ratiometric plasmon-resonance based light scattering for bioaffinity sensing. J. Am. Chem. Soc,2005,127,12115-12121.
    [96]Zhou, H., Wu, X., Yang, J. Study on the interaction of nucleic acids with silver nanoparticles-Al(Ⅲ) by resonance light scattering technique and its analytical application. Talanta,2009,78,809-813.
    [97]Xiang, M., Xu, X., Liu, F., Li, N., Li, K. A. Gold nanoparticle based plasmon resonance light-scattering method as a new approach for glycogen-biomacromolecule interactions. JPhys Chem B,2009,113,2734-2738.
    [98]Cai, H. H., Yang, P. H., Feng, J., Cai, J. Immunoassay detection using functionalized gold nanoparticle probes coupled with resonance rayleigh scattering. Sens. Actuators, B,2009,135,603-609.
    [99]El-Sayed, I. H., Huang, X., El-Sayed, M. A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics:Applications in oral cancer. Nano Lett,2005,5,829-834.
    [100]Jiang, Z. L., Sun, S. J., Liang, A. H., Liu, C. J. A new immune resonance scattering spectral assay for trace fibrinogen with gold nanoparticle label. Anal. Chim. Acta,2006,571,200-205.
    [101]Li, Z. P., Duan, X. R., Liu, C. H., Du, B. A. Selective determination of cysteine by resonance light scattering technique based on self-assembly of gold nanoparticles. Anal. Biochem.,2006,351,18-25.
    [102]Aslan, K., Lakowicz, J. R., Geddes, C. D. Nanogold plasmon resonance-based glucose sensing.2. Wavelength-ratiometric resonance light scattering. Anal. Chem.,2005,77,2007-2014.
    [103]Duan, X. R., Li, Z. P., Cui, P. J., Su, Y. Q. Study on self-assembly of gold nanoparticles directed by glutathione with resonance light scattering technique and its analytical applications. J. Nanosci. Nanotechnol.,2006,6,3842-3848.
    [104]Du, B. A., Li, Z. P., Cheng, Y. Q. Homogeneous immunoassay based on aggregation of antibody-functionalized gold nanoparticles coupled with light scattering detection. Talanta,2008,75,959-964.
    [105]Du, B. A., Li, Z. P., Liu, C. H. One-step homogeneous detection of DNA hybridization with gold nanoparticle probes by using a linear light-scattering technique. Angew. Chem. Int. Ed.,2006,45,8022-8025.
    [106]Zhang, J. Q., Wang, Y. S., He, Y., Jiang, T., Yang, H. M., Tan, X., Kang, R. H., Yuan, Y. K., Shi, L. F. Determination of urinary adenosine using resonance light scattering of gold nanoparticles modified structure-switching aptamer. Anal. Biochem.,2010,397,212-217.
    [107]Liu, S. P., Yang, Z., Liu, Z. F., Liu, J. T., Shi, Y. Resonance rayleigh scattering study on the interaction of gold nanoparticles with berberine hydrochloride and its analytical application. Anal Chim Acta,2006,572,283-289.
    [108]Liu, S. P., He, Y. Q., Liu, Z. F., Kong, L., Lu, Q. M. Resonance rayleigh scattering spectral method for the determination of raloxifene using gold nanoparticle as a probe. Anal Chim Acta,2007,598,304-311.
    [109]He, Y. Q., Liu, S. P., Kong, L., Liu, Z. F. A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance rayleigh scattering and resonance non-linear scattering. Spectrochim Acta, Part A,2005,61,2861-2866.
    [110]Shi, X. G., Wang, S. H., Meshinchi, S., Van Antwerp, M. E., Bi, X. D., Lee, I. H., Baker, J. R. Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small,2007,3,1245-1252.
    [111]Fan, Y., Long, Y. F., Li, Y. F. A sensitive resonance light scattering spectrometry of trace Hg2+ with sulfur ion modified gold nanoparticles. Anal. Chim. Acta,2009,653,207-211.
    [112]Liu, Z. D., Li, Y. F., Ling, J., Huang, C. Z. A localized surface plasmon resonance light-scattering assay of mercury(Ⅱ) on the basis of Hg2+ -DNA complex induced aggregation of gold nanoparticles. Environ Sci Technol,2009, 43,5022-5027.
    [113]Wang, J., Li, Y. F., Huang, C. Z., Wu, T. Rapid and selective detection of cysteine based on its induced aggregates of cetyltrimethylammonium bromide capped gold nanoparticles. Anal. Chim. Acta,2008,626,37-43.
    [114]Shen, X. W., Huang, C. Z., Li, Y. F. Localized surface plasmon resonance sensing detection of glucose in the serum samples of diabetes sufferers based on the redox reaction of chlorauric acid. Talanta,2007,72,1432-1437.
    [115]Liu, Z. D., Huang, C. Z., Li, Y. F., Long, Y. F. Enhanced plasmon resonance light scattering signals of colloidal gold resulted from its interactions with organic small molecules using captopril as an example. Anal. Chim. Acta,2006, 577,244-249.
    [116]Sang, Y., Zhang, L., Li, Y. F., Chen, L. Q., Xu, J. L., Huang, C. Z. A visual detection of hydrogen peroxide on the basis of fenton reaction with gold nanoparticles. Anal. Chim. Acta,2010,659,224-228.
    [117]He, W., Li, Y. F., Huang, C. Z., Xie, J. P., Yang, R. G., Zhou, P. F., Wang, J. A one-step label-free optical genosensing system for sequence-specific DNA related to the human immunodeficiency virus based on the measurements of light scattering signals of gold nanorods. Anal. Chem.,2008,80,8424-8430.
    [118]Huang, X., El-Sayed, I. H., Qian, W., El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc,2006,128,2115-2120.
    [119]Liu, G. L., Long, Y. T., Choi, Y., Kang, T., Lee, L. P. Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Nat. Methods,2007,4,1015-1017.
    [120]Choi, Y., Park, Y., Kang, T., Lee, L. P. Selective and sensitive detection of metal ions by plasmonic resonance energy transfer-based nanospectroscopy. Nat. Nanotech.,2009,4,742-746.
    [121]Zheng, J., Nicovich, P. R., Dickson, R. M. Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem.,2007,58,409-431.
    [122]Jain, P. K., Lee, K. S., El-Sayed, I. H., El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition:Applications in biological imaging and biomedicine. J. Phys. Chem. B,2006,110,7238-7248.
    [123]Knight, W. D. Electronic shell structure and abundances of sodium clusters. Phys. Rev. Lett.,1984,52,2141-2143.
    [124]Zheng, J., Zhang, C., Dickson, R. M. Highly fluorescent,water-soluble, size-tunable gold quantum dots. Phys. Rev. Lett,2004,93,077402-1.
    [125]Brack, M. The physics of simple metal clusters:Self-consistent jellium model and semiclassical approaches. Rev. Mod. Phys.,1993,65,677-732.
    [126]de Heer, W. A. The physics of simple metal clusters:Experimental aspects and simple models. Rev. Mod. Phys.,1993,65,611-676.
    [127]Harbich, W., Fedrigo, S., Buttet, J., Lindsay, D. M. Deposition of mass selected gold clusters in solid krypton. J. Chem. Phys.,1992,96,8104-8108.
    [128]Fedrigo, S., Harbich, W., Buttet, J. Optical-response of Ag2, Ag3, Au2, and Au3 in argon matrices. J. Chem. Phys.,1993,99,5712-5717.
    [129]Triulzi, R. C., Micic, M., Giordani, S., Serry, M., Chiou, W. A., Leblanc, R. M. Immunoasssay based on the antibody-conjugated PAMAM-dendrimer-gold quantum dot complex. Chem Commun (Camb),2006,5068-5070.
    [130]Tran, M. L., Zvyagin, A. V., Plakhotnik, T. Synthesis and spectroscopic observation of dendrimer-encapsulated gold nanoclusters. Chem Commun (Camb),2006,2400-2401.
    [131]Crooks, R. M., Zhao, M., Sun, L., Chechik, V., Yeung, L. K. Dendrimer-encapsulated metal nanoparticles:Synthesis, characterization, and applications to catalysis. Acc Chem Res,2001,34,181-190.
    [132]Zheng, J., Petty, J. T., Dickson, R. M. High quantum yield blue emission from water-soluble Au8 nanodots. J. Am. Chem. Soc.,2003,125,7780-7781.
    [133]Wang, D., Imae, T. Fluorescence emission from dendrimers and its pH dependence. J Am Chem Soc,2004,126,13204-13205.
    [134]Lee, W. I., Bae, Y., Bard, A. J. Strong blue photoluminescence and ECL from OH-terminated pamam dendrimers in the absence of gold nanoparticles. J. Am. Chem. Soc.,2004,126,8358-8359.
    [135]Bao, Y., Zhong, C., Vu, D. M., Temirov, J. P., Dyer, R. B., Martinez, J. S. Nanoparticle-free synthesis of fluorescent gold nanoclusters at physiological temperature. J. Phys. Chem. C,2007,111,12194-12198.
    [136]Duan, H., Nie, S. Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers:A new route to fluorescent and water-soluble atomic clusters. J. Am. Chem. Soc.,2007,129,2412-2413.
    [137]Xie, J., Zheng, Y., Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc,2009,131,888-889.
    [138]Qian, H., Zhu, M., Andersen, U. N., Jin, R. Facile, large-scale synthesis of dodecanethiol-stabilized au38 clusters. J. Phys. Chem. A,2009,113, 4281-4284.
    [139]Shichibu, Y., Negishi, Y., Tsukuda, T., Teranishi, T. Large-scale synthesis of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilized Au11 clusters. J. Am. Chem. Soc,2005,127,13464-13465.
    [140]Templeton, A. C., Cliffel, D. E., Murray, R. W. Redox and fluorophore functionalization of water-soluble, tiopronin-protected gold clusters. J. Am. Chem. Soc,1999,121,7081-7089.
    [141]Yang, Y., Chen, S. Surface manipulation of the electronic energy of subnanometer-sized gold clusters:An electrochemical and spectroscopic investigation. Nano Lett.,2003,3,75-79.
    [142]Negishi, Y., Nobusada, K., Tsukuda, T. Glutathione-protected gold clusters revisited:Bridging the gap between gold(Ⅰ)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc,2005,127,5261-5270.
    [143]Schaaff, T. G., Knight, G., Shafigullin, M. N., Borkman, R. F., Whetten, R. L. Isolation and selected properties of a 10.4 kDa gold:Glutathione cluster compound. J. Phys. Chem. B,1998,102,10643-10646.
    [144]Chen, S., Ingram, R. S., Hostetler, M. J., Pietron, J. J., Murray, R. W., Schaaff, T. G., Khoury, J. T., Alvarez, M. M., Whetten, R. L. Gold nanoelectrodes of varied size:Transition to molecule-like charging. Science,1998,280, 2098-2101.
    [145]Lee, D., Donkers, R. L., Wang, G., Harper, A. S., Murray, R. W. Electrochemistry and optical absorbance and luminescence of molecule-like Au38 nanoparticles. J. Am. Chem. Soc.,2004,126,6193-6199.
    [146]Wilcoxon, J. P., Martin, J. E. Photoluminescence from nanosize gold clusters. J. Chem. Phys.,1998,108,9137-9143.
    [147]Konig, L., Rabin, W. S., Ertl, G. Chemiluminescence in the agglomeration of metal clusters. Science,1996,274,1353-1355.
    [148]Huang, C. C., Yang, Z., Lee, K. H., Chang, H. T. Synthesis of highly fluorescent gold nanoparticles for sensing mercury(Ⅱ). Angew. Chem. Int. Ed., 2007,46,6824-6828.
    [149]Shiang, Y. C., Huang, C. C., Chang, H. T. Gold nanodot-based luminescent sensor for the detection of hydrogen peroxide and glucose. Chem. Commun., 2009,3437-3439.
    [150]Chen, W., Tu, X., Guo, X. Fluorescent gold nanoparticles-based fluorescence sensor for Cu2+ ions. Chem. Commun.,2009,1736-1738.
    [151]Chen, C. T., Chen, W. J., Liu, C. Z., Chang, L. Y., Chen, Y. C. Glutathione-bound gold nanoclusters for selective-binding and detection of glutathione S-transferase-fusion proteins from cell lysates. Chem Commun (Camb),2009,7515-7517.
    [152]Lin, C. A., Yang, T. Y., Lee, C. H., Huang, S. H., Sperling, R. A., Zanella, M., Li, J. K., Shen, J. L., Wang, H. H., Yeh, H. I., Parak, W. J., Chang, W. H. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano,2009,3,395-401.
    [153]Muhammed, Madathumpady Abubaker H., Verma, Pramod K., Pal, Samir K., Kumar, R. C. A., Paul, S., Omkumar, Ramakrishnapillai V., Pradeep, T. Bright, NIR-emitting Au23 from Au25:Characterization and applications including biolabeling. Chem. Eur. J.,2009,15,10110-10120.
    [154]Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci.,1973,241,20-22.
    [155]Liu, Y., Male, K. B., Bouvrette, P., Luong, J. H. T. Control of the size and distribution of gold nanoparticles by unmodified cyclodextrins. Chem. Mater., 2003,15,4172-4180.
    [156]Schooss, D., Weis, P., Hampe, O., Kappes, M. M. Determining the size-dependent structure of ligand-free gold-cluster ions. Philos Transact A Math Phys Eng Sci,2010,368,1211-1243.
    [157]Zhou, R., Shi, M., Chen, X., Wang, M., Chen, H. Atomically monodispersed and fluorescent sub-nanometer gold clusters created by biomolecule-assisted etching of nanometer-sized gold particles and rods. Chem. Eur. J.,2009,15, 4944-4951.
    [158]Li, W., Jin, G., Chen, H., Kong, J. Highly sensitive and reproducible cyclodextrin-modified gold electrodes for probing trace lead in blood. Talanta, 2009,78,717-722.
    [159]Hubert, C., Denicourt-Nowicki, A., Roucoux, A., Landy, D., Leger, B., Crowync, G., Monflier, E. Catalytically active nanoparticles stabilized by host-guest inclusion complexes in water. Chem. Commun.,2009,1228-1230.
    [160]Bai, J., Yang, Q. B., Li, M. Y., Wang, S. G., Zhang, C. Q., Li, Y. X. Preparation of composite nanofibers containing gold nanoparticles by using poly(N-vinylpyrrolidone) and beta-cyclodextrin. Mater. Chem. Phys.,2008, 111,205-208.
    [161]Liu, J., Mendoza, S., Roman, E., Lynn, M. J., Xu, R., Kaifer, A. E. Cyclodextrin-modified gold nanospheres. Host-guest interactions at work to control colloidal properties. J. Am. Chem. Soc.,1999,121,4304-4305.
    [162]Kabashin, A. V., Meunier, M., Kingston, C., Luong, J. H. T. Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclodextrins. J. Phys. Chem. B,2003,107,4527-4531.
    [163]Huang, Y. J., Li, D., Li, J. H. Beta-cyclodextrin controlled assembling nanostructures from gold nanoparticles to gold nanowires. Chem. Phys. Lett., 2004,389,14-18.
    [164]Reetz, M. T., Kostas, I. D., Waldvogel, S. R. Synthesis of a gold(Ⅰ) complex with a (thio)phosphine-modified β-cyclodextrin. Inorg. Chem. Commun.,2002, 5,252-254.
    [165]戴荣继,张姝,李方,靳慧,顾峻岭,傅若农.含有氨基和羧基的β-环糊精衍生物合成及性能测试.北京理工大学学报,1998,18,159-164.
    [166]Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem Rev,1998,98,1743-1754.
    [167]Bao, Y., Zhong, C., Vu, D. M., Temirov, J. P., Dyer, R. B., Martinez, J. S. Nanoparticle-free synthesis of fluorescent gold nanoclusters at physiological temperature. J. Phys. Chem. C,2007,111,12194-12198.
    [168]Huang, C. C., Yang, Z., Lee, K. H., Chang, H.-T. Synthesis of highly fluorescent gold nanoparticles for sensing mercury(Ⅱ). Angew. Chem. Int. Ed., 2007,46,6824-6828.
    [169]Aslan, K., Gryczynski, I., Malicka, J., Matveeva, E., Lakowicz, J. R., Geddes, C. D. Metal-enhanced fluorescence:An emerging tool in biotechnology. Current Opinion in Biotechnology,2005,16,55-62.
    [170]Liu, J., Lu, Y. Colorimetric biosensors based on DNAzyme-assembled gold nanoparticles. JFluoresc,2004,14,343-354.
    [171]Yun, C. S., Javier, A., Jennings, T., Fisher, M., Hira, S., Peterson, S., Hopkins, B., Reich, N. O., Strouse, G. F. Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. J. Am. Chem. Soc,2005,127,3115-3119.
    [172]Jennings, T. L., Singh, M. P., Strouse, G. F. Fluorescent lifetime quenching near d=1.5 nm gold nanoparticles:Probing NSET validity. J. Am. Chem. Soc., 2006,128,5462-5467.
    [173]Chen, Z., Zu, Y. Electrochemical recognition of single-methylene difference between cysteine and homocysteine. J. Electroanal. Chem.,2008,624,9-13.
    [174]Zhang, M., Yu, M., Li, F., Zhu, M., Li, M., Gao, Y., Li, L., Liu, Z., Zhang, J., Zhang, D., Yi, T., Huang, C. A highly selective fluorescence turn-on sensor for cysteine/homocysteine and its application in bioimaging. J. Am. Chem. Soc, 2007,129,10322-10323.
    [175]Lee, K. S., Kim, T. K., Lee, J. H., Kim, H. J., Hong, J. I. Fluorescence turn-on probe for homocysteine and cysteine in water. Chem. Commun.,2008, 6173-6175.
    [176]Lin, W., Long, L., Yuan, L., Cao, Z., Chen, B., Tan, W. A ratiometric fluorescent probe for cysteine and homocysteine displaying a large emission shift. Org. Lett.,2008,10,5577-5580.
    [177]Hua, L., Han, H., Zhang, X. Size-dependent electrochemiluminescence behavior of water-soluble CdTe quantum dots and selective sensing of L-cysteine. Talanta,2009,77,1654-1659.
    [178]Zhang, S. H., Shi, B. A., Xi, J. Investigation on simultaneous determination of tryptophan and cysteine by chemiluminescence method. Chin. J. Anal. Lab., 2007,10-13.
    [179]Wu, T., Li, Y. F., Huang, C. Z. Selectively colorimetric detection of cysteine with triangular silver nanoprisms. Chin. Chem. Lett.,2009,20,611-614.
    [180]He, X., Liu, H., Li, Y., Wang, S., Li, Y., Wang, N., Xiao, J., Xu, X., Zhu, D. Gold nanoparticle-based fluorometric and colorimetric sensing of copper(Ⅱ) ions. Adv. Mater.,2005,17,2811-2815.
    [181]Huang, C. C., Chang, H. T. Selective gold-nanoparticle-based "turn-on" fluorescent sensors for detection of mercury(Ⅱ) in aqueous solution. Anal. Chem.,2006,78,8332-8338.
    [182]Shang, L., Qin, C., Wang, T., Wang, M., Wang, L., Dong, S. Fluorescent conjugated polymer-stabilized gold nanoparticles for sensitive and selective detection of cysteine. J. Phys. Chem. C,2007,111,13414-13417.
    [183]Georganopoulou, D. G., Chang, L., Nam, J. M., Thaxton, C. S., Mufson, E. J., Klein, W. L., Mirkin, C. A. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for alzheimer's disease. Proc. Natl. Acad. Sci. USA,2005,102,2273-2276.
    [184]Jennings, T. L., Schlatterer, J. C., Singh, M. P., Greenbaum, N. L., Strouse, G. F. NSET molecular beacon analysis of hammerhead RNA substrate binding and catalysis. Nano Lett.,2006,6,1318-1324.
    [185]Oh, E., Lee, D., Kim, Y. P., Cha, S. Y., Oh, D. B., Kang, H. A., Kim, J., Kim, H. S. Nanoparticle-based energy transfer for rapid and simple detection of protein glycosylation. Angew. Chem. Int. Ed.,2006,45,7959-7963.
    [186]Griffin, J., Ray, P. C. Gold nanoparticle based NSET for monitoring Mg2+ dependent RNA folding. J. Phys. Chem. B,2008,112,11198-11201.
    [187]Mazumdar, D., Liu, J., Lu, G., Zhou, J., Lu, Y. Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle-DNAzyme conjugates. Chem Commun (Camb),2010,46,1416-1418.
    [188]Liu, J., Lu, Y. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J. Am. Chem. Soc, 2004,126,12298-12305.
    [189]Lan, T., Furuya, K., Lu, Y. A highly selective lead sensor based on a classic lead DNAzyme. Chem Commun (Camb),2010,46,3896-3898.
    [190]Liu, C. W., Huang, C. C., Chang, H. T. Highly selective DNA-based sensor for lead(Ⅱ) and mercury(Ⅱ) ions. Anal. Chem.,2009,81,2383-2387.
    [191]Chen, S. J., Chang, H. T. Nile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation. Anal. Chem., 2004,76,3727-3734.
    [192]Nagatoishi, S., Nojima, T., Galezowska, E., Juskowiak, B., Takenaka, S. G-quadruplex-based FRET probes with the thrombin-binding aptamer (TBA) sequence designed for the efficient fluorometric detection of the potassium ion. Chem. BioChem,2006,7,1730-1737.
    [193]Nagatoishi, S., Nojima, T., Juskowiak, B., Takenaka, S. A pyrene-labeled G-quadruplex oligonucleotide as a fluorescent probe for potassium ion detection in biological applications. Angew. Chem. Int. Ed.,2005,44,5067-5070.
    [194]A.Willets, K., Duyne, R. P. V. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem.,2007,58,267-297.
    [195]Patapoff, T. W., Tani, T. H., Cromwell, M. E. A low-volume, short-path length dynamic light scattering sample cell for highly turbid suspensions. Anal Biochem,1999,270,338-340.
    [196]Le Cerf, D., Simon, S., Argillier, J. F., Picton, L. Contribution of flow field flow fractionation with on line static and dynamic light scattering to the study of hydrosoluble polyelectrolyte complexes. Anal Chim Acta,2007,604,2-8.
    [197]Bauer, R., Muller, A., Richter, M., Schneider, K., Frey, J., Engelhardt, W. Influence of heavy metal ions on antibodies and immune complexes investigated by dynamic light scattering and enzyme-linked immunosorbent assay. Biochim Biophys Acta,1997,1334,98-108.
    [198]Bloomfield, V. A. Static and dynamic light scattering from aggregating particles. Biopolymers,2000,54,168-172.
    [199]Ahrer, K., Buchacher, A., Iberer, G., Josic, D., Jungbauer, A. Analysis of aggregates of human immunoglobulin g using size-exclusion chromatography, static and dynamic light scattering. J Chromatogr A,2003,1009,89-96.
    [200]Baldwin, E. T., Crumley, K. V., Carter, C. W. Practical, rapid screening of protein crystallization conditions by dynamic light scattering. Biophys J,1986, 49,47-48.
    [201]Kadima, W., McPherson, A., Dunn, M. F., Jurnak, F. A. Characterization of precrystallization aggregation of canavalin by dynamic light scattering. Biophys J,1990,57,125-132.
    [202]Lee, W. I., Schurr, J. M. Dynamic light scattering studies of poly-L-lysine HBr in the presence of added salt. Biopolymers,1974,13,903-8.
    [203]Moradian-Oldak, J., Leung, W., Fincham, A. G. Temperature and pH-dependent supramolecular self-assembly of amelogenin molecules:A dynamic light-scattering analysis. J Struct Biol,1998,122,320-327.
    [204]Sas, K. N., Haldrup, A., Hemmingsen, L., Danielsen, E., Ogendal, L. H. PH-dependent structural change of reduced spinach plastocyanin studied by perturbed angular correlation of gamma-rays and dynamic light scattering. J Biol Inorg Chem,2006,11,409-418.
    [205]Gallagher, W. H., Woodward, C. K. The concentration dependence of the diffusion coefficient for bovine pancreatic trypsin inhibitor:A dynamic light scattering study of a small protein. Biopolymers,1989,28,2001-2024.
    [206]Liu, X., Huo, Q. A washing-free and amplification-free one-step homogeneous assay for protein detection using gold nanoparticle probes and dynamic light scattering. J. Immunol. Methods,2009,349,38-44.
    [207]Jans, H., Liu, X., Austin, L., Maes, G., Huo, Q. Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Anal. Chem.,2009,81,9425-9432.
    [208]Liu, X., Dai, Q., Austin, L., Coutts, J., Knowles, G., Zou, J., Chen, H., Huo, Q. A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc,2008,130,2780-2782.
    [209]Dai, Q., Liu, X., Coutts, J., Austin, L., Huo, Q. A one-step highly sensitive method for DNA detection using dynamic light scattering. J. Am. Chem. Soc, 2008,130,8138-8139.
    [210]Pasternack, R. F., Collings, P. J. Resonance light scattering:A new technique for studying chromophore aggregation. Science,1995,269,935-939.
    [211]Langford, N., Ferner, R. Toxicity of mercury. J. Hum. Hypertens.,1999,13, 651-656.
    [212]Sweet, L. I., Zelikoff, J. T. Toxicity and immunotoxicology of mercury:A comparative review in fish and humans. J. Toxicol. Env. Health(Part B) 2001,4, 161-205
    [213]Harris, H. H., Pickering, I. J., George, G. N. The chemical form of mercury in fish. Science,2003,301,1203.
    [214]Shunmugam, R., Gabriel, G. J., Smith, C. E., Aamer, K. A., Tew, G. N. A highly selective colorimetric aqueous sensor for mercury. Chem. Eur. J.,2008, 14,3904-3907.
    [215]Yang, Y. K., Yook, K. J., Tae, J. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media J. Am. Chem. Soc.,2005,127,16760-16761.
    [216]Li, D., Wieckowska, A., Willner, I. Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew. Chem. Int. Ed.,2008,47,3927-3931.
    [217]He, S., Li, D., Zhu, C., Song, S., Wang, L., Long, Y., Fan, C. Design of a gold nanoprobe for rapid and portable mercury detection with the naked eyes. Chem. Commun.,2008,4885-4887.
    [218]Kim, Y., Johnson, R. C., Hupp, J. T. Gold nanoparticle-based sensing of "spectroscopically silent" heavy metal ions. Nano Lett.,2001,1,165-167.
    [219]Nolan, E. M., Lippard, S. J. A "turn-on" fluorescent sensor for the selective detection of mercuric ion in aqueous media J. Am. Chem. Soc.,2003,125, 14270-14271.
    [220]Yoon, S., Albers, A. E., Wong, A. P., Chang, C. J. Screening mercury levels in fish with a selective fluorescent chemosensor. J. Am. Chem. Soc.,2005,127, 16030-16031.
    [221]Xia, Y. S., Zhu, C. Q. Use of surface-modified cdte quantum dots as fluorescent probes in sensing mercury (Ⅱ). Talanta,2008,75,215-221.
    [222]Li, J., He, F., Jiang, C. Q. Highly sensitive spectrofluorometric determination of trace amounts of mercury with a new fluorescent reagent,2-hydroxy-L-naphthaldehydene-8-aminoquinoline. Anal. Sci.,2006,22,607-611.
    [223]Jena, B. K., Raj, C. R. Gold nanoelectrode ensembles for the simultaneous electrochemical detection of ultratrace arsenic, mercury, and copper. Anal. Chem.,2008,80,4836-4844.
    [224]Cesarino, I., Marino, G., Matos, J. d. R., Cavalheiro, E. T. G. Evaluation of a carbon paste electrode modified with organofunctionalised SBA-15 nanostructured silica in the simultaneous determination of divalent lead, copper and mercury ions. Talanta,2008,75,15-21.
    [225]Ye, G. R., Chai, Y. Q., Yuan, R., Dai, J. Y. A mercury(Ⅱ) ion-selective electrode based on N,N-dimethylformamide-salicylacylhydrazone as a neutral carrier. Anal. Sci.,2006,22,579-582.
    [226]Jackson, B., Taylor, V., Baker, R. A., Miller, E. Low-level mercury speciation in freshwaters by isotope dilution GC-ICP-MS. Environ. Sci. Technol.,2009, 43,2463-2469.
    [227]O'Driscoll, N. J., Evans, R. D. Analysis of methyl mercury binding to freshwater humic and fulvic acids by gel permeation chromatography/hydride generation ICP-MS. Environ. Sci. Technol.,2000,34,4039-4043.
    [228]Liu, C. W., Huang, C. C, Chang, H. T. Control over surface DNA density on gold nanoparticles allows selective and sensitive detection of mercury(Ⅱ). Langmuir,2008,24,8346-8350.
    [229]Zhao, H. W., Huang, C. Z., Li, Y. F. Immunoassay by detecting enhanced resonance light scattering signals of immunocomplex using a common spectrofluorometer. Talanta,2006,70,609-614.
    [230]Long, Y. F., Huang, C. Z., Li, Y. F. Hybridization detection of DNA by measuring organic small molecule amplified resonance light scattering signals. J. Phys. Chem. B,2007,111,4535-4538.
    [231]Pecora, R. Dynamic light scattering measurement of nanometer particles in liquids. J. Nanoparticle Res.,2000,2,123-131.
    [232]Reese, C. E., Baltusavich, M. E., Keim, J. P., Asher, S. A. Development of an intelligent polymerized crystalline colloidal array colorimetric reagent. Anal. Chem.,2001,73,5038-5042.
    [233]He, Q., Miller, E. W., Wong, A. P., Chang, C. J. A selective fluorescent sensor for detecting lead in living cells. J. Am. Chem. Soc.,2006,128,9316-9317.
    [234]Kwon, J. Y., Jang, Y. J., Lee, Y. J., Kim, K. M., Seo, M. S., Nam, W., Yoon, J. A highly selective fluorescent chemosensor for Pb2+. J. Am. Chem. Soc,2005, 127,10107-10111.
    [235]Mohamed Ali, E., Zheng, Y., Yu, H. H., Ying, J. Y. Ultrasensitive Pb2+ detection by glutathione-capped quantum dots. Anal. Chem.,2007,79,9452-9458.
    [236]Li, T., Wang, E., Dong, S. Potassium-lead-switched G-quadruplexes:A new class of DNA logic gates. J. Am. Chem. Soc,2009,131,15082-15083.
    [237]Liu, J., Lu, Y. Optimization of a Pb2+-directed gold nanoparticle/DNAzyme assembly and its application as a colorimetric biosensor for Pb2+. Chem. Mater. 2004,16,3231-3238.
    [238]Shen, L., Chen, Z., Li, Y., He, S., Xie, S., Xu, X., Liang, Z., Meng, X., Li, Q., Zhu, Z., Li, M., Le, X. C., Shao, Y. Electrochemical DNAzyme sensor for lead based on amplification of DNA-Au bio-bar codes. Anal. Chem.,2008,80, 6323-6328.
    [239]Chai, F., Wang, C., Wang, T., Li, L., Su, Z. Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl Mater Interfaces, 2010,2,1466-1470.
    [240]Si, S., Raula, M., Paira, T. K., Mandal, T. K. Reversible self-assembly of carboxylated peptide-functionalized gold nanoparticles driven by metal-ion coordination. ChemPhysChem,2008,9,1578-1584.
    [241]Deo, S., Godwin, H. A. A selective, ratiometric fluorescent sensor for Pb2+. J. Am. Chem. Soc,1999,122,174-175.
    [242]Chen, P., Greenberg, B., Taghavi, S., Romano, C., van der Lelie, D., He, C. An exceptionally selective lead(Ⅱ)-regulatory protein from ralstonia metallidurans: Development of a fluorescent lead(Ⅱ) probe. Angew. Chem. Int. Ed.,2005,44, 2715-2719.
    [243]Li, H., Zheng, Q., Han, C. Click synthesis of podand triazole-linked gold nanoparticles as highly selective and sensitive colorimetric probes for lead(Ⅱ) ions. Analyst,2010,135,1360-1364.
    [244]Chen, Y. Y., Chang, H. T., Shiang, Y. C., Hung, Y. L., Chiang, C. K., Huang, C. C. Colorimetric assay for lead ions based on the leaching of gold nanoparticles. Anal. Chem.,2009,81,9433-9439.
    [245]Ji, X., Song, X., Li, J., Bai, Y., Yang, W., Peng, X. Size control of gold nanocrystals in citrate reduction:The third role of citrate. J. Am. Chem. Soc., 2007,129,13939-13948.
    [246]Giannakopoulos, E., Stathi, P., Dimos, K., Gournis, D., Sanakis, Y., Deligiannakis, Y. Adsorption and radical stabilization of humic-acid analogues and Pb2+ on restricted phyllomorphous clay. Langmuir,2006,22,6863-6873.
    [247]Yoosaf, K., Ipe, B. I., Suresh, C. H., Thomas, K. G. In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. J. Phys. Chem. C,2007,111,12839-12847.
    [248]Esteban-Gomez, D., Platas-Iglesias, C., Enriquez-Perez, T., Avecilla, F., de Blas, A., Rodriguez-Blas, T. Lone-pair activity in lead(Ⅱ) complexes with unsymmetrical lariat ethers. Inorg Chem,2006,45,5407-5416.
    [249]Kotch, F. W., Fettinger, J. C., Davis, J. T. A lead-filled G-quadruplex:Insight into the G-quartet's selectivity for Pb2+ over K+. Org. Lett.,2000,2,3277-3280.
    [250]Giannakopoulos, E., Christoforidis, K. C., Tsipis, A., Jerzykiewicz, M., Deligiannakis, Y. Influence of Pb(Ⅱ) on the radical properties of humic substances and model compounds. JPhys Chem A,2005,109,2223-2232.
    [251]Christl, I., Metzger, A., Heidmann, I., Kretzschmar, R. Effect of humic and fulvic acid concentrations and ionic strength on copper and lead binding. Environ. Sci. Technol,2005,39,5319-26.
    [252]Lee, S., Cha, E. J., Park, K., Lee, S. Y., Hong, J. K., Sun, I. C., Kim, S. Y., Choi, K., Kwon, I. C., Kim, K., Ahn, C. H. A near-infrared-fluorescence-quenched gold-nanoparticle imaging probe for in vivo drug screening and protease activity determination. Angew Chem Int Ed Engl,2008,47, 2804-2807.
    [253]Seferos, D. S., Giljohann, D. A., Hill, H. D., Prigodich, A. E., Mirkin, C. A. Nano-flares:Probes for transfection and mRNA detection in living cells. J Am Chem Soc,2007,129,15477-15479.
    [254]Rosi, N. L., Giljohann, D. A., Thaxton, C. S., Lytton-Jean, A. K., Han, M. S., Mirkin, C. A. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science,2006,312,1027-1030.
    [255]Huang, C. C., Chiang, C. K., Lin, Z. H., Lee, K. H., Chang, H. T. Bioconjugated gold nanodots and nanoparticles for protein assays based on photoluminescence quenching. Anal. Chem.,2008,80,1497-1504.
    [256]Fu, Y., Zhang, J., Lakowicz, J. R. Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods. J Am Chem Soc,2010,132, 5540-5541.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700