用户名: 密码: 验证码:
WC-Al_2O_3纳米复合粉末制备及烧结技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬质合金因其具有高硬度、高强度、高弹性模量、低热膨胀系数等优点,在切削刀具、开采工具、石油与地质矿山勘探、耐磨零件和精密模具等领域有着举足轻重的作用。WC-Co硬质合金是该领域产品的主体,其中WC作为硬质相是材料高硬度的保证,金属Co是材料韧性的保证。但Co是稀有昂贵、不可再生的战略性资源,且由于其优良的物理、化学和力学性能,在陶瓷、食品添加剂、催化剂、电池、电子部件等方面的需求量也迅速增加。另一方面,由于Co熔点低、化学活性高,高温时易软化、易与其他元素发生反应扩散等,硬质合金硬度和耐蚀性会受到影响。因此,研制兼具高硬度和高韧性、原料易得的新型WC基硬质合金,以代替WC-Co,具有必要性和紧迫性。
     本文中,以Al2O3作为Co的替代材料,从粉末制备和热压烧结两个方面开展制备WC-Al2O3复合材料的研究工作。研制过程中,系统设计了复合粉末的配方和热压烧结工艺,对复合粉末在球磨过程中的物相变化、球磨后纳米复合粉末的热力学、热压烧结过程中物相变化、烧结制度及增韧机理、添加剂MgO和CeO2对烧结试样的影响和二阶段热压烧结制度进行了深入的探讨,主要研究结果如下:
     1.以WC和无定形态Al2O3为原料,利用机械合金化法和普通热压烧结法制备WC-Al2O3复合材料(WA1);通过物相分析研究球磨和热压烧结过程中Al2O3的相变,通过微观组织观察和力学性能测试,研究热压烧结工艺和Al2O3含量对复合材料的影响,并探讨其增韧机理。研究结果表明:球磨过程中,复合粉末不断细化,无定形态Al2O3未发生相变;在烧结过程中,A1203发生了相变,当烧结温度为961℃时,无定形态Al2O3和过渡形态Al2O3转化为γ-Al2O3,当烧结温度为1100℃时,完全转化为α-Al2O3; WC-40vol.%Al2O3复合粉末在烧结温度为1540℃,保温时间为90min,压力为39.6MPa的热压烧结条件下获得的综合力学性能最好,其致密度可达97.98%,维氏硬度为18.65GPa,断裂韧性为10.43MPa·m1/2,抗弯强度为756.34MPa; WC-Al2O3复合材料中增韧机理主要为第二相颗粒增韧机理、基体WC和第二相Al2O3颗粒热膨胀系数失配产生的残余应力增韧机理和Al2O3相变增韧机理;这些机理综合作用使裂纹搭桥、偏转,二次裂纹和侧生裂纹增多,从而提高复合材料的韧性。
     2.以WC和α-Al2O3为原料,以3:2体积比的配方,在烧结温度为1540℃,保温时间为90min,压力为39.6MPa的热压烧结条件下制备WC-40vol.%α-Al2O3复合材料(WA2);对比分析以不同种类Al2O3为原料制备的WC-Al2O3复合材料的微观组织和力学性能,探讨Al2O3相变对复合材料力学性能的影响及其增韧作用。研究结果表明:WC-40vol.%α-Al2O3复合材料致密度为98.38%,维氏硬度为16.55GPa,断裂韧性为8.52MPa·m1/2,抗弯强度为881.35MPa。WA1中AlOOH相变产生的少许水残留在试样中形成孔隙,是WA1致密度和抗弯强度较WA2低的原因;γ-Al2O3向α-Al2O3的相变消耗系统能量,从而减少WC氧化脱碳的能量,是WA1中脆性相W2C的形成被抑制的原因;γ-Al2O3向α-Al2O3的相变过程有24vol.%的体积缩小,从而获得较小的Al2O3颗粒,是WA1微观组织的细化、维氏硬度和断裂韧性较WA2高的原因;
     3.为提高WA1和WA2复合材料的力学性能,研究添加剂MgO和稀土氧化物CeO2对复合材料微观组织和力学性能的影响及其机理。研究结果表明:添加MgO和CeO2未能提高WA1复合材料的力学性能;而对于WA2复合材料,分别添加MgO和CeO2时,最佳含量均为0.1wt.%,二者均可起到提高复合材料的致密度、抑制晶粒长大、改善颗粒之间的结合状态的作用;另外,活泼的稀土元素吸附复合粉末中的杂质氧,有效抑制WC的脱碳;CeO2在烧结过程中被还原成Ce2O3,并与Al2O3形成新的化合物,提高复合材料的结合强度。当同时添加0.05wt.%MgO和0.05wt.%CeO2时,WA2复合材料的综合性能达到最佳,致密度为99.04%TD,维氏硬度为18.18GPa,断裂韧性为10.14MPa·m1/2,抗弯强度为1155.38MPa。
     4.依据WC-40vol.%α-Al2O3复合材料致密化速率和晶粒长大速率的变化情况,设计合理的二阶段热压烧结工艺;考察各工艺对试样微观组织和力学性能的影响并确定最佳烧结制度,探讨二阶段热压烧结对复合材料性能影响的机理。研究二阶段热压烧结法和添加剂MgO、CeO2共同作用对WC-40vol.%α-Al2O3复合材料组织和力学性能的影响。研究结果表明:TSS4烧结制度下(T1=1600℃,T2=1450℃,t2=6h)制备的WC-40vol.%α-Al2O3烧结试样的力学性能优于普通热压烧结制度CS1下(1540℃保温90min)所得烧结试样的力学性能。在TSS4和添加剂MgO、CeO2的共同作用下,WC-40vol.%α-Al2O3复合材料力学性能进一步提高,其致密度为99.42%TD,晶粒尺寸为2.921μm,维氏硬度为19.22GPa,断裂韧性为11.21MP·m1/2,抗弯强度为1236.78MPa,与热压烧结法制备的WC-Co硬质合金的力学性能相当。
     5.研究以WC和无定形态Al2O3为原料的WC-40vol.%Al2O3复合材料的二阶段热压烧结工艺,探讨Al2O3相变和二阶段烧结技术对复合材料微观组织和力学性能的影响。研究结果表明:Al2O3的相变在第一阶段烧结后即已完成,则该材料第二阶段烧结开始时,起始颗粒尺寸较小,有利于获得匀细的微观组织;以WC和无定形态Al2O3为原料的WC-40vol.%Al2O3复合材料的最佳二阶段热压烧结工艺为TSS4(T1=1600℃,T2=1450℃,t2=6h);在TSS4制度下制备试样的力学性能与CS1制度下制备试样的力学性能相比,致密度从97.98%TD增加至99%TD,WC晶粒尺寸从2.79gm减小至2.38gm,维氏硬度从18.65GPa提高至19.71GPa,断裂韧性从10.43MPa·m1/2提高至12MPa·m1/2,抗弯强度从881.35MPa提高至1285.08MPa。
     本文中,作者率先采用无定形Al2O3和α-Al2O3代替Co,通过高能球磨、普通热压烧结法和二阶段热压烧结法制备新型WC-Al2O3复合材料,利用现代测试技术,对复合材料球磨和烧结过程中物相、热力学、微观结构和力学性能的变化进行表征,探讨复合材料致密化和增韧机理,及添加剂对复合材料的微观组织和力学性能的影响,为WC-Al2O3复合材料的进一步研究和应用奠定了坚实的基础。
Cemented carbide with superior hardness and strength, high elastic modulus and low thermal expansion coefficient, has been playing an important part in the areas of cutting tools, drilling and mining equipments, wear resistance parts and precision molds. Among hard alloys, WC-Co composites find the widest applications; The WC element is the assurance of high hardness, and the Co element is the guarantee of its fracture toughness. However, Co is rare, expensive and non-renewable strategic resource. Meanwhile, due to its excellent physical, chemical and mechanical properties, the demand of Co in ceramics, food additive, catalyst, batteries, electronic components and other aspects is increasing rapidly. Moreover, because of the low melting point and high chemical activity of Co, it will be soften and react with other elements easily, deteriorating the hardness and corrosion resistance of WC-Co composite. Therefore, it is of great significance and urgency to consolidate new WC matrix composite with cheap raw materials but high hardness and strength to instead of the WC-Co composite.
     In this paper, Al2O3was chose as the substitute of Co, and WC-Al2O3composite had been consolidated through high energy ball milling and the following hot pressing. The content ratio of elements and the hot pressing parameters were systematically analyzed, the phase transformation of Al2O3during ball milling and hot pressing process, the thermodynamic of as milled powders, the hot pressing schedules and the toughening mechanisms had been investigated in details. Some significant original results are as follows:
     Firstly, WC-Al2O3composites (WA1) were prepared by high energy ball milling and the following hot pressing. The tungsten carbide (WC) and commercial alumina (Al2O3) powders composed of amorphous Al2O3, boehmite (AlOOH) and χ-Al2O3were used as the starting materials. XRD was used to analyze the phase transformation during the ball milling and hot pressing process. The optimum hot pressing schedule, optimum content of Al2O3and the toughening mechanisms were clarified according to the investigation of microstructure and mechanical properties of the hot pressed bulk samples. The results showed that the powder size decreased and there was no phase transformation during the ball milling process, while during the hot pressing process, the amorphous and transitional Al2O3transformed to γ-Al2O3at961℃, and completely to α-Al2O3at1100℃. The WA1composites combined a relative density of97.98%and an excellent Vickers hardness of18.65GPa with an acceptable fracture toughness of10.43MPa-m1/2when hot pressed at1540℃for90min with a pressure of39.6MPa The second phase toughening mechanism, residual stress toughening mechanism and phase transformation of Al2O3were main toughening mechanisms in WA1composites. The crack bridging, crack deflection and the generation of secondary crack and lateral crack were the main reasons for the high fracture toughness and strength of WA1composites.
     Secondly, WC-40vol.%α-Al2O3composites (WA2) were hot pressed at1540℃for90min under the pressure of39.6MPa. The toughening effects of phase transformation of Al2O3were investigated by comparison of microstructure and mechanical properties of WAI and WA2. The results showed that a relative density of98.38%and a maximum hardness of16.55GPa, combining a fracture toughness of8.52MPa-m1/2with an improved flexural strength of881.35MPa were obtained for the WA2composites. The relative density and the flexure strength of WA2were higher than that of WA1due to the residual pores induced by the water generated during the phase transformation of Al2O3in WA1; The decarburization of WC in WA1was suppressed may be attributed to the lowered energy provided for it, because many of the system energy was consumed by the phase transformation of Al2O3. The refined microstructure and higher hardness and fracture toughness were due to the decreased volume of Al2O3particles during the phase transformation.
     Thirdly, to improve the mechanical properties of WA1and WA2, influence of MgO and CeO2additives on the microstructure and mechanical properties, and the mechanisms were investigated. The results showed that adding MgO and CeO2to WA1composite did not improve its mechanical properties; while for the WA2composite, when the MgO and CeO2were added separately, the optimum content was0.1wt.%, they could promote the microstructural refinement and improve the interface coherence of the WC matrix and Al2O3leading to the enhancement of the mechanical properties. Trace MgO mainly acted as an effective grain growth inhibitor for the WC-Al2O3composites and trace CeO2could suppress the decarburization of WC as well due to the unique properties of rare earth elements such as high surface activity and large ionic radius. The synergistic effect of0.05wt.%MgO and0.05wt.%CeO2added in WC-40vol.%α-Al2O3composites resulted in the achievement of a relative density of99.04%with an excellent Vickers hardness of18.18GPa, combining a fracture toughness of10.14MPa-m1/2with an acceptable flexural strength of1158.38MPa.
     Fourthly, two step sintering (TSS) regimes were designed according to the densification rate and the grain growth rate of WC-40vol.%α-Al2O3composite. Microstructure and mechanical properties of WC-40voI.%α-Al2O3samples under each regime with different T1,, T2and t2were compared and analyzed to obtain the optimum TSS regime, the densification and toughening mechanisms of the composites under TSS regimes were discussed. Then WC-40vol.%α-Al2O3-0.05wt.%MgO-0.05wt.%CeO2powders were hot pressed under the optimum TSS regime to investigate the synergistic effect of additives and TSS regime. The results showed that the mechanical properties of samples under TSS4regime (T1=1600℃, T2=1450℃for6h) were improved compared with samples consolidated under CS1regime (1540℃for90min). WC-40vol.%α-Al2O3-0.05wt.%MgO-0.05wt.%CeO2powders hot pressed under TSS4regime achieved a relative density of99.42%TD with a grain size of2.92μm, combining an excellent Vickers hardness of19.22GPa, a fracture toughness of11.21MPa-m1/2with an acceptable flexural strength of1236.78MPa. The flexural strength was comparable with that of the WC-(3-8)wt.%Co cemented hard alloys (1150-1650MPa).
     Fifthly, the optimum TSS regime of WC-40vol.%Al2O3composite with WC and amorphous Al2O3was investigated. Influence of Al2O3phase transformation and TSS regimes on the microstructure and mechanical properties of this WC-40vol.%Al2O3composite were illustrated. The results showed that Al2O3phase transformation had been completed when the sample was hot pressed under the first step sintering (1600℃for3min), resulting in the smaller particle size of Al2O3beneficial for the refined microstructure. When the as milled WC-40vol.%Al2O3powders were hot pressed under TSS4regime, a relative density of99%and a grain size of2.38μm were obtained, and an excellent Vickers hardness of19.71GPa was achieved, combining a fracture toughness of12MPa-m1/2with an acceptable flexural strength of1285.03MPa. Compared with the nearly full densified samples consolidated under CS1regime (1540℃for90min), the grain size decreased (2.79μm for the CS1sample), the Vickers hardness, fracture toughness and the flexural strength were all improved (18.65GPa,10.43MPa·m1/2,756.34MPa for the CS, sample) due to the refined microstructure and the transgranular fracture mode.
     In this paper, amorphous Al2O3and α-Al2O3were used as the substitute of Co. WC-Al2O3composites were consolidated through high energy ball milling, the following hot pressing and two step hot pressing. Modern analytical technologies were used respectively to investigate the phases, thermodynamics and microstructure of the samples. The densification and toughening effects, as well as the influence of additives were illustrated. This paper has made a solid foundation for the further investigation and application of WC-Al2O3composites.
引文
[1]黄培云.粉末冶金原理.北京:冶金工业出版社.1997.
    [2]贾佐诚,陈飞雄,吴诚.硬质合金新进展.粉末冶金工业.2010,20(3):52-57.
    [3]徐涛.硬质合金高端产品及新材料发展趋势分析.硬质合金.2011,28(6):395-402.
    [4]张辉,邓建新,李桂玉.晶粒尺寸对WC硬质合金刀具材料摩擦磨损性能的影响.工具技术.2010,44(6):9-12.
    [5]徐涛WC/Co纳米复合粉质量特性的研究.硬质合金.2011,28(4):219-227.
    [6]何焕华,蔡乔方.中国镍钴冶金.北京:冶金工业出版社,2000.
    [7]曹异生.世界钴工业现状及前景展望.矿产资源.2007,42:30-34.
    [8]钴业分会.国内外钴市场现状及展望.中国有色金属.2011,18:62-63.
    [9]徐爱东.钴为今用.中国金属通报.2010,40:14-16.
    [10]杨晓菲.从供求关系看未来钴价走势.中国金属通报.2012,30:23-25.
    [11]杨晓菲.钴:小幅下探市场低迷.中国金属通报.2010,32:32-33.
    [12]徐爱东,顾其德.钴价地位震荡需求稳中有增,世界有色金属.2011,8:58-61.
    [13]杨晓菲.低价进口引发钴价下滑.中国金属通报.2009,23:22-23.
    [14]Imasato S, Kei T, Tetsunori K, Shigeya S. Properties of ultra-fine grain binderless cemented carbide 'RCCFN'. Int. J. Refract. Met. Hard Mater.1995,13:305-312.
    [15]Kim H C, Shon I J, Yoon J K, Doh J M, Munir Z A. Rapid sintering of ultrafine WC-Ni cermets. Int. J. Refract. Met. Hard Mater.2006,24:427-431.
    [16]Fernandes C M, Popovich V, Matos M, Senos A M R, Vieira M T. Carbide phases formed in WC-M(M=Fe/Ni/Cr) systems. Ceram. Int.2009,35:369-372.
    [17]吝楠,吴冲浒,张端锋,江垚,贺跃辉.Cu部分代Co超细硬质合金研究.材料研究学报.2011,25(6):667-672.
    [18]Subramanian R, Schneibel J H. Intermetallic bonded WC-based cermets by pressureless melt infiltration. Intermetallics.1997,5:401-408.
    [19]Kim H C, Kim D K, Ko I Y, Shon I J. Sintering behavior and mechanical properties of binderless WC-TiC produced by pulsed current activated sintering. J. Ceram. Proc. Res. 2007,8(2):91-97.
    [20]Basu B, Lee J H, Kim D Y. Development of WC-ZrO2 nanocomposites by spark plasma sintering. J. Am. Ceram. Soc.2004,87(2):317-319.
    [21]张梅林.纳米复合粉体材料WC/MgO的合成工艺及烧结技术研究.上海:东华大学博士论文.2004.
    [22]El-Eskandarany M S. Fabrication and characterizations of new nanocomposite WC/Al2O3 materials by room temperature ball milling and subsequent consolidation. J. Alloys Compd. 2005,391:228-235.
    [23]Endo H, Ueki M. Hot-pressing and Pressureless Sintering of WC-Al2O3 Ceramic Composites. Trans. Mat. Res. Soc.1994,16B:819-822.
    [24]傅小明.纳米碳化钨的制备技术及研究现状.稀有金属与硬质合金.2011,39(1):57-60.
    [25]刘冬生,肖西卫,刘宝昌.纳米硬质合金及其在钻探工程中的应用前景.粉末冶金工业.2004,14(2):32-34.
    [26]柳林,李兵,丁星兆.硬质合金的制备.科学通报.1994,13(3):32-36.
    [27]吴成义,张丽英.一种纳米级钨粉及碳化钨粉的制备方法.中国专利:1608983.2005.04.27.
    [28]刘瑞,易丹青,李荐.纳米WC粉末的制备研究.材料科学与工程.2006,24(3):418-422.
    [29]Nersisyan H H, Won H I, Won C W. Study of the combustion synthesis process of nanostructured WC and WC-Co. Mater. Chen. Phys.2005,94(1):153-158.
    [30]Dae L J, Hwal L D, Kuk P N. The preparation of nanophase tungsten carbide with zeolitex catalysts. Appl. Phys.2006,6(6):1040-1043.
    [31]李会谦,林涛,罗骥.纳米钨粉的微波碳化.稀有金属.2006,30:54-56.
    [32]曾江华,袁定胜,刘应亮.碳化钨纳米晶合成及其电化学性能.催化学报.2008,29(7):607-611.
    [33]闫波,孙彦平,王俊文RF-PCVD法碳化钨纳米粉的制备.中国钨业.2006,21(4):38-40.
    [34]李艳,林晨光,曹瑞军.超细晶WC-Co硬质合金用纳米钴粉的研究现状与展望.稀有金属.2011,35(3):451-457.
    [35]羊建高,戴煜.硬质合金的发展趋势及特殊粉末的制备技术.稀有金属与硬质合金.2011,39(1):48-51.
    [36]吴成义,张丽英,林涛,汪莉.沉淀还原制备纳米钴粉的方.CN200510011 735.5.北京科技大学.2005.10.26.
    [37]喻克宁,毛铭华,梁焕珍Co(OH)2碱性浆化氢还原制备超细Co粉.过程工程学报. 2001,1(1):62-65.
    [38]Jiang S P, Chen Y Z. Reactive deposition of cobalt electrodes. J. Electrodhem Soc.1990,137 (11):3374-3380.
    [39]Chen J P, Lee K M, Sorensen C M. Magnetic properties of microemulsion synthesized cobalt fine particles. J. Appl. Phys.1994,75 (10):5876-5878.
    [40]W. J. Erasmus, S. E. Van. Some insights in the sonochemical preparation of cobalt nano-particles. Ultrason Sonochem.2007,14 (6):732-738.
    [41]Wu N Q, Fu L, Su M, Aslam M. Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett.2004,4 (2):383-386.
    [42]Figlarz M制备金属钴粉新工艺.有色冶炼.1987,7:21-25.
    [43]陈青林.我国钴粉的生产现状和技术进展.稀有金属与硬质合金.2001,(3):34-38.
    [44]谭兴龙,易茂中,罗崇玲.球形钴粉的制备及其在超细晶粒硬质合金中的应用.中国有色金属学报.2008,18(2):209-214.
    [45]范景莲,李志希,缪群,黄伯云,吴恩熙.超细/纳米硬质合金及晶粒长大抑制剂的研究.粉末冶金技术.2004,22(5):259-265.
    [46]刘舜尧,刘春友.纳米硬质合金开发与应用.矿业工程.2000,20(1):70-72.
    [47]刘冬生,肖西卫,刘宝昌.纳米硬质合金及其在钻探工程中的应用前景.粉末冶金工业.2004,14(2):32-34.
    [48]邬荫芳.“双高”超细硬质合金研制.硬质合金.2000,17(4):214-220.
    [49]张武装,刘咏,黄伯云.纳米晶WC-Co硬质合金的研究现状.材料导报.2007,21(2):79-82.
    [50]高勇,唐振方,黄景清,郑家概,凌育远,钟红海.纳米WC-Co复合材料制备及其烧结过程.硬质合金.2003,17(1):18-20.
    [51]朱丽慧,马学鸣,雷景轩,赵海锋.纳米硬质合金的研究进展.稀有金属材料与工程.2004,33(4):349-353.
    [52]王伟,栾道成,陈庚.超细硬质合金研究进展综述.西华大学学报(自然科学版).2009,28(4):100-104.
    [53]Fan J L, Huang B Y, Wang D L. Preparation technology of nanometer size refractory high density tungsten based alloy composite powders. Rare Metal Mater. Eng.2001,30(6): 401-405.
    [54]Zhou Y T, Manthiram A. Influence of processing parameters on the formation of WC-Co nanocomposite powder using a polymer as carbon source. Composite Part B.1996,27B(5): 407-413.
    [55]张武装,高海燕,黄伯云.纳米晶WC-Co复合粉末制备的研究.稀有金属材料与工程.2007,36(7):1253-1256.
    [56]蔡青山,马运柱,刘文胜.粉末近净成形技术研究现状.粉末冶金工业.2011,21(6):48-53.
    [57]曹勇家,钟海林,郝权,李小明,况春江,方玉诚.粉末冶金生产工艺的两大发展.粉末冶金工业.2011,21(1):45-53.
    [58]刘文胜,马运柱,黄伯云,汪登龙.粉末冶金新技术与新装备.矿冶工程.2007,27(5):57-66.
    [59]张立,黄伯云,吴恩熙.纳米WC-Co复合粉末的烧结特征.硬质合金.2001,18(2):65-68.
    [60]侯克忠,杨慧敏,白佳声,吴菊清.超细晶WC-Co硬质合金的发展及其应用.粉末冶金工业.2005,15(5):41-45.
    [61]李亚军,栾道成,王正云,左洪松,秦琴.硬质合金烧结方法的研究进展.工具技术.2012,45(12):3-6.
    [62]Sun J F, Zhang F M, Shen J. Characterizations of ball milled nanocrystalline WC-Co composite powders and subsequently rapid hot pressing sintered cermets. Mater. Letters. 2003,57(21):3140-3148.
    [63]刘瑞英,周琦,尚福军,刘铁,刘勇,黄伟,史文璐W-Ni-Cu钨合金微波烧结试验研究.兵器材料科学与工程.2012,35(4):40-42.
    [64]陈鼎,李林,陈振华.金属材料微波烧结的研究现状.机械工程材料.2012,36(7):7-10.
    [65]王存龙,李波,刘勇,史文璐,苏继红.微波技术在陶瓷与粉末冶金烧结中的应用.兵器材料科学与工程.33(6):2010,97-102.
    [66]杨亚杰,易健宏,鲍瑞,罗述东,陈刚.微波烧结制备WC-12Co硬质合金.粉末冶金材料科学与工程.2010,15(1):84-88.
    [67]杨俊逸,李小强,郭亮,陈维平,李元元.放电等离子烧结(SPS)技术与新材料研究.材料导报.2006,20(6):94-97.
    [68]赵志伟,郑红娟,刘颖,邹文俊,左宏森,关春龙.放电等离子烧结制备超细WC基硬质 合金.材料热处理学报.2010,31(8):40-45.
    [69]李志林,朱丽慧,刘一雄,Dave Siddle.压力对放电等离子烧结硬质合金性能的影响.粉末冶金工业.2009,19(1):16-19.
    [70]余文焘,欧阳鸿武,杨家林,陈欣,黄伯云.粉末选区激光烧结—一种新型粉末冶金成形技术.稀有金属.2006,30:80-83.
    [71]周文晓,王翔,崔瑞,梁建亮.粉末薄层选区激光烧结温度场数值模拟与实验研究.现代制造工程.2012,5:12-23.
    [72]邓朝晖,谢远铭,刘健宁.陶瓷粉末选择性激光烧结及聚合物纳米复合材料的研究现状及前景.现代制造工程.2006,6:139-142.
    [73]李晓贺,丰平.纳米复相陶瓷材料的烧结技术.中国陶瓷.2007,43(7):43-46.
    [74]李英雷,胡时胜,魏志刚,史洪刚,冯宏伟.大变形锻造钨合金动态力学性能研究.兵工学报.2003,24(3):378-380.
    [75]张凤林,王成勇,宋月贤.纳米块体材料烧结技术进展.硬质合金.2002,19(3):177-181.
    [76]黄伯云,易健宏.现代粉末冶金材料和技术发展现状(二).上海金属.29(4):2007,1-5.
    [77]Chen I W, Wang X H. Sintering dense nanocrystalline ceramics without final stage grain growth. Nature.2000,404:168-171.
    [78]Wang X H, Chen P L, Chen I W. Two-step sintering of ceramics with constant grain-size. I. Y2O3. J. Am. Ceram. Soc.2006,89:431-437.
    [79]Wang X H, Deng X Y, Bai H L, Zhou H, Qu W G, Li L T, Chen I W. Two-step sintering of ceramics with constant grain-size. Ⅱ. BaTiO3 and Ni—Cu-Zn ferrite. J. Am. Ceram. Soc.2006, 89:438-443.
    [80]Ma J, Zhu S G, Ouyang C X. Two step hot pressing sintering of nanocomposite WC-MgO compacts. J. Eur. Ceram. Soc.2011,31:1927-1935.
    [81]Lee Y I, Kim Y W, Mitomo M, Kim D Y. Fabrication of dense nanostructured silicon carbide ceramics through two-step sintering. J. Am. Ceram. Soc.2003,86:1803-1805.
    [82]Yang D Y, Yoon D Y, Kang Suk-Joong L. Suppression of abnormal grain growth in WC-Co via two step liquid phase sintering. J. Am. Ceram. Soc.2011,94(4):1019-1024.
    [83]黄新.优质粗晶WC粉末及合金的研制.重庆大学硕士论文,2004.
    [84]张辉,邓建新,李桂玉.晶粒尺寸对WC硬质合金刀具材料摩擦磨损性能的影响.2010,44(6):9-12.
    [85]李勇,谢淑华.WC粗晶硬质合金的研究进展.材料研究与应用.2009,3(2):77-80.
    [86]梅文强,刘志国,郭名亮,朱启伟,郭华彬.特粗WC颗粒的制备方法研究.金属功能材料.2012,19(4):25-29.
    [87]白英龙,吴冲浒,杨霞,徐猛,果世驹.粗细晶WC基体对WC-Co非均匀结构显微组织形成的影响.粉末冶金技术.2012,30(2):89-97.
    [88]邹序枚.粗晶生产工艺进展及其工艺原理探讨.硬质合金.1993,12(1):36-39.
    [89]彭少方.钨冶金学.北京:冶金工业出版社.1989.
    [90]James Marris粗晶铝热工艺揭示.国外难熔金属与硬质材料.1992,16(1):24-27.
    [91]李沐山.由钨矿石或钨精矿直接制取WC的新方法——气体喷射法.硬质合金.1989,4:45-49.
    [92]汪柞敬.焖氢还原工艺制取粗晶粒WC的试验.硬质合金.1992,11(4):12-15.
    [93]孙宝琦,陈一鸣.Li活化氧化物H2还原制取粗晶W粉过程探讨.第7次全国硬质合金学术会议论文集.1998,65-69.
    [94]占志泽,谢海根.添加剂活化法制取粗晶WC的探讨.第8次全国硬质合金学术会议论文集.2000,60-63.
    [95]Patterson B R, Bems S. Effect of particle size distribution of WC powder on sintered cemented. Birmingham:Alabama University,1990.
    [96]李玉玺,颜伟.特粗碳化钨粉的研制.中国科学院上海冶金研究所博士论文.2000.
    [97]陈颢,羊建高,王宝健,刘海浪.硬质合金刀具涂层技术现状及展望.硬质合金.2009,26(1):54-64.
    [98]祝昌军,陈康华,王社权,徐银超,谢灿强,陈响明.基体梯度结构对TiN涂层硬质合金抗氧化性能的影响.中南大学学报(自然科学版).2011,42(10):2984-2989.
    [99]刘海浪,羊建高,黄如愿.硬质合金涂层刀具进展研究.凿岩机械气动工具.2009,2:52-59.
    [100]周彤.刀具涂层技术的应用.机械工人.9:2002,22-25.
    [101]Peng Z J, Miao H Z, Wei P. Characterization of superhard ternary (Ti,Al)N coatings prepared by pulsed high energy density plasma. Key Eng. Mater.2004,264-268:609-612.
    [102]羊建高,王海兵,刘咏.用于涂层的梯度硬质合金基体的制备方法与梯度形成机理.粉末冶金技术.2003,21(5):295-298.
    [103]吕继磊,满卫东,陈朋,朱金凤,吴飞飞.硬质合金CVD金刚石涂层最新进展.硬质合 金.2011,28(5):321-331.
    [104]钟杰,郑勇,严永林,庞旭明.功能梯度硬质合金与金属陶瓷制备技术的研究进展.机械工程材料.2009,33(2):1-4.
    [105]郑虎春,周建华,蒋超,刘新儒,秦琳WC-Co梯度结构硬质合金研究进展.超硬材料工程.2012,24(2):14-18.
    [106]张武装,高海燕,刘咏.粘结相梯度结构硬质合金的研究现状.材料导报.2006,20(11):62-64.
    [107]储开宇.硬质合金产业在我国的发展现状与展望.煤矿机械.2011,32(1):13-16.
    [108]Colin C. Processing of functional-gradient WC-Co cermets by powder metallurgy. Int. J. Refract. Met. Hard Mater.1993,12:145-152.
    [109]Zhang Z F, Oladapo E. Liquid phase sintering of functionally graded WC-Co composites. Scr. Mater.2005,52:785-791.
    [110]张晓明,丰平,贺跃辉,赵玉玲.碳添加量对Ti(C,N)基金属陶瓷组织和性能的影响.硬质合金.2009,26(1):49-53.
    [111]Janisch D S, Garel M, Eder A, Lengauer W, Dreyer K, Van den Berg H. Sintering, characterisation, and analysis of functional gradient hardmetals. Int. J. Refract. Met. Hard Mater.2008,26:179-189.
    [112]张敬国,刘金炎,蒋显亮.碳化钨/钴热喷涂粉末和涂层的研究进展.功能材料.2005,36:332-339.
    [113]Suresh S, Mortensen A功能梯度材料基础-制备及热机械行为.李守新,译.北京:国防工业出版社,2000,12-69.
    [114]肖逸锋,贺跃辉,黄自谦,张丽娟.梯度结构硬质合金制备技术的研究进展.中国钨业.2005,20(3):31-36.
    [115]付卫军.稀土硬质合金实验应用分析.工程技术研究.2010,6:118.
    [116]陈颢,李惠琪,孙玉宗,李敏.稀土对等离子束表面冶金涂层抗裂性的影响.钢铁研究学报.2007,19(3):80-84.
    [117]熊继,沈保罗.混合稀土CeLa对WC-Ni硬质合金性能和显微结构的影响.工具技术.2003,37(6):18-20.
    [118]赵洪汐,熊继.稀土在铁基粉末冶金材料中的应用研究进展.稀土.2009,30(3):75-78.
    [119]宗霞,鲁玉祥.稀土硬质合金的发展现状.矿山机械.2010.38(22):1-6.
    [120]李海艳,刘宁.VC对WC-6.5%Co硬质合金组织和性能的影响.硬质合金.2009,26(4):206-211.
    [121]魏庆丰,孙景,李昌青.稀土添加剂在硬质合金中的应用研究.稀有金属与硬质合金.2002,30(2):33-36.
    [122]Ma J, Zhu S G, Di P, Zhang Y. Influence of La2O3 addition on hardness, flexural strength and microstructure of hot pressing sintered WC-MgO bulk composites. Mater. Des.2011,32: 2125-2129.
    [123]张祎,马俊,狄平,朱世根.La203对WC-MgO复合材料组织和力学性能的影响.中国有色金属学报.2010,20(10):1982-1988.
    [124]郭继伟,刘钦雷,荣守范,宋春梅.碳化钛系钢结硬质合金的研究现状.铸造设备与工艺.2010,1:48-54.
    [125]张焱,尤显卿,田四光,钟成山,丁峰.钢结硬质合金的发展现状.2008,23(1):12-15.
    [126]王鑫,吴一,龙飞,邹正光.TiC钢结硬质合金的研究进展.材料导报.2007,21(8):72-75.
    [127]冯思庆,张光胜,牛顿.烧结压力对粉末冶金铁基材料显微组织与性能的影响研究.现代制造工程.2011,3:62-65.
    [128]闫来成,卢广锋,孟令兵,金成海.粉末冶金高速钢的组织和性能研究.粉末冶金工业.2011,21(3):1-5.
    [129]Causton R J, John J F.一种新烧结硬化低合金钢使用性能的特点.粉末冶金工业.2010,20(6):5-10.
    [130]陈兆盈,陈蔚.碳化钛硬质合金.硬质合金.20(4):2003,197-199.
    [131]王丽利,李海艳,刘宁.添加TiC对WC-Co基硬质合金组织和力学性能的影响.热处理.2010,25(3):25-30.
    [132]李燕,刘宁.碳含量对(Ti,W)(C,N)-Co金属陶瓷的显微结构与力学性能的影响.材料工程.2008,3:44-48.
    [133]叶伟昌.钛基硬质合金概述.精密制造与自动化.2006,1:7-9.
    [134]张端锋,江垚,吝楠,吴冲浒,杜勇,贺跃辉WC-TiC-Ni硬质合金的制备与性能.粉末冶金材料科学与工程.2011,16(2):303-308.
    [135]王丽利,刘宁,李海艳,王兵.纳米TiN对WC-Co硬质合金组织和力学性能的影响.硬质合金.2010,27(2):71-77.
    [136]周建华.国内外新型复合硬质合金材料的发展动态.超硬材料工程.2009,21(2):33-39.
    [137]Machado I F, Girardini L, Lonardelli I, Molinari A. The study of ternary carbides formation during SPS consolidation process in the WC-Co-steel system. Int. J. Refract. Met. Hard Mater.2009,27(5):883-891.
    [138]Paul F, Becher, Plucknett K P. Properties of Ni3Al2 bonded titanium carbide ceramics. J. Eur. Ceram. Soc.1997,18:395-400.
    [139]Huang S G, Van der Biest O, Vleugels J. Pulsed electric current sintered Fe3Al bonded WC composites. Int. J. Refract. Met. Hard Mater.2009,27:1019-1023.
    [140]Huang S G, Vanmeensel K, Van der Biest O, Vleugels J. Binderless WC and WC-VC materials obtained by pulsed electric current sintering. Int. J. Refract. Met. Hard Mater. 2008,26:41-47.
    [141]黄康明,李伟信,饶平根,陈大博,吴建青.陶瓷增韧技术的研究进展.中国陶瓷.2007,43(11):6-9.
    [142]Yang F Z, Zhao J, Ai X. Effect of initial particulate and sintering temperature on mechanical properties and microstructure of WC-ZrO2-VC ceramic composites. Mater. Proc. Tech.2009, 209:4531-4536.
    [143]Basu B, Venkateswaran T, Sarkar D. Pressureless sintering and tribological properties of WC-ZrO2 composites. J. Eur. Ceram. Soc.2005,25:1603-1610.
    [144]Malek O, Lauwers B, Perez Y, Baets P D, Vleugels J. Processing of ultrafine ZrO2 toughened WC composites. J. Eur. Ceram. Soc.2009,29:3371-3378.
    [145]Kim H C, Park H K, Jeong I K, Ko I Y, Shon I J. Sintering of binderless WC-Mo2C hard materials by rapid sintering process. Ceram. Int.2008,34(6):1419-1423.
    [146]Yang F Z, Ai X, Zhao J. Preparation and Characterization of WC Matrix Nanocomposite Cermet. Mater. Sci.2009,628-629:459-464.
    [147]Wu C X, Zhu S G, Ma J, Zhang M L. Synthesis and formation mechanisms of nanocomposite WC-MgO powders by high-energy reactive milling. J. Alloys Compd.2009, 478:615-619.
    [148]Ma J, Zhu S G, Wu C X, Zhang M L. Application of back-propagation neural network technique to high-energy planetary ball milling process for synthesizing nanocomposite WC-MgO powders. Mater. Des.2009,30:2867-2874.
    [149]张祎.热压烧结制备WC-MgO-RE复合材料的研究.上海:东华大学硕士论文.2010.
    [150]李世普.特种陶瓷工艺学.武汉理工大学出版社.2004.
    [1]黄培云.粉末冶金原理.第2版.冶金工业出版社.北京.1997.
    [2]陈振华,陈鼎.机械合金化与固液反应球磨.化学工业出版社.北京.2005.
    [3]朱练平,夏光华.碳化硅粉体的氧化动力学行为.中国陶瓷工业.2002,9(6):30-32.
    [4]景悦林,陈沙鸥,李达,邵渭泉,张永成,栾伟娜.相变和晶粒尺寸对二氧化钛陶瓷无压烧结行为的影响.青岛大学学报.2006,19(4):17-21.
    [5]Suryananrayana C. Mechanical alloying and milling. Progress in Mater. Sci.2001,46:1-184.
    [6]陈思忠.超声波清洗技术与进展.洗净技术.2004,2(2):7-12.
    [7]唐元洪,裴立宅,赵新奇.纳米材料导论.湖南大学出版社.长沙.2010.
    [8]张文阁,刘俊杰.激光粒度分析仪校准方法及校准结果不确定度分析.中国粉体技术.2008,14:129-132.
    [9]刘振海,徐国华,张洪林.热分析仪器.化学工业出版社.北京.2005.
    [10]Shetty D K, Wright I G, Mincer P N, Clauer A H. Indentation fracture of WC-Co cermets. J. Mater. Sci.1985,20:1873-1882.
    [11]Vinayo M E, Kassabji F, Guyonnet J, Fauchais P. Plasma sprayed WC-Co coatings:Influence of spray conditions (atmospheric and low pressure plasma spraying) on the crystal structure, porosity, and hardness. J. Vac. Sci. Technol. A 1985,3(6):2483-2489.
    [12]Cha S I, Hong S H. Microstructures of binderless tungsten carbides sintered by spark plasma sintering process. Mater. Sci. Eng. A 2003,356:381-389.
    [13]Taimatsu H, Sugiyama S, Kodaira Y. Synthesis of W2C by reactive hot pressing and its mechanical properties. Mater. Trans.2008,49:1256-1261.
    [14]胡赓祥,蔡殉,戎咏华.材料科学基础.第二版.上海交大出版社.上海.2006.
    [15]Holleck H. Material Selection for hard coatings. J Vac. Sci. A.1986,4(6):2661-2669.
    [16]张玉军,张伟儒.结构陶瓷材料及其应用.北京:化学工业出版社,2005.C
    [17]穆柏春.陶瓷材料的强韧化.北京:冶金工业出版社.2002.
    [18]Selsing J. Internal stress in ceramics. J. Am. Ceram. Soc.1961,71(8):419-421.
    [19]Huang Y, Wang C A. Multiphase composite ceramics with high performance. Publisher of Tsinghua University.2008
    [20]Huang S G, Vanmeensel K, Van der Biest O, Vleugels J. Pulsed electric current sintering and characterization of ultrafine Al2O3-WC composites. Mater. Sci. Eng. A 2010,527:584-589.
    [21]张金升,张银燕,王美婷,许凤秀.陶瓷材料显微结构与性能·化学工业出版社.北京.2007.
    [22]Badkar P A, Bailey J E. The mechanism of simultaneous sintering and phase transformation in alumina. J. Mater. Sci.1976,11:1794-1806.
    [23]Legros C, Carry C, Bowen P, Hofmann H. Sintering of a transition Alumina:Effects of phase transformation, powder characteristic and thermal cycle. J. Eur. Ceram. Soc.1999,19: 1967-1978.
    [24]Kaya C, He J Y, Gu X, Butler E G. Nanostructure ceramic powders by hydrothermal synthesis and their applications. Microporous Mesoporous Mat.2002,54:37-49.
    [25]Smith W F, Foundations of Materials Science and Engineering.4th ed. China Machine Press. Beijing.2005.
    [26]Suzuki S, Fabrication of hard metal, Proceedings of the First Symposium on Spark Plasma Sintering, Sendai, Japan,1996.
    [27]Ma J, Zhu S G, Di P, Zhang Y, Influence of La2O3 addition on hardness, flexural strength and microstructure of hot-pressing sintered WC-MgO bulk composites. Mater. Des.2011,32: 2125-2129.
    [28]Basu B, Venkateswaran T, Sarkar D. Pressureless sintering and tribological properties of WC-ZrO2 composites. J. Eur. Ceram. Soc.2005,25:1603-1610.
    [1]Badkar P A, Bailey J E. The mechanism of simultaneous sintering and phase transformation in alumina. J. Mater. Sci.1976,11:1794-1806.
    [2]Johnson W A, Mehl R F. Reaction kinetics in processes of nucleation and growth. Trans. AIME 1939,135:416-433
    [3]AvramiM. Kinetics of phase change-Ⅰ. J. Chem. Phys.1939,20:1103-1112.
    [4]Avrami M. Kinetics of phase change-Ⅱ. J. Chem. Phys.1940,8:212-214.
    [5]Avrami M. Kinetics of phase change-Ⅲ. J. Chem. Phys.1941,9:177-184.
    [6]Bagwell R B, Messing G L. Effect of seeding and water vapor on the nucleation and growth of α-Al2O3 from γ-Al2O3. J. Am. Ceram. Soc.1999,82(4):825-832.
    [7]Taimatsu H, Sugiyama S, Kodaira Y. Synthesis of W2C by reactive hot pressing and its mechanical properties. Mater. Trans.2008.49:1256-1261.
    [8]Legros C, Carry C, Bowen P, Hofmann H. Sintering of a transition Alumina:Effects of phase transformation, powder characteristic and thermal cycle. J. Eur. Ceram. Soc.1999,19: 1967-1978.
    [9]Kaya C, He J Y, Gu X, Butler E G. Nanostructure ceramic powders by hydrothermal synthesis and their applications. Microporous Mesoporous Mat.2002,54:37-49.
    [10]Smith W F, Foundations of Materials Science and Engineering.4th ed. China Machine Press. Beijing.2005.613.
    [1]Coble R L. Sintering crystalline solids Ⅱ. Experimental test of diffusion models in porous compacts, J. Appl. Phys.1961,32(5):793-799.
    [2]Bennison S J, Harmer M P.A history of the role of MgO in the sintering of a alumina. In: Handwerker C A, Blendell J E, Kaysser W A, editors. Sintering of advanced ceramics. Westerville O H.1990,13-49.
    [3]Berry K A, Harmer M P. Effect of MgO solute on microstructure development in Al2O3. J. Am. Ceram. Soc.1985,69(2):143-149.
    [4]Zhang M L, Zhu S G, Ma J, Wu C X. Preparation of WC/MgO composite nanopowders by high energy reactive ball milling and their plasma activated sintering. Powd. Metall. Met. Ceram.2008,47:525-530.
    [5]Wu C X, Zhu S G, Ma J, Zhang M L. Synthesis and formation mechanisms of nanocomposite WC-MgO powders by high-energy reactive milling. J. Alloys Compd.2009,478:615-619.
    [6]Yuan Z X, Yu Z S, Tan P, Song S H. Effect of rare earths on the carburization of steel. Mater. Sci. Eng.A 1999,267(1):162-166.
    [7]Qiu G M, Li X K, Qiu T, Zhao H T, Yu H H, Ma R T. Application of rare earths in advanced ceramic materials. J. Rare Earths 2007,25:281-286.
    [8]Ipek A, Elif Y, Filiz S, Onuralp Y, Gultekin G. Effect of CeO2 addition on densification and microstructure of A12O3-YSZ composites. Ceram. Int.2011,37:3273-3280.
    [9]Pan Q F. Effects of rare earth oxides on the properties of WC-Co cemented carbide. Rare Met. Mater. Eng.1993,22:35-41.
    [10]Xiao D H, He Y H, Song M, Lin N, Zhang R F. Y2O3- and NbC-doped ultrafine WC-10Co alloys by low pressure sintering. Int. J. Refract. Met. Hard Mater.2010,28:407-411.
    [11]Ma J, Zhu S G, Di P, Zhang Y. Influence of La2O3 addition on hardness, flexural strength and microstructure of hot-pressing sintered WC-MgO bulk composites. Mater. Des.2011,32: 2125-2129.
    [12]Taimatsu H, Sugiyama S, Kodaira Y. Synthesis of W2C by reactive hot pressing and its mechanical properties. Mater. Trans.2008,49:1256-1261.
    [13]Shyu J Z, Weber W H, Gandhi H S. Surface characterization of alumina supported ceria. J. Phys. Chem.1988,92:4964-4970.
    [14]Damyanova S, Perez C A, Schmal M, Bueno J M C. Characterization of eria-coated alumina carrier. Appl. Catal. A-Gen 2002,234:271-282.
    [15]Suryananrayana C. Mechanical alloying and milling. Progress in Mater. Sci.2001,46:1-184.
    [16]Schmid H K, Pennefather R. Redistribution of Ce and La during processing of Ce(La)-TZP/Al2O3 composites. J. Eur. Ceram. Soc.1992,10:381-392.
    [17]Su C H, Duanmu Q D, Wang Y. Nbn-equilibrium thermodynamic analysis of the concentration distribution of rare earth oxide at alumina transparent ceramic crystal boundary. J. Chin. Ceram. Soc.1998,26(6):802-807.
    [18]Wu C M L,Yu D Q, Law C M T, Wang L. Properties of lead free solder alloys with rare earth element additions. Mater. Sci. Eng. R.2004,44:1-44.
    [19]Tian Y S, Chen C Z, Chen L X, Huo Q H. Effect of RE oxides on the microstructure of the coatings fabricated on titanium alloys by laser alloying technique. Scripta Materilla.2006,54: 847-52.
    [20]Deng Z Y, Zhou Y, Brito M E, Tanaka Y, Ohji T. Effects of rare earth dopants on grain boundary bonding in alumina-silicon carbide composites. J. Eur. Ceram. Soc.2004,24: 511-516.
    [21]Shapiro I P, Todd R I, Titchmsrsh J M, Roberts S G. Effects of Y2O3 additives and powder purity on the densification and grain boundary composition of Al2O3/SiC nanocomposites. J. Eur. Ceram. Soc.2009,29:1613-1624.
    [22]Harmer M P. Interfacial kinetic engineering:how far have we come since Kingery's inauhural sosman address?. J. Am. Ceram. Soc.2010,93(2):301-317.
    [23]Dillon S J, Harmer M P. Demystifying the role of sintering additives with "complexion". J. Eur. Ceram. Soc.2008,28:1458-1493.
    [24]Kang S J L, Lee M G, An S M. Microstructural evolution during sintering with control of the interface structure. J. Am. Ceram. Soc.2009,92(7):1464-1471.
    [25]Burton W K, Carbrera N, Frank F C. The growth of crystals and the equilibrium structure of their surface. Philos. Trans. R. Soc. London, A 1951,243:299-358.
    [26]Yoon D Y, Park C W, Koo J B. The step growth hypothesis for abnormal grain growth. Vol.2, in:H. Yoo, S. J. L. Kang, Institute of Materials, London,2001, pp 3-21.
    [27]Park C W, Yoon D Y. Abnormal grain growth in alumina with anorthite liquid and the effect of MgO addition. J. Am. Ceram. Soc.2002,85(6):1585-1593.
    [28]Yamamoto T, Ikuhara Y, Sakuma T. High resolution transmission electron microscopy study in VC-doped WC-Co compound. Sci. Tech. of Adv. Mater.2000,1:97-104.
    [29]Sugiyama I, Goto M, Taniuchi T, Shirase F, Tanase T, Okada K, Ikuhara Y, Yamamoto T. Blunt corners of WC grains induced by lowering carbon content in WC-12mass%Co cemented carbides. J. Mater. Sci.2011,46:4413-4419.
    [30]Taya M, Hayashi S, Kobayashi A S. Toughening of a particulate reinforced ceramic matrix composite by thermal residual stress. J. Am. Ceram. Soc.1990,73(5):1382-1391.
    [1]Chen I W, Wang X H. Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 2000,404:168-171.
    [2]Wang X H, Chen P L, Chen I W. Two-step sintering of ceramics with constant grain-size. Ⅰ. Y2O3. J. Am. Ceram. Soc.2006,89:431-437.
    [3]Wang X H, Deng X Y, Bai H L, Zhou H, Qu W G, Li L T, Chen I W. Two-step sintering of ceramics with constant grain-size. Ⅱ. BaTiO3 and Ni-Cu-Zn ferrite. J. Am. Ceram. Soc.2006, 89:438-443.
    [4]Mazaheri M, Zahedi A M, Sadrnezhaad S K. Two-step sintering of nanocrystalline ZnO compacts:effect of temperature on densification and grain growth. J. Am. Ceram. Soc.2008, 91(1):56-63.
    [5]Mazaheri M, Razavi Hesabi Z, Sadrnezhaad S K. Two-step sintering of titania nanoceramics assisted by anatase-to-rutile phase transformation. Scripta Materialia 2008,59:139-142.
    [6]Mazaheri M, Valefi M, Razavi Hesabi Z, Sadrnezhaad S K. Two-step sintering of nanocrystalline 8Y2O3 stabilized ZrO2 synthesized by glycine nitrate process. Ceram. Int. 2009,35:13-20.
    [7]Mazaheri M, Simchi A, Golesatani-Fard F. Densification and grain growth of nanocrystalline 3Y-TZP during two-step sintering. J. Eur. Ceram. Soc.2008,28:2933-2939.
    [8]Hesabi Z R, Haghighatzadeh M, Mazaheri M, Galusek D, Sadrnezhaad S K. Suppression of grain growth in sub-micrometer alumina via two step sintering method. J. Euro. Ceram. Soc. 2009,29:1371-1377.
    [9]Farhad G F, Mazaheri M, Aminzare M, Ebadzadeh T. Microstructural evolution of a commercial ultrafine alumina powder densified by different methods. J. Euro. Ceram. Soc. 2011,31(14):2593-2599.
    [10]Wang C J, Huang C Y, Wu Y C. Two step sintering of fine alumina-zirconia ceramics. Ceram. Int.2009,35:1467-1472.
    [11]Chen Z H, Li J T, Xu J J, Hu Z G. Fabrication of YAG transparent ceramics by two-step sintering. Ceram. Int.2008,34:1709-1712.
    [12]Li Z, Li Z, Zhang A, Zhu Y J. Synthesis and two-step sintering behavior of sol-gel derived nanocrystalline corundum abrasives. J. Eur. Ceram. Soc.2009,29:1337-1345.
    [13]Maca K, Pouchly V, Zalud P. Two-step sintering of oxide ceramics with various crystal structures. J. Eur. Ceram. Soc.2010,30:583-589.
    [14]Fathi M H, Kharaziha M. Two-step sintering of dense, nanostructural forsterite. Mater. Lett. 2009,63:1455-1458.
    [15]Zhang Z G, Liu Y H, Yao G C, Zu G Y, Wu D, Hao Y. Synthesis and characterization of dense and fine nickel ferrite ceramics through two-step sintering. Ceram. Int.2012,38: 3343-3350.
    [16]Lukica M, Stojanovia Z, Skapinb S D, Macek-Krzmancb M, Mitricc M, Markovica S, Uskokovic D. Dense fine-grained biphasic calcium phosphate (BCP) bioceramics designed by two-step sintering. J. Eur. Ceram. Soc.2011,31:19-27.
    [17]Mazaheri M, Zahedi A M, Haghighatzadeh M, Sadrnezhaad S K. Sintering of titania nanoceramic:Densification and grain growth. Ceram. Int.2009,35:685-691.
    [18]Kim S H, Kim J W, Jo T S, Kim Y D. High coercive Nd-Fe-B magnets fabricated via two-step sintering. J. Magnetism and Magnetic Mater.2011,323:2851-2854.
    [19]Ma J, Zhu S G, Ouyang C X. Two step hot pressing sintering of nanocomposite WC-MgO compacts. J. Eur. Ceram. Soc.2011,31:1927-1935.
    [20]Lee Y I, Kim Y W, Mitomo M, Kim D Y. Fabrication of dense nanostructured silicon carbide ceramics through two-step sintering. J. Am. Ceram. Soc.2003,86:1803-1805.
    [21]Yang D Y, Yoon D Y, Kang Suk-Joong L. Suppression of abnormal grain growth in WC-Co via two step liquid phase sintering. J. Am. Ceram. Soc.2011,94(4):1019-1024.
    [22]Kim H C, Shon I J, Garay J E, Munir Z A. Consolidation and properties of binderless sub-micron tungsten carbide by field-activated sintering. Int. J. Refract. Met. Hard. Mater. 2004,22:257-264.
    [23]Kim H C, Shon I J, Yoon J K, Doh J M. Consolidation of ultra fine WC and WC-Co hard materials by pulsed current activated sintering and its mechanical properties. Int. J. Refract. Met. Hard. Mater.2007,25:46-52.
    [24]Qu H X, Zhu S G, Li Q, Ouyang C X. Influence of sintering temperature and holding time on the densification, phase transformation, microstructure and properties of hot pressing WC-40vol.%Al2O3 composites. Ceram. Int.2012,38:1371-1380.
    [25]Carniglia S C, Reexamination of experimental strength vs grain size data for ceramics. J.Am.Ceram.Soc.1972,55:243-247.
    [26]Griffith A A. The phenomena of rupture and flow in solids. Philos. Trans. Roy. Soc. (London), 1920-1921,221A:163-198.
    [27]Lee Y I, Kim Y W, Mitomo M, Kim D Y. Fabrication of dense nanostructured silicon carbide ceramics through two-step sintering. J. Am. Ceram. Soc.2003,86:1803-1805.
    [28]Bodisova K, Sajgalik P, Galusek D, Svancarek P. Two step sintering of Alumina with submicrometer grain size. J. Am. Ceram. Soc.2007,90(1):330-332.
    [29]Duran P, Capel F, Tartaj J, Moure C. Sintering behavior and electrical properties of nanosized doped-ZnO powders produced by metallorganic polymeric processing. J. Am. Ceram. Soc.2001,84:1661-1668.
    [30]Zhao J H, Harmer M P. Effect of pore distribution on microstructure development:Ⅰ, Matrix pores. J. Am. Ceram. Soc.1988,71(2):113-120.
    [31]Zhao J H, Harmer M P. Effect of pore distribution on microstructure development:Ⅱ, First-and Second-generation pores. J. Am. Ceram. Soc.1988,71(7):530-539.
    [32]Zhao J H, Harmer M P. Effect of pore distribution on microstructure development:Ⅲ, Model experiments. J. Am. Ceram. Soc.1992,75(4):830-843.
    [33]Chen P L, Chen I W. Sintering of fine oxide powder:Ⅱ:sintering mechanisms. J. Am. Ceram. Soc.1997,80(3):637-645.
    [34]Mahday A A, El-Eskandarany M S, Ahmed H A, Amer A A. Mechanically induced solid state carburization for fabrication of nanocrystalline ZrC refractory material powders. J. Alloy Compd.2000,299:244-253.
    [35]Kingery W D. Introduction to ceramics.1976, Wiley. New York, p.411.
    [36]Qiao Z H, Ma X F, Zhao W, Tang H G, Zhao B. Nanostructured novel cemented hard alloy obtained by mechanical alloying and hot pressing sintering and its applications. J. Alloy. Compd.2008,462:416-420.
    [1]Duran P, Capel F, Tartaj J, Moure C. Sintering behavior and electrical properties of nanosized doped-ZnO powders produced by metallorganic polymeric processing. J. Am. Ceram. Soc. 2001,84:1661-1668.
    [2]Chen I W, Wang X H. Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 2000,404:168-171.
    [3]Lee Y I, Kim Y W, Mitomo M, Kim D Y. Fabrication of dense nanostructured silicon carbide ceramics through two-step sintering. J. Am. Ceram. Soc.2003,86:1803-1805.
    [4]Brook R J. Controlled Grain Growth; in Treatise on Materials Science and Technology, Vol.9. 1976. Edited by F. F. Y. Wang. Academic Press, New York, pp.331-364.
    [5]Wang C J, Huang C Y, Wu Y C. Two step sintering of fine alumina-zirconia ceramics. Ceram. Int.2009,35:1467-1472.
    [6]Mazaheri M, Zahedi A M, Sadrnezhaad S K. Two-step sintering of nanocrystalline ZnO compacts:effect of temperature on densification and grain growth. J. Am. Ceram. Soc.2008, 91(1):56-63.
    [7]Mazaheri M, Valefi M, Razavi Hesabi Z, Sadrnezhaad S K. Two-step sintering of nanocrystalline 8Y2O3 stabilized ZrO2 synthesized by glycine nitrate process. Ceram. Int. 2009,35:13-20.
    [8]Chen P L, Chen I W. Sintering of fine oxide powder:Ⅱ:sintering mechanisms. J. Am. Ceram. Soc.1997,80(3):637-645.
    [9]Zhao J H, Harmer M P. Effect of pore distribution on microstructure development:Ⅰ, Matrix pores. J.Am. Ceram. Soc.1988,71(2):113-120.
    [10]Zhao J H, Harmer M P. Effect of pore distribution on microstructure development:Ⅱ, First-and Second-generation pores. J. Am. Ceram. Soc.1988,71(7):530-539.
    [11]Zhao J H, Harmer M P. Effect of pore distribution on microstructure development:Ⅲ, Model experiments, J. Am. Ceram. Soc.1992,75(4):830-843.
    [12]Wang X H, Chen P L, Chen I W. Two-step sintering of ceramics with constant grain-size. I. Y2O3. J. Am. Ceram. Soc.2006,89:431-437.
    [13]Bodisova K, Sajgalik P, Galusek D, Svancarek P. Two step sintering of Alumina with submicrometer grain size. J. Am. Ceram. Soc.2007,90(1):330-332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700