用户名: 密码: 验证码:
微尺度材料的软化学法控制合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Study on Control Synthesis and Properties of Micro-Sized Materials by Soft Chemistry Routes
  • 作者:张东恩
  • 论文级别:博士
  • 学科专业名称:无机化学
  • 学位年度:2007
  • 导师:??
  • 学科代码:070301
  • 学位授予单位:中国科学技术大学
  • 论文提交日期:2007-04-01
摘要
纳米材料在实际生产生活中有着非常广泛的应用。由于纳米材料的性质与其形貌和尺寸有着密切的关系,因此,制备具有特殊形貌和优良性质的纳米材料一直是材料领域的研究热点。本论文旨在探索纳米无机磁性材料和电极材料的制备方法,研究材料结构和性质之间的关系。
     1.在液相体系中,利用水合肼和金属镍盐作为反应物,采用微乳液软模板控制镍的生长,得到金属镍纳米棒。利用X—射线衍射(XRD),透射电子显微镜(TEM)等研究了产物物相和微结构。通过对比实验,探讨了纳米粒子的生长机理和影响粒子生长的各种因素,并对产物磁性进行了测量。
     2.采用液相水合肼还原法制备出铁纳米粒子,反应条件温和简单,过程易操作。压力对反应有比较关键的作用。同时研究了碱的浓度和溶剂等实验条件对反应是否能够进行的影响。在表面活性剂十六烷基三甲基溴化铵(CTAB)的存在条件下,制备得到分散较好的微米级棒状产物。表面活性剂CTAB在微米棒的生成过程中起到了重要作用:一是作为纳米颗粒的稳定剂;二是扮演着晶习改变剂的角色,CTAB可能是有选择地吸附在生长颗粒的某些晶面上,导致这些晶面的生长速率大大降低,从而使具有各向同性结构的晶体发生各向异性的生长。该表面活性剂辅助的低温溶液法,对合成其它具有各向异性晶体结构的铁磁材料的一维结构具有一定的指导意义.
     3.利用聚合物辅助水热合成技术成功合成出了NiFe_2O_4和Fe_3O_4纳米材料,并对其结构和磁学性能进行了一系列的表征。利用聚乙二醇(PEG-400)完全伸展的高分子链对纳米晶核的吸附与限制作用,合成了NiFe_2O_4一维纳米材料;对比实验结果表明一缩二乙二醇(DEG)在六边形Fe_3O_4纳米片的形成过程中发挥了决定性作用。整个聚合物辅助水热路线的优点在于操作简单、反应温度低、反应过程及产物的结构和形貌易于控制。
     4.利用EDTA和三乙醇胺等不同配位剂的辅助作用,水热合成了具有八面体形貌的Fe_3O_4、MnFe_2O_4等铁氧体颗粒。EDTA、DEA是强的配位体,它能与金属离子形成稳定的配合物,降低了溶液中自由金属离子的浓度,使得反应速率大大的降低,从而使得晶体的生长速率也大大得降低,较低的生长速率更有利于晶体沿着<100>方向生长,不会沿着其他面快速生长,只会在八面体的八个{111}面均匀生长,最终得到微米级的八面体颗粒。将此配位剂辅助合成法推广应用到其它铁氧体体系,结果都能够获得大量的尺寸均一的八面体颗粒,证实了该反应路线的普适性。
     5.探索了新型锂离子电池负极材料CeO_2的制备方法。(1)先利用沉淀法得到草酸盐的一维纳米前驱物,再通过低温热解来制备CeO_2纳米棒。由该路线合成的纳米棒具有物相纯,颗粒尺寸均一和结晶好等优点。(2)通过低温水热合成路线,成功合成了纺锤体形及三足状树枝形枝晶CeO_2纳米结构材料。性质研究表明,所合成的氧化物具有良好的光学性质和优异的电化学性能,对电极材料的发展预期有较大的推动作用。
Nanoscaled materials show wide applications in practical life. The properties of nanomaterials have intimate relations with their sizes and morphologies. Therefore, the preparation of nanomaterials with special shapes and excellent properties has been put much atention by researchers. The aim of this thesis involved the preparation and properties characterization of magnetic metal materials and electrode materials with nanosize.
     1. Rod-like nickel nanoparticles with a diameter of 6-18 nm and a length of 100 nm have been prepared in the cationic w/omicroemulsion of water/CTAB/ n-butanol/n-octane by reduction of nickel chloride with hydrazine hydrate. X-ray difraction (XRD), Transmission electron microscopy (TEM) and Scanningelectron microscopy (SEM) and some other techniques were used to characterize the phase and microstructure of the products. Several factors influencing the growth of particles were investigated. The magnetic properties of the product were also measured.
     2. A mild one-step route was successfully established for the preparation of iron nanoparticles by reduction of iron salts with hydrazine hydrate in a strong alkaline solution. Pressure played an important role for the fabrication of a pure a-Fe phase. The effects of the concentration of alkali and solvents on the formation of iron were also investigated. This synthetic method proved to be very facile and easy to be scaled up. Rodlike Fe particles were prepared in the presence of CTAB. The use of CTAB is a key factor that influences the formation of the microrods from the contrast experimental: suppressing the aggregation of metal nanoparticles in initial stage of crystal growth, and kinetically controlling the growth rates of various crystallographic facets of face-centered cubic metals through selectively adsorbing on these facets. The present method is expected to be transferable to other magnetism materials.
     3. Solution-based routes assisted by polymers were developed to synthesis of NiFe_2O_4 and Fe_3O_4 nanoparticles. The as-prepared powders were characterized in detail by conventional techniques such as XRD,SEM and TEM, and their magnetic properties were evaluated on a vibrating sample magnetometer. It is found that the full extension of the polymer chain of PEG-400 are responsible for the 1D growth of NiFe_2O_4 nanorods; the results obtained from contrast experiment indicate that the DEG has a significant influence on the formation of flake-like Fe_3O_4 nanocrystals. The advantages of this synthesis method are: simplicity of operation, low reaction temperature, and the controllable reation process, structure and morphology of the resulting products.
     4. A complexant-assisted solution-phase approach was developed to prepare uniform octahedrons of Fe_3O_4 and MnFe_2O_4 It should be noted that complexants EDTA and TEA are strong coordinating agents, could coordinate with matel ions forming very stable complexes. The formation of the complexes can kinetically control the reaction rates, the slow reaction rate is favorable for the faster growth rate along <100> over that along <111> due to the lowst energy of the {111} surfaces. Such a complexant-assisted method could be extended to the other ferrite formation, which was proved as a general route for the synthesis of octahedron-like ferrite particles.
     5. The synthesis of new anode materials for lithium ion batteries of CeO_2 is discussed. (1) CeO_2 nanorods particles were obtained by the thermal decomposition of the 1D metal oxalate precursors at relatively low temperature. The resulting nanorods are pure and well crystallized with narrow size distribution. ( 2) Three-fold shape dendritic crystal and spindle of CeO_2 particles were synthesized thorough low temperature hydrothermal route. The results of the examination on the properties show that the as-prepared oxides exhibit excellent opticles and electrochemical properties. The high capacity of CeO2 crystallites makes it attractive as a possible cathode for rechargeable lithium cells in the future.
引文
1. D. D. Archibald, S. Mann, Nature 1993, 364, 430.
    2. M. Li, H. Schnabiegger, S. Mann, Nature 1999, 402, 393
    3. S. Mann, Angew. Chem. Int. Ed. 2000, 39, 3392.
    4. L. A. Estroff, A. D. Hamilton, Chem. Mater. 2001, 13, 3227.
    5. S. Mann, G. A. Ozin, Nature 1996, 382, 313.
    6. H. Yang, N. Coombs, G A. Ozin, Nature 1997, 386, 692.
    7. X. F. Duan, C. M. Lieber, Adv. Mater 2000, 12, 298.
    8. X. F. Duan, C. M. Lieber, J. Am. Chem. Soc. 2000, 122, 188.
    9. A. M. Morales, C. M. Lieber, Science 1998, 279, 208.
    10. Y Wu, P. Yang, Chem. Mater. 2000, 12, 605.
    11. Y. J. Zhang, Q. Zhang, N.L. Wang, Y J. Yan, H. H. Zhou, J. Zhu, J.. Cryst. Growth 2001, 226, 185.
    12. J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, J. Vac. Sci. Technol. 1997, B15, 554.
    13. C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J.Y. Peng, Y F. Chen, J. Am. Chem. Soc. 2001, 123, 2791.
    14. J. Zhang, X. S. Peng, X. F. Wang, Y W. Wang, L. D. Zhang, Chem. Phys. Lett. 2001, 345, 372
    15. Y W. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, X. S. Peng, Chem. Phys. Lett. 2002, 357, 314.
    16. Y. W. Wang, GW. Meng, L. D. Zhang, C. H. Liang, J. Zhang, Chem. Mater. 2002, 14, 1773.
    17. X. Duan, C. M. Lieber, Adv. Mater. 2000, 12, 298.
    18. Y. J. Chen, J. B. Li, Y S. Han, X. Z. Yang, J. H. Dai, J. Cryst. Growth 2002, 245, 163.
    19. X. C. Wu, W. H. Song, K. Y Wang, T. Hu, B. Zhao, Y P. Sun, J. J. Du, Chem. Phys. Lett. 2001, 336, 53.
    20. M. H. Huang, YWu, H. Feick, E. Webber, P. Yang, Adv. Mater. 2000,13, 113.
    21. J. T. Hu, T. W. Odom, C. M. Lieber, Acc. Chem. Res. 1999, 32, 435
    22. A. M. Morales, C. M. Lieber, Science, 1998, 279, 208.
    23. T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W E. Buhro, Science, 1995, 270, 1791.
    24. H. Yu, W. E. Buhro, Adv. Mater. 2003, 15, 416.
    25. S. D. Dingman, N. P. Rath, P. D. Markowitz, P. C. Gibbons, W. E. Buhro, Angew. Chem. Int. Ed. 2000, 39, 1470.
    26. T. J. Trentler, S. C. Goel, K. M Hickman, A. M. Viano, MX Chiang, A. M. Beaty, P. C. Gibbons, W. E. Buhro, J. Am. Chem. Soc. 1997, 119, 2172.
    27. D. Zhou, S. Seraphin, Chem. Phys. Lett. 1995, 238, 286.
    28. H. Dai, E. W. Wong, Y. Z. Lu, S. Fan, C. M. Lieber, Nature 1995, 375, 769
    29. W. Q. Han, S. S. Fan, Q. Q. Li, et al., Chem. Phys. Let. 1997, 265, 374.
    30. W. Q. Han, S. S. Fan, Q. Q. Li, B. L. Gu, X. B. Zhang, D. P. Yu, Appl. Phys. Let. 1997, 71, 2271.
    31. W. Q. Han, S. S. Fan, Q. Q. Li, et al., Science 1997, 277, 1287.
    32. C. Tang, S. Fan, M. Lamy de la Chapelle, H. Dang, P. Li, Adv. Mater. 2000, 12, 1346.
    33. Y. J. Zhang, J. Zhu, Q. Zhang, Y. J. Yan, N. L. Wang, X. Z. Zhang, Chem. Phys Lett. 2000, 317, 504
    34.倪小敏,中国科学技术大学博士论文
    35. J. Bao, C. Tie, Z. Xu, Q. Zhou, D. Shen, Q. Ma, Adv. Mater. 2001, 13, 1631.
    36. A. Jagminas, R. Juskenas, I. Gailiute, G. Statkute, R. Tomasiunas, J. Cryst. Growth 2006, 294, 343.
    37. J. X. Xu, X. M. Huang, G. Z. Xie, Y. H. Fang, D. Z. Liu, Mater. Lett. 2005, 59, 981.
    38. L. Xu, L. D. Tung, L. Spinu, A. A. Zakhidov, R. H. Baughman, J. B. Wiley, Adv. Mater. 2003, 15, 1562.
    39. Z. L. Bao, K. L. Kavanagh, J. Cryst. Growth 2006, 287, 514.
    40. W. He, P. Gao, L. Chu, L. Yin, Z. Li, Y. Xie, Nanotechnology, 2006, 17, 3512.
    41.何伟 中国科学技术大学硕士学位论文 2006.
    42. Z. Liu, S. Li, Y. Yang, S. Peng, Z. Hu, Y. Qian, Adv. Mater. 2003, 15, 1946.
    43. Y. G. Sun, Y. D. Yin, B. B. Mayers, T. Herricks, Y. N. Xia, Chem. Mater. 2002, 14, 4736.
    44. K. K. Caswell, C. M. Bender, C. J. Murphy, Nano. Lett. 2003, 3, 667.
    45. V. F. Puntes, K. M. Krishnan, A. P. Alivisatos, Science 2001, 291, 2115.
    46. Z. A. Peng, X. Peng, J, Am. Chem. Soc. 2001, 123, 1389.
    47. J. M. Petrovski, Z. L. Wang, J. Phys. Chem. B 1998, 102, 3316.
    48. Y. Xiong, Y. Xie, S. Chen, Z. Li, Chem. Eur. J. 2003, 9, 4991.
    49. X. M. Ni, L. F. Chen, H. G. Zheng, D. E. Zhang, Q. B. Zhao, J. M. Song, Chem. Lett. 2004, 33, 1564
    50. X. M. Ni, Q. B. Zhao, D. E. Zhang, D. D. Yang, H. G. Zheng, J. Cryst. Growth 2005, 280, 217
    51. X. M. Ni, Q. B. Zhao, H. G. Zheng, B. B. Li, J. M. Song, D. E. Zhang, X. J. Zhang, Eur. J. Inorg. Chem. 2005, 23, 4788
    52. Y. Sahoo, M. Cheon, S. Wang, H. Luo, E. P. Furlani, P. N. Prasad. J. Phys. Chem. B 2004, 108, 3380.
    53. H. Niu, Q. Chen, H. Zhu, Y. Lin, X. Zhang, J. Mater. Chem. 2003, 13, 1803.
    54. J. Gao, B. Zhang, X. Zhang, B. Xu, Angew. Chem. Int. Ed. 2006, 45, 1220.
    55. S. Singamaneni, V. Bliznyuk, Appl. Phys. Lett. 2005, 87, 62511.
    56. T. Zhang, W. Dong, M. K. Brewer, S. Konar, R. N. Njabon, Z. R. Tian, J. Am. Chem. Soc. 2006, 128, 10960.
    57. J. Jin, T. Iyoda, C. Cao, Y. Song, L. Jiang, T. J. Li, D. B. Zhu, Angew. Chem. Int. Ed. 2001, 40, 2135.
    58. Y. L. Hou, S. Gao, T. Ohta, H. Kondoh, Eur. J. Inorg. Chem. 2004, 4, 1169.
    59. S. H. Sun, S. Anders, H. F. Hamann, J. U. Thiele, J. E. E. Baglin, T. Thomson, E. E. Fullerton, C. B. Murray, B. D. Terris, J. Am. Chem. Soc. 2002, 127, 2884.
    60. N. Cordente, R. M. Espaud, F. Secocq, M. J. Casanove, C. Amiens, B. Chaudret, Nano. Lett. 2001, 1, 565.
    61. S. B. Lei, C. Wang, S. X. Yin, L. J. Wan, C. L. Bai, ChemPhysChem. 2003, 4, 1114
    62. J. Bao, C. Tie, Z. Xu, Q. Zhou, D. Shen, Q. Ma, Adv. Mater. 2001, 13, 1631.
    63. K. S. Napolsky, A. A. Eliseev, A. V. Knotko, A. V. Lukahsin, A. A. Vertegel, Y. D. Tretyakov. Mater. Sci. Engineering C 2003, 23, 51.
    64. L. Xu, L. D. Tung, L. Spinu, A. A. Zakhidov, R. H. Baughman, J. B. Wiley, Adv. Mater. 2003, 15, 1562.
    65. G. Duan, W. Cai, Y. Luo, Z. Li, Y. Lei, J. Phys. Chem. B 2006, 110, 15729.
    66. K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph, U. Sivan, E. Braun, Science 2002, 297, 72.
    67. E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, Nature 1998, 391, 775.
    68. WE. Ford, O. Hamack, A. Yasuda, J. M. Wessels, Adv. Mater. 2001, 13, 1793.
    69. E. Braun, Y. Eichen, Nature, 1998, 391, 775.
    70. F. C. Meldrum, V. J. Wade, D. L. Nimmo, B. R. Heywood, S. Mann, Nature 1991, 349, 684.
    71. V. L. Colvin, A. N. Goldstein, A. P. Alivisatos, J Am. Chem. Soc. 1992, 114, 5221.
    72. E. S. Smotkin, L. E. E. Chongmok, A. J. Bard, et al., Chem. Phys. Lett. 1988, 152, 265
    73. X. K. Zhao, J. H. Fendler, J. Phys. Chem. 1991, 95, 3716.
    74. X. K. Zhao, S. Xu, J. H. Fendler, Langmuir 1991, 7, 520.
    75. J. H. Fendler, N. A. Kotov, F. C. Meldrum, Proceeding of the 1994 China-Japan Bileral Symposium on LB Films, Jinan, 1994, 17.
    76. V L.; Colvin, A. N. Golgstein, A. P. Alivisatos, J. Am. Chem. Soc., 1992, 114, 5221.
    77. N. Kimizuka, T. Kunitake, Adv. Mater. 1996, 8, 89.
    78. J. H. Fendler, F. C. Meldrum, Adv. Mater. 1995, 7, 607.
    79. H. P. Lin, C. Y Mou, Science 1996, 273, 765
    80. P. V. Broun, P. Osenar, S. I. Stupp, Nature 1996, 380, 325
    81. Y. Yamauchi, T. Yokoshima, T. Momma, T. Osaka, K. Kuroda, J. Mater Chem. 2004, 14, 2935.
    82.麦振洪,赵永男.微乳液技术制备纳米材料.物理,2001,30,106,.
    83. S. G Dixit, A. R. Mahadeshwar, S. K. Haram. Colloids and Surfaces A: Phys. Engn. Aspects.1998, 133,69.
    84.王笃金,吴瑾光,徐光宪,北学通报,1995,9,1。
    85.沈兴海,高宏成,化学通报,1995,11,6。
    86.施利毅,华彬,张剑平,功能材料,1998,29,136。
    87. M. Arturo Lbpez-Quintela. Current Opinion in Colloid and Interface Science, 2003, 8, 137。
    88. F. Debuigne, L. Jeunieau, M. Wiame, J. B. Nagy, Langmuir, 2000, 16, 7605。
    89.石全珍,信阳师范学院学报(自然科学版),2000,13,474.
    90.肖良质,邹炳锁,张岩.吉林大学自然科学学报,1990,4,115.
    91. A. JADA, J. LANG, R. ZANA J. phys Chem,1990, 94, 387.
    92. D. W. MATSION, Mate. r Let.,1987, 6, 31.
    93. N. Lufimpadio, J. B. Nagy, E. G. Detouane, Surfactants Solution, 1984, 3, 1483.
    94.成国祥,沈锋,张仁柏,化学通报,1997,3,14.
    95.王笃金,吴瑾光,徐光宪,化学通报,1995,9,1.
    96. M. Boutonnet, J. Kizling, P. Stenmus, et al, Colloids and Surfaces 1982, 5, 209.
    97. M. Li, H. Schnablegger, S. Mann, Nature 1999, 402, 39
    98. J. H. Xiang, S. H. Yu, Liu, B. H. Y Xu, X. Gen, L. Ren, Inorg. Chem. Commun. 2004, 7, 572.
    99. J. C. Brice, The Growth of Crystal from Liquid, Wiley, 1973.
    100. A. N. Christensen, F. Leccabue et al., Crystal Growth and Characterization of Advanced Materials, World Scientific, Singapore, New Jersey, London, 1987.
    101. J. J. Gilman, Ed., The Art andScience of Growing Crystal, Wiley, 1963.
    102. W. K. Burton, N. Cubrera, F. C. Frank, Phil. Trans. Roy. Soc. A, 1951, 243, 299.
    103. K. A. Jackon, Liquid Metals and Solidification, 1958, 174.
    104. K. A. Jackon, J Crystal Growth, 1969, 5, 13.
    105.张克从,张乐德,晶体生长科学与技术,科学出版社,1997.
    106.仲维卓,华素坤,晶体生长形态学,科学出版社,1999.
    107. Z. Y Berkovitch, J Am. Chem. Soc. 1988, 105, 8239.
    108. P. Hartman, W. A. Perdok, Acta Crystal., 1955, 49, 521.
    1.a) 一种钠米金属钴粉或镍粉的制备方法 发明专利 99101538.X 1999.
    b) 一种钠米金属铁粉的化学制备方法 发明专利 99110250.9.1999
    2. a) Y. C. Zhu, H. G. Zheng, Q. Yang, A. L. Pan, Z. P. Yang, Y. T. Qian, J. Cryst. Growth. 2004, 260, 427.
    b) Y. C. Zhu, Q. Yang, H. G. Zheng, W. C. Yu, Y. T. Qian, Mater. Chem. Phys. 2005, 91, 293.
    c) M. W, Y. C. Zhu, H. G. Zheng, Y. T. Qian, Inorg, Chem. Commun. 2002, 5, 971.
    d) Y. C. Zhu, Q. yang, H. G. Zheng, L. S. Gao. Z. P. Yang, Y. T. Qian, Mater. Chem. Phys. 2006, 96, 506.
    3. a) X. M. Ni, Q. B. Zhao, H. G. Zheng, et al. Eur. J. Inorg. Chem. 2005, 23, 4788.
    b) D. D. Yang, X. M. Ni, D. G. Zhang, et al. J. Cryst. Growth. 2006, 286, 152.
    c) D. E. Zhang, X. M. Ni, H. G. Zheng, J. Colloid. Interface. Sci. 2005, 292, 410.
    d) X. M. Ni, Q. B. Zhao, D. E. Zhang, et al. J. Cryst. Growth. 2005, 280, 217.
    4. a) D. E. Zhang, X. M. Ni, H. G. Zheng, et al. Mater. Lett. 2005, 59, 2011.
    b) X. M. Ni, X. B. Su, H. G. Zheng, et al. J. Cryst. Growth. 2005, 275, 548.
    c) X. M. Ni, L. F. Chen, H. G. Zheng, et al. Chem. Lett. 2005, 33, 1564.
    d) X. B. Su, H. G. Zheng, Y. C. Zhu, A. L. Pan, et al. J. Mater. Sci. 2004, 38, 4581.
    e) 郑化桂,曾京辉,梁家和,《金属学报》1999,35,837.
    5. R. E Kirk, D. F. Othmer, J. I. Kroschwitz, and M, Howe-Grant, Kirk-Othemer, Encyclopedia of Chemical Technology, Vol. 17(Jon Witeg&Son, New York, 1996) P1
    6. S. X. McFadden, R. S. Mishra, R. Z. Valiev, A. P. Zhilyaev, and A. K. Mukheriee, Nature,1999,398,684
    7.陈日志,杜艳,陈长林,邢卫红,徐南平,化工学报,2003,5,704
    8. D. Zuo, Z. Zhang, Z. Cui, J. Mol. Catal., 1995, 9, 298
    9.崔玉亭,王万录,廖克俊,刘高斌,赵作峰,重庆大学学报(自然科学版),2002,8,124
    10. A. N. Andriotis, M. Menon, G. Froudakis, Phys. Rev. Lett., 2000, 85, 193
    11.都有为,纳米磁性材料的应用前景及展望,首届全国纳米材料应用技术交流会资料汇编 1997,P71
    12. D H. Chen, S H. Wu, Chem. Mater., 2000, 12, 1354。
    13. N. Cordente, M. Respaud, F. Senocq, M J. Casanove, C. Amiens, B. Chaudret Nano. Lett., 2001, 1, 565
    14. Z. Liu, S. Li, Y Yang, S. Peng, Z. Hu, Y Q, Adv. Mater., 2003, 15, 1946
    15. J. Bao, C. Tie, Z. Xu, Q. Zhou, D. Shen, Q. Ma, Adv. Mater., 2001, 13, 1631
    16. M. I. Chipara, R. Skomski, D. J. Sellmyer, J. Magn. Magn. Mater., 2002, 249, 17
    17.魏智强,温贤伦,吴志国,中国有色金属学报 2003,13,1136.
    18. J. Lin. J. Solid State Chemistry, 2001,159, 26
    19. M. P. Pileni, Nature Materials 2003, 2, 145.
    20. M. P. Pileni, B. W. Ninham, T. G Krzywicki, J. Tanori, 1. Lisiecki, A. Filankembo, Adv. Mater. 1999, 11, 1358.
    21. E. F. Edward, M. S. Rhonda, D. B. Alan, W S. Arthur, J. A. Paul, J Am. Chem. Soc. 2000, 122, 7114
    22. J. L. Zhang, B. X. Han, M. H. Liu, D. X. Liu, Z. X. Dong, J. Liu, D. Li, J Phys. Chem. B 2003, 107, 3679.
    23. J. Tanori, M. P. Pileni, Langrnuir 1997, 13, 639.
    24. M. Maillard, S. Giorgio, M. P. Pileni, Adv. Mater 2002, 14, 1084.
    25. C. N. R. Rao, A. Govindaraj, F. L. Deepak, N. A. Gunari, M. Nath, Appl. Phys. Lett. 2001, 78, 1856.
    26. (a) N. Pinna, K. Weiss, H. S. Kongehl, W Vogel, J. Urban, M. P. Pileni, Langmuir 2001, 17, 7982.
    (b) N. Pinna, K. Weiss, J. Urban, M. P. Pilent, Adv. Mater. 2001, 13, 261.
    27. N. Pinna, M. Willinger, K. Weiss, J. Urban, R. Schlogl, Nano Lett. 2003, 3, 1131.
    28. F. Agnoli, W. L. Zhou, C. J. O'Connor, Adv. Mater. 2001, 13, 1697.
    29. G D. Rees, R. E. Gowing, S. J. Hammond, B. H. Robinson, Langmuir 1999, 15, 1993.
    30. L. M. Qi, J. M. Ma, H. M. Cheng, Z. G Zhao, J Phys. Chem. B 1997, 101, 3460.
    31. D. B. Kuang, A. W Xu, Y P. Fang, H. D. Ou, H. Q. Liu, J. Crystal Growth 2002, 244,379
    32. (a) S. Kwan, F. Kim, J. Akana, P. D. Yang, Chem. Commun. 2001, 5, 447.
    (b) H. T.Shi, L. M. Qi, J. M. Ma, H. M. Cheng, Chem. Commun. 2002, 1704.
    (c) H.T. Shi, L. M. Qi, J. M. Ma, H. M. Cheng, J Am. Chem. Soc. 2003, 125, 3450.
    33. (a) M. Li, H. Schnablegger, S. Mann, Nature 1999, 402, 393.
    (b) H. T. Shi, L. M. Qi, J. M. Ma, H. M. Cheng, Adv. Mater. 2003, 15. 1647.
    34. J. D. Hopwood, S. Mann, Chem. Mater 1997, 9, 1819.
    35. M. Li, S. Mann, Langmuir 2000, 16, 7088.
    36.施利毅,华彬,张剑平.功能材料,1998,29,136.
    37.赵国玺著,表面活性剂物理化学(第一版),北京大学出版社,1984,402.
    38. T. Bala, S. D. Bhame, P. A. Joy, B. L. V. Prasad, M. Sastry J. Mater. Chem. 2004, 14, 2941.
    39. Y. Hattori, T. Konishi, H. Kanoh, S. Kawasaki, K. Kaneko, Adv. Mater. 2003, 15, 529.
    40. J. L. Menendez, B. Bescos, G. Armelles, R. Sema, J. Gonzalo, R. Doole, A. K. Petford-Long, and M. I. Alonso, Phys, Review. B., 2002, 65, 205413
    41. B. C. Liu, S. H. Tang, Z. L. Yu, B. L. Zhang, T. Chen, and S. Y. Zhang, Chem. Phys. Lett., 2002, 357, 297.
    42. S. M. Ponder, J. G. Darab, J. Bucher, D. Caulder, I. Craig, L. Davis, N. Edelstein, W. Lukens, H. Nitsche, L. F. Rao, D. K. Shuh, and T. E. Mallouk, Chem. Mater., 2001, 12, 479
    43. F. Bodker, S. Morup, and S. Linderoth, Phys. Rev. Lett., 1994, 72, 282
    44. G. C. Hadijpanyyia and G. A. Prinoz, Science and Technology of Nanostructured Magnetic Materials, Plenum Press, N. Y.,1991,497
    45. G. Bate, Proc. IEEE, 1986, 74, ,1513
    46. M. P. Sharrock, IEEE Trans. Magn., 1989, 2S, 4374.
    47. M. Kzshimoto, et al., IEEE Trans. Magn., 1991, 27,4645
    48. Y. Okazaki, H. Hara, et al., IEEE Trans. Magn., 1992, 28, 2365
    49. Y. P. Sun, H. W. Rollins, and R. Gufuru, Chem. Mater., 1999,11, 7
    50. D. E. Nikle, J. LCain, S. R. Harrison, and J. A. Nikle, J. Magn. Magn. Mater., 1996, 155, 67
    51. A. Duteil. R. Qucau, B. Chaudret, R. Mazel, Ch. Roucau, J. S. Bradley, Chem. Mater. 1993,5,341
    52. J. S. Bradly, F. W. Hill, S. Behal, C. Klein, B. Chaudret, A. Duteil, Chem. Mater., 1992, 92, 1709.
    53. Y. Yonezawa, T. Sato. M. Ohno, H. Hada, J. Chem. Soc. Faraday Trans., 1987, 1, 1559
    54. H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan, F. C. Loh, J. F. Deng, G. Q. Xu, Langmuir, 1996,12,909-912.
    55. L. Vayssieres, L. Rabenberg, and A. Marthiram, Nano. Lett., 2002, 12, 1393.
    56. K. S. Suslick, M. Fang, and T. Hyeon, J. Am. Chem. Soc., 1996, 118, 11960.
    57. Z. L. Cui, L. F. Dong, and C. C. Hao, Mater Sci and Engineering A., 2000, 286, 205
    58. X. M. Ni, L. F. chen, H. G. Zheng, D. E. Zhang, Q. B. Zhao, J. M. Song, Chem. Lett. 2004, 33,1564
    59. X. M. Ni, X. B. Su, H. G. Zheng, D. E. Zhang, D. D. Yang, Q. B. Zhao, J. Cryst. Growth, 2005, 275, 548
    60. X. M. Ni, Q. B. Zhao, D. E. Zhang, D. D. Yang, H. G. Zheng, J. Cryst. Growth 2005, 280, 217
    61. X. M. Ni, Q. B. Zhao, J. Cheng, H. G. Zheng, B. B. Li, D. E. Zhang, Chem. Lett. 2005, 34, 140
    62. X. M. Ni, Q. B. Zhao, H. G. Zheng, B. B. Li, J. M. Song, D. E. Zhang, X. J. Zhang Eur. J. Inorg. Chem. 2005, 23, 4788
    63. Van Bommel KJC, A. Friggeri, S. Shinkai, Angew Chem. Int. Ed. 2003, 42, 980
    64. L. Z. Zhang, J. C. Yu, A. W. Xu, Q. Li, K. W. Kwong, L. Wu, Chem. Commun. 2003, 23, 2910
    65. Z. P. Liu, Y Yang, J. B. Liang, Z. K. Hu, S. Li, S. Peng, Y T. Qian, J.. Phys. Chem. B 2003, 107, 12658
    66. Z. P. Liu, S. Li, Y Yang, S. Peng, Y T. Qian, Adv. Mater. 2003.15,1946.
    67. Wuhan University, Jilin University, ete, Inorganic Chemistry,3rd ed, Higher Education Press, Beijing, 1994, pp. 1023.
    68. E. Hayon, M. Simic, J. Am. Chem. Soc., 1972, 94, 42
    69. D. L. L. Pelecky, R. D. Rieke, Chem. Mater., 1996, 38, 1770
    70. L. Zhang, A Manthiram, IEEE. Trans. Magn. 1996, 32, 4481
    1. N. Mǒri, S. Todo, N. Takeshita, T. Mori, Y. Akishige. Phys B, 2002, 312-313, 686
    2.张立德,牟季美.纳米材料和纳米结构,北京:科学出版社,2001
    3.李海波,宫杰,郑伟涛,左云彤,陈岗.吉林大学自然科学学报,1997,1,47.
    4.余加佑,大连轻工业学院学报,2000,19,17-20
    5. M. I. Papisov, J. A. Bogdanov, B. Schffer. J. Magn. Magn. Master, 2001, 122, 383.
    6. E. K. Ruuge, A. N. Rusetski, J. Magn. Magn. Master, 2000, 122, 335..
    7. D. Sehuler, R. B. Frankel. Appl. Microbiol. Bitechnol,1999, 52, 464.
    8.丁明,曾桓兴.无机材料学报,1998,13,619.
    9.王全胜,刘颖,王建华.北京理工大学学报,1994,14,200.
    10. R. Fan, X H. Chen, Z. Gui, Matedals Research Bulletin, 2001, 36, 497.
    11.都有为,陆怀先,顾新运,应用科学学报,1985,3,267.
    12.卓长平,张雄,安徽大学学报:自然科学版,2004,28,73.
    13.王世敏,许祖勋,傅晶,北京;化学工业出版社,2002.
    14. G. Z. Shen, D. Chen, K. B. Tang, X. Jiang, Y. T. Qian, J. Crystal Growth, 2003, 252, 350.
    15. J. H. Hwang, V. P. Dravid, M. H. Teng, J. J. Host, B. R. Elliott, D. L. Johnson, T. O. Mason J. Mater. Res. 1997, 12, 1076.
    16. D. L. L. Peleeky, R. D. Rieke, Chem. Mater. 1996, 8, 1770.
    17. S. H. Wu, D. H. Chen, J. Colloid Interface Sci. 2003, 259, 282.
    18. Z. Liu, S. Li, Y. Yang, S. Peng, Z. Hu, Y. Qian, Adv. Mater. 2003,15, 1946.
    19. Y. G. Sun, Y. D. Yin, B. B. Mayers, T. Herricks, Y. N. Xia, Chem. Mater. 2002, 14, 4736.
    20. K. K. Caswell, C. M. Bender, C. J. Murphy, Nano. Lett. 2003, 3,667.
    21. V. F. Puntes, K. M. Krishnan, A. P. Alivisatos, Science, 2001, 291, 2115.
    22. Z. A. Peng, X. Peng, J. Am. Chem. Soc. 2001, 123, 1389.
    23. J. M. Petrovski, Z. L.Wang, J. Phys. Chem. B 1998, 102, 3316.
    24. Y. Xiong, Y. Xie, S. Chen, Z. Li, Chem. Eur. J. 2003, 9, 4991.
    25. S. Y. Lian, Z. H. Kang, E. B. Wang, M. Jiang, C. W. Hu and L. Xu, Solid State. Comm. 2003, 127, 605
    26. W. Kim, K. Kawaguchi and N. Koshizaki, J. Appl. Phys. 2003, 93, 8032.
    27. J. G. Deng, Y. X. Peng, C. L. He, X. P. Long, P. A. Li and S. C. Chan, Polym. Int. 2003, 52, 1182
    28. J. Wang, Q. W. Chen, C. Zeng, B. Y. Hou, AdV. Mater. 2004, 16, 137.
    29. Z. L. Wang, J. Phys. Chem. B 2000, 104, 1153.
    30. X. C. Ma, Z. D. Zhang, X. B. Li, Y. Du, F. Xu, Y. T, Qian, J. Solid State Chem. 2004, 263, 491
    31. H. L. Xu, W. Z. Wang, W. Zhu, J. Phys. Chem. B 2006, 110, 13829
    32. R. F. Ziolo, E. P. Giannelis, B. A. Weinstein, M. P. O'Horo, B. N. Ganguly, V. Mehrothra, et al. Science., 1992, 257,219.
    33. I. Anton, J. Magn. Magn. Mater., 1990, 85, 219.
    34. W. Chang, M. Deng, T. Tsai, T. Ching. Jpn J. Appl. Phys., 1992, 31, 1343.
    35. T. Gonzalez-Carreno, A. Mifsud, J. M. Palacios, C. Serna, J. Mater Chem. Phys., 1991, 27, 287.
    36. V. Chhabra, P. Ayyub, S. Chattopadhyay, A. N. Maitra. Mater. Lett., 1996, 26, 21.
    37. K. Suresh, K. C. Patti. J. Mater. Sci. Lett., 1993, 12, 572.
    38. Y. S. Kang, S. Risbud, J. F. Rabolt, P. Stroeve, Chem. Mater., 1996, 8, 2209.
    39. L. Nixon, C. A. Koval, R. D. Noble. Chem. Mater., 1992, 4, 117.
    40. F. Tronc, P. Prene, J. P. Jolivet, F. d'Orazio, F. Lucari, D. Godinho, Hyperfine Interact., 1995, 95, 129.
    41. D. Vollath, D. V. Szabo, R. D. Taylor, J. O. Willis, K. E. Sickafus, Nanostruct. Mater., 1995, 6, 941.
    42. Z. Jing, S. Wu, J Solid State Chem., 2004, 177, 1213.
    43. W. B. White and B. A. DeAngelis, Spectrochim Acta 23A, 1967, 985-995.
    44. B. Gillot, Vibrat. Spectrosc., 1994, 6, 127-148.
    45. N. Kazou, Infrared and Raman Spectra of Inorganic and Coordination Compound., Whiley & Sons, New York, 1997.
    46. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nature, 2000, 407, 496.
    47. Chen M. S., Shen Z. X., Liu X. Y., Wang J., J. Mater. Res., 2000, 15, 483.
    48. X. Wang, X. Y. Chen, L. S. Gao, H. G. Zheng, Z. D. Zhang, J. Phys. Chem. B., 2004, 108, 16401.
    49. M. Pernet, P. Strobel, B. Bonnet, P. Bordet, Y. Chabre, Solid State Ionics, 1993, 66, 259.
    50. X. H. Yang, X. Wang, Z. D. Zhang, Journal of Crystal Growth, 2005, 277, 67.
    51. X. Wang, L. S. Gao, H. G Zheng, M. R. Ji, T. Shen, Z. D. Zhang, Journal of Crystal Growth., 2004, 269, 489.
    1. Hou D L. Nie X F, Luo H L. Appl Phy A, 1998, 66, 109.
    2.李荫远,李国栋.铁氧体物理学.北京:科学出版社,1978
    3.石晓波,王国平北学研究与应用,2002,14,531.
    4. Y. Shi, J. Ding, X. Liu, J. Magnetism and Magnetic Materials, 1999, 205,249.
    5. Shi Y, Ding J, Liu X, et at. J. Magn. Magn. c Mater., 1999, 205, 249.
    6.孔小东等.宇航材料工艺.2004,3,34.
    7. Chen D H, He X R. Materials Resarch Bulletin, 2001, 36, 1369.
    8. Prasad S, Gajbhiye N S. J. Alloys and Compounds, 1998, 265, 87.
    9. Liu J, He H, Jin X, et al. Materials Research Bulletin, 2001, 36, 2357.
    10.杨华明等.中南大学学报(自然科学版).2004,35,368.
    11.韩冰等.广东化工.2004,1,9.
    12. Liu Y. L. et al. Sensors and Actuators B, 2004, 102, 148.
    13. Zhao Y. T., et al. Chinese Chemical Leters. 2002, 13, 389.
    14.于冬亮,都有为,物理学报,2005,54,930.
    15. H. Golden, F. J. Disalvo, et al., Science, 1996, 273,782.
    16. Yu, D. B.; Wang, D. B.; Meng, Z. Y.; Lu, J.; Qian, Y. T. J. Mater. Chem. 2002, 12, 403.
    17. Shen, G. Z.; Chen, D.; Tang, K. B.; Jiang, X.; Qian, Y. T. J. Cryst. Growth 2003, 252, 350.
    18. Ciardelli F, Tsuchida E, Wohrle D. Macromolecule-Metal Comp. Springer, Berlin, 1996
    19.陶新永,张孝彬,孔凡志,林森,程继鹏,化学学报,2004,62,165 8
    20.陈名海,高濂,无机材料学报,2005,20,1343
    21. X. M. Ni, X. B. Su, Z. P. Yang, H. G. Zheng, J. Crys. Growth, 2003, 252, 612.
    22. M. Zheng, X. C. Wu, B. S. Zou, J. Magn. Magn. Mater, 1998, 183, 152.
    23. N. S. Gajbhiye, G. Balaji, M. Ghafari, Phys Star Sol(a), 2002, 189, 357.
    24. J. J. Li, W. Xu, H. M. Yuan, Solid State Commun., 2004, 131, 519.
    25. E. E. Carpenter, C. J. O'eonnor, V. G. Harris., J Appl Phys.,1999, 85, 5175.
    26. C. Liu, B. S. Zou, A. J. Rondinone, J Phys Chem B, 2000, 104, 1141.
    27. C. Liu, Z. J. Zhang, Chem Mater, 2001, 13, 2092.
    28. H. L. Xu, W. Z. Wang, W. Zhu, J. Phys. Chem. B 2006, 110, 13829
    29. J Wang, Q. W. Chen, B. Y. Hou, Z. M. Peng, Eur. J. Inorg. Chem. 2004, 1165
    30. O. Masala, R. Seshadri, Chem. Phys. Let. 2005, 402, 160.
    31. X. P. Gao, J. L. Bao, G. L. Pan, H. Y. Zhu, P. X. Huang, F. Wu, and D. Y. Song, 2004, 10.1021/JP037075K.
    32. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, Nature 2000, 407, 496.
    33. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, B. Beaudoiu, and J. M. Tarascon, C. R. Acad. Sci. Ser. IIc: Chimie 2000, 3, 681.
    34. D. Larcher, G. Sudant, J-B. Leriche, Y. Chabre, and J-M. Tarascon, J. 15, 101.
    35. V. Pralong, J-B. Leriche, B. Beaudoiu, E. Naudin, M. Morcrette, and J. M. Tarascon, Solid State Ionics 2004, 166, 295.
    36. D. Larcher, C. Masquelier, D. Bonnin, Y. Chabre, V. Masson, J. B. Leriche, and J. M. Tarascon, J. Electrochem. Soc. 2003, 150, 133.
    1.王毓娟,揭雪飞,董新法,林淮明,CeO_2在氧化催化反应中的作用,电源技术,2002,26,43.
    2.王艳荣,广州化工,2005,33,24.
    3. Z. C. Orel and B. Orel, Phys. Status Solidi B, 1994, 186, K33.
    4. J. Barbier., L. Oliviero., et al. Catal. Today, 2002, 75, 29
    5. A. Tschiipe, R. Birringer, Nano Structed Mater, 1997, 9, 91
    6. A. E. C. Palmgvist, E. M. Johansson, S. G. Jaras, et al. Catal Let, 1998, 56,69,
    7. D. Schaadt, R. Birringer, J. Y. Ying, Nano Structed Mater, 1997,9, 423
    8. J. Barbier, L. Oliviero, et al. Catal Today, 2002, 75, 29
    9. S. lmamura, et al, Applied Catalysis A, 2000, 68, 188.
    10. G. L. Messing, S. C. Zhang, G. V. Jayanthi, J. Am. Ceram. Soc. 1993, 76, 2707.,
    11.宋晓岚.杨振华.邱冠周.曲选辉.,材料导报,2003,12,36
    12. C. Xia, M. Liu, Solid State Ionics, 2001, 144, 249.
    13. K. Kendall, M. Palin, Journal of Power Sources 1998, 71, 268.
    14. M. Hirano and E. Kato, J. Am. Ceram. Soc, 1996, 79, 777.
    15. V. D. Kosynkin, A. A. Arzgatkina, E. N. Ivanov, et al, J. Alloys, Compounds 2000, 421, 303.
    16.杜新华,刘振样,谢侃等,物理学报,1998,47,2025
    17. N, lzu, W. Shin, N. Murayama,, et al, Sens. Actuator B-Chem, 2002, 8, 87.
    18. P. Shuk, K. V. Ramanujachary, M. Greenblat. SolidState Ion., 1996,86-88, 1115
    19. Y. Zhang. et al. Appl. Catal. B-Environ, 1995, 6, 325
    20. B. C. H. Steele, Solid State Ion, 2000, 129, 9
    21. M. Hirano and E. Kato, J. Am. Ceram. Soc., 1996, 79, 777.
    22. Y. C. Zhou and M. N. Rahaman, J. Mater. Res., 1993, 8, 1680;
    23. M. Hirano and E. Kato, J. Mater. Chem., 2000, 10, 473.
    24. T. Masui, K. Fujiwara, K. Machida, G. Adachi, T. Sakata and H. Mori, Chem. Mater, 1997, 9, 2197
    25. H. Yahiro, Y. Baba, K. Eguchi and H. Arai, J. Electrochem. Soc 1988, 135, 2077.
    26. T. J. Kirk and J. W innick, J. Electrochem. Soc., 1993, 140, 3494.
    27. W. P. Hsu, L. Ronnquist and E. Matijevic, Langmuir, 1988, 4, 31.
    28. Y. Zhow, R. J. Philips and J. A. Switzer, J. Am. Ceram. Soc.,1995, 78, 981
    29. E. Verdon, M. Devalete and G. Damazeau, Mater. Lett., 1995,25, 127.
    30. F. Li, X. H. Yu, H. J. Pan, M. L. Wang and X. Q. Xin, SoL Sta. Sci., 2000, 2, 767.
    31. X. H. Yu, F. Li, X. R. Ye, X. Q. Xin, J. Am. Ceram. Soc., 2000, 83, 964.
    32. S. H. Yu, H. Colfen, A. Fischer, Colloid Surf. A-Physicochem. Eng. Asp, 2004. 243,49
    33. L. Guo, Y. L. Ji, H. B. Xu, Z. Y. Wu, P. Simon, J. Mater. Chem. 2003,13, 754.
    34. X. M. Ni, Q. B. Zhao, F. Zhou, H. G. Zheng, J. Crys. Grow. 2006, 289, 299.
    35. X. H. Liao, J. M. Zhu, J. J. Zhu, J. Z. Xu, H. Y. Chen, Chem. Commun. 2001, 937.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700