用户名: 密码: 验证码:
镍钴草酸盐制备中的形貌与粒度控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究了镍、钴草酸盐制备中的形貌与粒度控制,包括三方面内容:凝胶—溶胶法制备单分散草酸镍粉末;纤维状草酸镍的形成机理及其形貌与粒度控制;纤维状草酸钴的形成机理及其形貌与粒度控制。研究中,采用SEM、XRD、FTIR、TGA—DTA、GCMS等方法,对粉末样品进行表征。
     1)凝胶—溶胶法制备单分散草酸镍粉末
     提出了一种凝胶—溶胶法制备单分散草酸镍的方法,由Ni(OH)_2凝胶生成—NiC_2O_4·2H_2O颗粒形核—凝胶(Ni(OH)_2)向溶胶(NiC_2O_4·2H_2O)转化3个步骤组成。制备的草酸镍为单斜晶型α-NiC_2O_4·2H_2O,具有菱柱体形貌,底面菱形的夹角分别为106°和74°;随条件变化,粉末D_(50)值可在0.3~3.0μm间调节,单分散性σ值可达1.10。
     实验证实,粉末颗粒的形成机理为溶解—再结晶。过程中,Ni(OH)_2凝胶包覆在NiC_2O_4·2H_2O颗粒表面,既作为Ni~(2+)的“缓释源”;又起到了阻隔颗粒碰撞团聚的作用。
     实验研究了温度、起始NiCl_2浓度、表面活性剂、Na_2C_2O_4加入量及NaOH浓度的影响,揭示了Gel-sol法制备草酸镍中,形貌与粒度控制的主要规律:(1)在实验研究的条件范围内,制备的颗粒形貌均为菱柱状,粒度在0.6μm以上时,轴向比在0.5左右波动;(2)颗粒生长中,在偏高的过饱和度下,二次异相晶核与母晶的融合生长以及颗粒的孪晶生长,使颗粒呈现类似多颗粒团聚体形貌且尺度超大;(3)粉末粒度主要取决于颗粒形核及生长过饱和度,形核过饱和度高,晶核数多,粉末粒度细小;生长过程中,若过饱和度控制偏高,在颗粒长大的同时,伴随着异相形核大量发生,形成的二次晶核或与母晶融合生长,或脱离母晶独立生长,使得粉末平均粒度增大或减小,粒度分布变宽。(4)生长过程的过饱和度及其稳定性,主要决定于NiC_2O_4·2H_2O结晶反应速率,因此,往往与晶核数的多少密切相关,形核过饱和度大,形成的晶核数多,颗粒表面积大,生长反应(即NiC_2O_4·2H_2O的结晶)速度快,过程中Ni(OH)_2与H_2C_2O_4离解产生的Ni~(2+)与C_2O_4~(2-)在系统中无累积,颗粒在低的过饱和度下生长,有利于得到单分散性好的粉末。
     2)纤维状草酸镍的形成机理及其形貌与粒度控制
     采用Na_2C_2O_4溶液与XiCl_2和NH_3·H_2O混合溶液并流加料合成的方法,研究了纤维状草酸镍的制备。
     研究证实,在Ni~(2+)-NH_3-H_2O体系碱性条件下,Ni(Ⅱ)离子以Ni(NH_3)_n~(2-)(n=0,1,2,...,6)形态存在,改变了草酸镍的沉淀形态及其形核与生长过饱和度,是草酸镍形成长纤维状形貌的内在原因。
     研究发现,在Ni~(2+)-NH_3-C_2O_4~(2-)-H_2O系中,依条件不同,可形成系列Ni(NH_3)_nC_2O_4·2H_2O(n=0,0.5,1.0,1.5,2.0,...),其中,n值为0时,即为α-NiC_2O_4·2H_2O,其余均为JCPDS尚无卡片的含NH_3草酸镍新化合物,对n值为0.5,1.0,1.5,2.0的4种,已制备出较纯的样品,确定其分子式及XRD图谱与数据。
     研究发现,在Ni~(2+)-NH_3-C_2O_4~(2-)-H_2O体系碱性条件下,初生沉淀一般是数种Ni(NH_3)_nC_2O_4·2H_2O(n=0.5,1.0,1.5,2.0,...)的混合物,形貌为细小晶体团聚体,陈化中,不同化合物间因溶解度差别使其发生溶解—再结晶,溶解度大的化合物溶解,源源不断提供结晶物质,使溶解度较小的化合物在低过饱和度下生长,形成大轴向比纤维状形貌颗粒。
     研究发现,在Ni~(2+)-NH_3-C_2O_4~(2-)-H_2O体系碱性条件下,实验研究的范围内,Ni(NH_3)_(1.5)C_2O_4·2H_2O是稳定性最高的物相,充分陈化后,往往是体系中唯一存在的草酸镍化合物。
     研究发现,生长与颗粒间沿长轴方向的取向聚并融合,是颗粒长大的方式。
     研究了温度、pH值、加料速度、浓度、[NH_3]_T/[Ni]_T摩尔比、表面活性剂及其添加量、搅拌等对颗粒形貌与粒度的影响,主要结论为:(1)草酸镍化合物种类是决定颗粒形貌与粒度的最主要因素;(2)提高陈化中溶解—再结晶速度,有利于得到物相单一,形貌规整,轴向比大的粉末;(3)不同条件下,颗粒形核与生长过饱和度改变,也会对粉末形貌与粒度产生一定影响;(4)适量添加PVP25有利于大轴向比纤维状草酸镍的制备。
     3)纤维状草酸钴的形成机理及其形貌与粒度控制
     采用CoCl_2溶液与(NH_4)_2C_2O_4和NH_3·H_2O混合溶液并流加料合成的方法,研究了纤维状草酸钴的制备。
     研究证实,在Co~(2+)-NH_3-H_2O体系碱性条件下,Co(Ⅱ)离子以Co(NH_3)_n~(2-)(n=0,1,2,...,6)形态存在,改变了草酸钴的沉淀形态及其形核与生长过饱和度,是草酸钴形成长纤维状形貌的内在原因。
     研究发现,在Co~(2+)-NH_3-C_2O_4~(2-)-H_2O体系中,依条件不同,可形成两种草酸钴,其一为β-CoC_2O_4·2H_2O;第二种为Co(NH_3)_(1.5)C_2O_4·2H_2O,是一种JCPDS尚无卡片的含NH_3草酸钴新化合物,已确定其分子式及XRD图谱与数据。
     研究发现,生长与颗粒间沿长轴方向的取向聚并融合,是颗粒长大的方式。
     研究了温度、pH值、加料速度、浓度、PVP25添加等对颗粒形貌与粒度的影响,主要结论为:(1)草酸钴化合物种类是决定颗粒形貌与粒度的最主要因素;(2)不同条件下,颗粒形核与生长过饱和度改变,会对粉末形貌与尺度产生一定影响;(3)陈化中草酸钴化合物种类并无改变,尺度不同的颗粒问按Ostwald陈化机理发生溶解与再结晶,对颗粒形貌与粒度产生影响。(4)PVP25的添加对颗粒形貌与粒度影响并不显著。
The formation mechanisms, as well as the morphology and size control of nickel and cobalt oxalate particles with rhombohedron and fibre morphologies were investigated systematically. The samples synthesized in the experiments were characterized by SEM, XRD, FTIR, TGA-DTA and GCMS.
     1) The preparation of monodisperse nickel oxalate particles with rhombohedron form by a novel gel-sol process
     A novel process for the preparation of monodisperse nickel oxalate particles was proposed and investigated systematically. The process is composed of three steps: the formation of Ni(OH)_2 gel; the nucleation of nickel oxalate; the transition from Ni(OH)_2 gel into nickel oxalate sol.The nickel oxalate synthesized is identified by XRD to beα-NiC_2O_4·2H_2O with rhombohedron morphology, while two angles of the rhombus at underside are 106 and 74 degrees separately. The D_(50) of the particles can be controlled between 0.3 and 3.0μm by regulating synthesizing conditions, while the index number of particle monodispersity,σreaches 1.10.
     It was verified experimentally that formation mechanism of the particles is dissolution-recrystallization from Ni(OH)_2 gel into nickel oxalate sol. During the transition process from gel to sol, the surfaces of nickel oxalate particles are coated by Ni(OH)_2 gel, which not only works as the slow-release source of nickel ions, but also protects nickel oxalate particles from aggregation.
     The effects of temperature, initial NiCl_2 concentration, surfactants, amount of sodium oxalate added and NaOH concentration on morphology and size of the particles in gel-sol process were investigated experimentally. The conclusions obtained are as follows: (1) The morphology of the particles is independent of preparation conditions. In case of the size of particles is above 0.6μm, the ratio of breadth and length of rhombohedron (aspect ratio) is about 0.5. (2) During particle growing under a higher supersaturation, the amalgamation growth of secondary nuclei formed heterogeneously in situ with mother crystals as well as the formation of twin crystals take place, resulting in the formation of larger particles with morphology similar to the agglomerates of particles. (3) The size of particles is mainly governed by the supersaturation during nucleation and growth of the particles, the higher the supersaturation of nucleation, the more the number of nuclei formed, therefore, the smaller the size of particles synthesized; if the supersaturation is controlled too high during the process of particle growth, the heterogeneous formation of secondary nuclei takes place largely in company with the growth of particles, the secondary nuclei formed either grow in situ, amalgamating with mother crystals, or leave their mother crystals and grow independently, resulting in the increasing or decreasing of the average particle sizes and broadening particle size distribution. (4) The growth supersaturation and its stability are mainly decided by the rate of crystallization reaction of nickel oxalate, therefore, dependent on the number of nuclei formed; the higher the supersaturation in nucleation, the more the number of nuclei formed, then, the larger the surface of particles, therefore, a higher growth reaction rate can be obtained. Due to no accumulation of Ni~(2+) and C_2O4~(2-) ions generated by the dissociation of Ni(OH)_2 and H_2C_2O_4 respectively, particles grow in a lower supersaturation, which is benefit to the preparation of monodisperse particles.
     2) The formation mechanism as well as the morphology and size control of fibrous nickel oxalate particles
     The nickel oxalate particles with fibre morphology were prepared using Na_2C_2O_4 solution and mixed NiCl_2, NH_3·H_2O solution by a double-jet process.
     It was verified by thermodynamic calculations that the internal cause of nickel oxalate being fibre morphology, is owing to the formation of Ni(NH_3)_n~(2-)(n=1,2,...,6), in alkali Ni~(2+)-NH_3-H_2O system, resulting in variations of the form and supersaturation of nickel oxalate precipitates.
     It was confirmed that with the change of synthesizing conditions, a series of Ni(NH_3)_nC_2O_4·2H_2O (n=0, 0.5,1.0,1.5,2.0,...) can be precipitated in Ni~~2+)-NH_3-C_2O_4~(2-)-H_2O system, among them, nickel oxalate with n equal to zero isα-NiC_2O_4·2H_2O, while the others being new species of nickel oxalate containing NH_3, which are no cards in JCPDS at present. Rather pure samples of nickel oxalates, with n value equal to 0.5, 1.0 1.5, 2.0 individually, were synthesized and furthermore, their molecular formula, XRD pattern and data were determined.
     It was found out that under alkali condition in the Ni~(2+)-NH_3-C_2O_4~(2-)-H_2O system, the firstborn precipitates are admixtures of several kinds of Ni(NH_3)_nC_2O_4·2H_2O (n=0.5,1.0,1.5,2.0,...), with the morphology of agglomerate of small crystals. During aging, dissolution- recrystallization processes take place, due to the difference of their solubilities, that is, the species with higher solubilities dissolve, releasing the crystallization substances constantly, while the species with lower solubilities grow under a lower supersaturation, forming fibrous nickel oxalate particles with high aspect ratio.
     It was found out that under alkali condition in the Ni~(2+)-NH_3-C_2O_4~(2-)-H_2O system, Ni(NH_3)_(1.5)C_2O_4·2H_2O is the most stable phase of nickel oxalates in the experimental range of conditions,generally existing as the only species of nickel oxalates in the systems aged fully.
     It was found out that both crystal growth and orientational aggregation along long axis of the particles are the ways of particle growing up.
     The effects of such parameters as temperature, pH, feeding rate,concentration, [NH_3]_T/[Ni]_T molar ratio, surfactants and agitation, on the morphology and size of the particles, were studied and conclusions obtained are as follows: (1) The morphology and size of the particles are mainly decided by the species of nickel oxalates present. (2) Speeding up dissolution-recrystallization process benefits the preparation of the particles of being composed of a single species with uniform morphology and high aspect ratio. (3) The variations of nucleation and growth supersaturation under different conditions have definite effects on the morphology and size of the particles. (4) Adding PVP25 at a proper amount is beneficial to the preparation of fibrous nickel oxalate particles with high aspect ratio.
     3) The formation mechanism as well as the morphology and size control of fibrous cobalt oxalate particles
     The cobalt oxalate particles with fibre morphology were prepared using CoCl_2 solution and mixed(NH_4)_2C_2O_4, NH_3·H_2O solution by a double jet process.
     Thermodynamic calculations revealed that immanent cause of cobalt oxalate presenting fibre form, is owing to the formation of Co(NH_3)_n~(2+) (n=1,2,...,6) in alkali Co~(2+)-NH_3-H_2O system, resulting in variations of the species and supersaturation of cobalt oxalate precipitated.
     It was found out that in Co~(2+)-NH_3-C_2O_4~(2-)-H_2O system, two species of cobalt oxalates can be precipitated with the changes of synthesizing conditions, one of which isβ-CoC_2O_4·2H_2O, while the other is Co(NH_3)_(1.5)C_2O_4·2H_2O, a new species of cobalt oxalate, without record in JCPDS files at present.
     It was found out that both crystal growth and orientational aggregation along long axis of the particles are the ways of particle growing up.
     The effects of such factors as temperature, pH, feeding rate, concentration and PVP25 addition, on the morphology and size of the particles, were investigated and following conclusions can be obtained: (1)The morphology and size of the particles is governed mainly by the kind of cobalt oxalate species. (2) The changes in nucleation and growth supersaturation of the particles have a certain effect on their morphology and size at varying conditions. (3) In aging process, the species of cobalt oxalate do not change, but dissolution-recrystallization process takes place among the particles with different sizes, following Ostwald ripening mechanism, resulting in variations of morphology and size of the particles. (4) The addition of PVP25 has no obvious effects on the morphology and size of fibrous cobalt oxalate particles.
引文
[1] 张克从.近代晶体学基础.1987,第一版,北京:科学出版社,208-210
    [2] 张传福,邬建辉,湛菁,等.纤维状镍粉与氧化镍粉的制备方法.中国,发明专利申请公开说明书,CN1600480A,2005-03-30
    [3] Nobuyuki Sato, Hideshi Katayama, Shuetus Ogasawara. Ni fine powder for multi-layer ceramic capacitors manufactured by chemical vapor deposition method.川崎制铁技报,2002, 34 (3): 120~124
    [4] M.A.Fetcenko, S.R.Ovshinsky, B.Reichman, et al. Recent advances in NiMH battery Technology. Journal of Power Sources, 2007, (2): 544~551
    [5] 段永华,竺培显.纳米氧化锌粉体制备技术及应用的研究.中国粉体技术,2006.(4):44~47
    [6] Improved nickel powder for small case size MLCC with high capacitance. JFE技报,2005, (8): 66~68
    [7] Christian Pithan, Detlev Hennings, Rainer Waser. Progress in the synthesis of nanocrystalline BaTiO_3 powders for MLCC. International Journal of Applied Ceramic Technology, 2005, 2(1): 1~14
    [8] Frank Tietz, Francisco J. Dias, Dimitris Simwonis, et al. Evaluation of commercial nickel oxide powders for components in solid oxide fuel cells. Journal of the European Ceramic Society, 2000, (20): 1023~1034
    [9] Songli Li, Ruisong Guo, Jingou Li, et al. Synthesis of NiO-ZrO_2 Powders for solid oxide fuel cells, Ceramics International, 2003, (29):883~886
    [10] James H. Adair, Ender Suvaci. Morphology control of particles. Current Opinion in Colloid & Interface Science, 2000, (5): 160~167
    [11] Dan V. Goia, Egon Matijevic. Preparation ofmonodispersed metal particles. New Journal of chemistry, 1998, 1203~1215
    [12] Vladimir Privman, Dan V. Goia, Jongsoon Park, et al. Mechanism of formation of monodispersed colloids by aggregation of nanosize precursors. Journal of Colloid and Interface Science, 1999, (213): 35~45
    [13] 顾珩,刘志强,李杏英,等.超细草酸镍沉淀过程中颗粒大小及形貌控制.广东有色金属学报,2006,16(3):176~179
    [14] Takeshi Okamoto, Ryoichi Ichino, Changfu Zhang, et al. Effect of Ammonia on the crystal morphology of nickel oxalate precipitates and their thermal decomposition into metallic nickel. Materials Transactions, 2005, 46 (2): 171~174
    [15] 张亚文,严铮光,李昂,等.沉淀条件对稀土氧化物的比表面积和形貌的影响(Ⅱ).中国稀土学报,2001,19(5):471~473
    [16] 全学军,李大成.草酸络合物沉淀法制备钛酸钡超细粉的研究.四川大学学报(工程科学版),2001,33(4):78~81
    [17] 古映莹,谭小平,桑商斌,等.用共沉淀法制备尖晶石型锰锌铁氧体粉末.中南工业大学学报,2002,33(4):364~366
    [18] 孙明涛,孙俊才,季世军.草酸共沉淀制备超细Ce_(0.8)Sm_(0.2)O_(1.9)工艺优化.稀土,2005,26(3):1~4转18
    [19] 张传福,邬建辉,黎昌俊,等.一种纤维镍粉的制备方法.中国,发明专利说明书,ZL02147655,1,2005-06-15
    [20] 张传福,吴琳琳,黎昌俊,等.纤维状镍钴合金粉的制备.中国有色金属学报,2002,12(1):182~186
    [21] 张传福,邬建辉,湛菁,等.纤维状纳米镍粉前驱体的合成.有色金属,2003,55(3):26~29
    [22] 邬建辉,张传福.纤维状纳米级镍粉制备的前驱体热分解.有色金属,2003,55(4):24~27
    [23] Zhang Chuanfu, Zhan Jing, Wu Jianhui, et al. Preparation of fibrous nickel oxide particles. Trans.Nonferous Met.Soc.China, 2003,13(6): 1440~1445
    [24] Zhang Chuanfu, Zhan Jing, Wu Jianhui, et al. Preparation and characterization of fibrous NiO particles by thermal decomposition of nickelous complex precursors. Trans.Nonferous Met. Soc.China, 2004,14(4): 713~717
    [25] Zhan Jing, Zhang Chuan-fu, Li Tie-jing, et al. Thermodynamic analysis on preparation of fibrous NiO precursor powders with oxalate precipitation process. Trans.Nonferous Met.Soc.China, 2005,15(4): 926~930
    [26] Dieter Horn, Jens Rieger. Organic nanoparticles in the aqueous phase—theory, experiment, and use. Angew. Chem. Int. Ed. 2001,40:4330~4361
    [27] Jurn W.P.Schemlzer. Comments on the nucleation theorem. Journal of Colloid and Interface Science,2001,(242):354~372
    [28] Toshiyuki Nomura, Manuel Alonso, Yasuo Kousaka, et al. A model for simultaneous homogeneous and heterogeneous nucleation. Journal of Colloid and Interface Science, 1998, 203:170~176
    [29] Tadao Sugimoto, Grace Dirige, Atsushi Muramatsu. Formation mechanism of monodispersed CdS particles from concentrated solution of Cd-EDTA complexes. Journal of Colloid and interface Science, 1996, (182):444~456
    [30] Tadao Sugimoto, Atsushi Muramatsu. Formation mechanism of monodispersed α-Fe_2O_3 particles in dilute solutions. Journal of Colloid and Interface Science, 1996, (184):626~638
    [31] L. Wang, L. A. Perez-Maqueda, E. Matijevic. Rapid preparation of uniform colloidal indium hydroxide by the controlled double-jet precipitation. Collod & polymer Science, 1998, 276(9): 847-850
    [32] S. Hahakura, S. Isoda, T. Ogawa, et al. Formation of uniform platium particles in an aqueous solution with a surfactant. Journal of Crystal Growth, 2002, (237-239): 1942-1945
    [33] Tadao Sugimoto, Shuzo Wali, Hiroyuki Itoh, et al. Preparation of monodisperse platelet-type hematite particles from a highly condensed β-FeOOH suspension. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, (109): 155-165
    [34] S. T. Yao, Peter G. Vekilov. Quasi-planar nucleus structure in apoferritn crystallization. Nature, 2000,406:494-497
    [35] U. Gasser, Eric R. Weeks, Andrew Schofield, et al. Real-space imaging of nucleation and growth in colloidal crystallization. Science, 13 April 2001, 292:258-262
    [36] V. G. Baidakov, G. Sh. Boltashev, J. W. Schmelzer. Comparison of different approaches to the determination of the work of critical cluster formation. Journal of Colloid and Interface Science, 2000,231:312-321
    [37] Vincent K. Shen, Pablo G. Debenedetti. A computational study of homogeneous liquid-vapor nucleation in the Lennard-Jones fluid. Journal of Chemical Physics, 1999,111(8):3582~3589
    [38] Oleg Galkin, Peter G. Vekilov. Are nucleation kinetics of protein crystals similar to those of liquid droplets. J. Am. Chem. Soc, 2000, 122:156-163
    [39] Jurn W. P. Schmelzer, Iwan Gutzow, Jurn Schmelzer, Jr. Curvature-dependent surface tension and nucleation theory. Journal of Colloid and Interface Science, 1996,178:657-665
    [40] Wenju Wu, George H. Nancollas. Interfacial free energy and crystallization in aqueous media. Journal of Colloid and Interface, 1996,182:365-373
    [41] X. Y. Liu. Effects of foreign particles: a comprehensive understanding of 3D heterogeneous nucleation. Journal of Crystal growth, 2002, 237~239:1806~1812
    [42] R.A.劳迪斯著,刘光照译.单晶生长.科学出版社,北京,1979
    [43] 张克从著.近代晶体学基础(下册).科学出版社,北京,1998
    [44] 张克从,张乐漶著.晶体生长科学与技术(上册).第二版,科学出版社,北京,1997
    [45] 仲维卓,刘光照.华素坤.若干晶体结晶习性的形成机理.无机材料学报,1994.9(1):7~13
    [46] 伸维卓,华素坤,唐鼎元,赵庆兰.晶体生长基元与晶体结晶习性.结构化学,1995,14(5~6):463~468
    [47] Wen-jun Li, Er-Wei Shi, Wei-Zhuo Zhong, et al. Growth mechanism and growth habit of oxide crystals. Journal of Crystal Growth, 1999, (203): 186~196
    [48] Wen-Jun Li, Er-Wei Shi, Zhi-Wen Yin. Growth habit of rutile and α- Al_2O_3 crystals. Journal of Crystal Growth, 2000, (208):546~554
    [49] Peter G. Vekilov, J. Iwan D. Alexander. Dynamics of layer growth in protein crystallization. Chemical Reviews, 2000, 100(6):2061~2089
    [50] F.H.shen, Q.L.Feng, C.M.Wang. The modulation of collagen on crystal morphology of calcium carbonate. Journal of Crystal Growth, 2002, (242):239~244
    [51] F. Manoli, E. Dalas. Calcium Carbonate Crystallization in the Presence of Glutamic Acid. Journal of Crystal Growth, 2001, (222):293~297
    [52] Bo Xie, Yue Wu, Yang Jiang, et al. Shape-controlled synthesis of BaWO4 crystal under different surfactants. Journal of Crystal Growth, 2002, 283~286
    [53] I. Weissbuch, L.Addadi, M. Lahav, et al. Molecular recognition at crystal interfaces. Science, 1991,253(5020):637~645
    [54] Samuel, Stupp, Paul V. Braun. Molecular manipulation of microstructures: Biomaterials, Ceramics, and semiconductors. Science, 1997, 277:1242~1248
    [55] Jun-Mo Yang, Daisuke Shindo, Grace E. Dirige, et al. High-resolution electron microscopy on thin sections of monodisperse CdS particles. Journal of Colliod and Interface Science, 1996, 183:295~298
    [56] A.Delahaye, B.Beaudoin, N.Sac-Epee, et al. Structure and Textural investigations of the nickel hydroxide electrode. Solid State Ionics, 1996,(84):239~248
    [57] 周祖康,顾惕人,马季铭.胶体化学基础.1987,第一版,北京.北京大学出 版社, 264-279
    [58] Peter A. Kralchevsky, Nikolai D. Denkov. Capillary forces and Structuring in ayers of colloid particles. Current Opinion in Colloid & Interface Science, 2001, (6):383~401
    [59] Dan V. Goia, Egon Matijevic. Tailoring the particle size of monodispersed colloidal gold. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, (146): 139-152
    [60] Manuel Ocana, Maria P.Morales, Carlos J.Serna. The growth mechanism of α- Fe_2O_3 ellipsoidal particles in solution. Journal of Colloid and Interface Science, 1995, (171): 85-91
    [61] Shihai Kan, Xintong Zhang, San Yu, et al. Synthesis of uniform ferric oxide particles from deionized colloids. Journal of Colloid and Interface Science, 1997, 191: 503-509
    [62] Zhong Lin Wang. Structural analysis of self-assembling nanocrystal superlattices. Advanced Materials, 1998,10(1): 13-30
    [63] Nathalie Jongen, Paul Bowen, Jacques Lemaitre, et al. Precipitation of self-organized copper oxalate polycrystalline particles in the presence of hydroxypropyl- methylcellulose (HPMC): Control of morphology. Journal of Colloid and Interface Science, 2000, (226): 189-198
    [64] Nikola Kally, Suzana Zalac. Stability of Nanodispersions: A model for kinetics of aggregation of nanoparticles. Journal of Colloid and Interface Science, 2002, (253): 70-76
    [65] Ned Bowden, Andreas Terfort, Jeff Carbeck, et al. Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science, 1997, (276):233~235
    [66] Y. Yao, A. R. Tholen. Adhesion between nanoparticles. Nanostructured Materials, 1999, 12: 661-664
    [67] Mei Li, Heimo Schnablegger, Stephen Mann. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature, 1999, (402): 393-395
    [68] D.J.Smit, M.J.Hounslow, W.R.Paterson. Aggregation and gelation: III. Numerical classification of kernels and case studies of aggregation and growth. Chemical Engineering Science, 1995, 50(5): 849-862
    [69] Allan S. Bramley, Michael J. Hounslow, Rosemary L. Ryall. Aggregation during precipitation from solution:A method for extracting rates from experimental data. Journal of Colloid and Interface Science. 1996, (183): 155~164
    [70] A.S.Bramley, M.J.Hounslow, R.Newrnan,et al. The role of solution composition on aggregation during precipitation. Trans. IchemE, 1997,(75 Part A): 119~124
    [71] A.S.Bramley, M.J.Hounslow, R.Newman. Aggregation during precipitation from solution.Kinetics for calcium oxalate monohydrate. Chemical Engineering Science, 1997,52(5):747~757
    [72] Machael J. Hounslow, Allan S. Bramley, William R. Paterson. Aggregation during precipitation from solution. A pore diffusion-reaction model for calcium oxalate monohydrate. Journal of Colloid and InterfaceScience, 1998,(203 ):383~391
    [73] 李洪波.钴粉生产的过程控制.硬质合金,2001,18(2):110~113
    [74] 任小华,蒋文全,李莉,等.部分杂质对球形氢氧化亚镍结构及电性能的影响.电源技术,1998,22(1):43~46
    [75] 刘宏兵,向兰,金涌.掺铝M(OH)_2的制备及其电化学性能.云南大学学报(自然科学版)2005,27(3A):248~252
    [76] 肖松文.湿法锑白的结构形貌控制机理及其制备新工艺:[博士学位论文].长沙:中南工业大学,1997
    [77] Oleg Vasklkiv, Yoshio Sakka, Hanna Borodians'ka. Nonisothermal synthesis of yttria-stabilized zirconia nanopowder through oxalate processing: Ⅱ, Morphology manipulation. Journal of American Ceramic Society, 2001, 84(11): 2484~2488
    [78] G.Gille, S. Albrecht, J. Meese-Marktscheffel, et al. Cathode materials for rechargeable batteries—preparation, Structure—property relationships and performance. Solid State lonics, 2002, (148): 269~282
    [79] 李新海,郭永新,王志兴,等.LiCoO_2结构及性能与锂离子电池电压特性的关系.中国有色金属学报,2002,12(4):739~742
    [80] 张齐勋,张家顺.电解工艺对镍粉粒度及其分布的影响.中南工业大学学报,1996,27(3):308~311
    [81] F. H. Shen, Q. L. Feng, C. M. Wang. The modulation of collagen on crystal morphology of calcium carbonate. Journal of Crystal Growth, 2002, (242): 239~244
    [82] Wan P. Hsu, Qiping Zhong, Egon Matijevic. The formation of uniform colloidal particles of magnesium fluoride and sodium magnesium fluoride. Journal of Colloid and Interface Science, 1996, (181): 142~148
    [83] Frederic Ruth, Egon Matijevic. Preparation of micrometer size budesonide particles by precipitation. Journal of Colloidal and Interface Science, 2000, (229): 207~211
    [84] Jesus Garcia-Carmona, Jaime Gomez Morales, Rafael Rodriguez, et al. Morphological control of precipitated calcite obtained by adjusting the electrical conductivity in the Ca(OH)_2- H_2O-CO_2 system. Journal of Crystal Growth, 2003, (249): 561~571
    [85] Wang Mo Jung, Sung Hoon Kang, Woo-Sik Kim, et al. Particle morphology of calcium carbonate precipitated by gas-liquid reaction in a Coette-Taylor reactor. Chemical Engineering Science, 2000, (55): 733~747
    [86] Tadao Sugimoto, Grace E.Dirige, Atsushi Muramatsu. Synthesis of monodisperse CdS and ZnS particles from concentrated solution of the EDTA-metal complexes. Journal of Colloid and Interface Science, 1996, (180): 305~308
    [87] Tadao Sugimoto, Sihai Chen, Atsushi Muramatsu. Synthesis of uniform particles of CdS, ZnS, PbS and CuS from concentrated solutions of the metal chelates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998,(135):207~226
    [88] Laifeng Wang, Ivan Sondi, Egon Matijevic. Preparation of uniform needle-like aragonite particles by homogeneous precipitation. Journal of Colloid and Interface Science, 1999, (218): 545~553
    [89] M. Ocana, M. P. Morales, C. J. Sema. Homogeneous precipitation of uniform α- Fe_2O_3 particles from iron salts solution in the presence of urea. Journal of Colloid and Interface Science, 1999, (212): 317~323
    [90] Chad R. Peterson, Elliott B. Slamovich. Effect of processing parameters on the morphology of hydrothermally derived PbTiO_3 Powders. Journal of American Ceramic Society, 1999, 82(7): 1702~1710
    [91] Nelson S. Bell, Seung-Beom Cho, James H. Adair. Size control of α- alumina particles synthesized in 1,4-butanediol solution by α-alumina and α-hematite seeding. Journal of American Ceramic Society, 1998, 81(6): 1411~1420
    [92] Nelson S. Bell, James H. Adair. Adsorption effects on glycothermally produced α-alumina particle morphology. Journal Of Crystal Growth, 1999, (203): 213~226
    [93] Tadao Sugimoto, Kazumi Okada, Hiroyuki Itoh. Synthesis of uniform spindle-type titania particles by the gel-sol method. Journal of Colloid and Interface Science, 1997, (193): 140~143
    [94] Tadao Sugimoto, Xingping Zhou, Atsushi Muramatsu. Synthesis of uniform anatase TiO_2 nanoparticles by gel-sol method: 1. Solution of chemistry of Ti(OH)_n~((4-n)+) complexes. Journal of Colloid and Interface Science, 2002, (252): 339~346
    [95] Tadao Sugimoto, Xingping Zhou. Synthesis of uniform anatase TiO_2 nanoparticles by gel-sol method: 2. Adsorption of OH~- ions to Ti(OH)_4 gel and TiO_2 particles. Journal of Colloid and Interface Science, 2002, (252): 347~353
    [96] Tadao Sugimoto, Xingping Zhou, Atsushi Muramatsu. Synthesis of uniform anatase TiO_2 nanoparticles by gel-sol method: 3. Formation process and size control. Journal of Colloid and Interface Science, 2003, (259): 43~52
    [97] Tadao Sugimoto, Xingping Zhou, Atsushi Muramatsu. Synthesis of uniform anatase TiO_2 nanoparticles by gel-sol method: 4. Shape control, 2003, (259): 53~61
    [98] Qingyuan Liu, K.Osseo-Asare. Synthesis of monodisperse Al-substituted hematite particles from highly condensed metal hydroxide gels. Journal of Colloid and Interface Science, 2000, (231):401~403
    [99] Tadao Sugimoto, Hiroyuki Itoh, Hideaki Miyake. Formation of monodisperse microcrystal of basic aluminum sulfate by the gel-sol method. Journal of Colloid and Interface Science, 1997, (188): 101~114
    [100] Tadao Sugimoto, Grace E.Dirige,Atsushi Muramatsu. Synthesis of uniform CdS Partcles from condensed Cd(OH)_2 suspension. Journal of Colloid and Interface Science,1995,(173):257~259
    [101] Tadao Sugimoto, Grace E.Dirige,Atsushi Muramatsu. Formation mechanism of uniform CdS particles from condensed Cd(OH)_2 suspension. Journal of Colloid and Interface Science, 1995, (176):442~453
    [102] Tadao Sugimoto, Yinsheng Wang, Hiroyuki Itoh, et al. Systematic control of size, shape and internal structure of monodisperse α-Fe_2O_3 particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, (134): 265~279
    [103] Haruki Kurokawa, Mamoru Senna. Self-stabilization of green rust(Ⅱ)as a precursor of acicular goethite particles with highest possible aspect ratio. Powder Technology, 1999, (103): 71~79
    [104] Raul Pozas, Manuel Ocana, M. Puerto Morales, et al. Uniform nanosized geothite particles obtained by aerial oxidation in the FeSO_4-Na_2CO_3 system. Journal of Colloid and Interface Science, 2002, (254): 87~94
    [105] Nuria O. Nunez, M. Puerto Morales, Pedro Tartai, et al. Preparation of high acicular and uniform goethite particles by a modified-carbonate route. Journal of materials Chemistry, 2000, (10): 2561~2565
    [106] Kazuhiko Kandori, Akemi Yasukawa, Tatsuo Ishikawa. Influence of amine on formation and texture of uniform hematite particles. Journal of Colloid and Interface Science, 1996, (180): 446~452
    [107] Gyeong Park, Daisuke Shindo, Yoshio Waseda, et al. Internal Structure analysis of monodispersed pseudocubic hematite particles by electron microscopy. Journal of Colloid and Interface Science, 1996, (177): 198~207
    [108] Tadao Sugimoto, Yinsheng Wang. Mechanism of the shape and structure control of monodispersed α- Fe_2O_3 particles by sulfate ions. Journal of Colloid and Interface Science, 1998,(207): 137~149
    [109] Tadao Sugimoto, Hiroyuki Itoh, Takeaki Mochida.Shape control of monodisperse hematite particles by organic additives in the Gel-sol system. Journal of Colloid and Interface Science, I998, (205): 42~52
    [110] Tingjie Wang, Yong Jin, Zhanwen Wang, et al. A study of the morphology of the Goethite crystallization process. Chemical Engineering Journal, 1998, (69): 1~5
    [111] Corina Gonia, Egon Matijevic. Precipitation of barium and calcium naproxenate partcles of different morphologies. Journal of Colloid and Interface Science, 1998, (206),583~591
    [112] Kazuhiko Kandori, Nakaba Ikeguchi, Akemi Yasukawa, et al. Control of size and adsorptive properties of spherical aluminum phosphate particles. Journal of Colloid and Interface Science, 1996, (182): 425~430
    [113] Yiwei Tan, You Wang, Lei Jiang, et al. Thiosalicylic acid-functionalized silver nanoparticles synthesized in one-phase system. Journal of Colloid and Interface Science, 2002, (249): 336~345
    [114] M.Bredol, J. Merikhi. ZnS precipitation: morphology control. Journal of Materials Science, 1998, (33):471~476
    [115] 王群,葛凯勇,毛倩谨,等.超细镍粉在电磁防护功能材料中的应用.新 技术新工艺(材料与表面处理),2002,(2):41~43
    [116] 王春明,李飞,易新文,等.熔融碳酸盐电池电极用镍粉料浆的流变学研究.材料科学与工程,2002,20(4):473~477
    [117] 屈子梅,侯开太.我国羰基镍粉木工业的发展.四川冶金,1995,(4):62~66
    [118] 王炳根.国内外羰基镍粉的发展、生产及应用.四川有色金属,1997,(4):6~10
    [119] 刘思林,陈趣山,腾荣厚,等.羰基精炼镍和贵金属的富集与回收.贵金属,1998,19(3):20~25
    [120] 赵顺兴.超细羰基镍粉的制取.粉末冶金工业,1998,8(1):11~17
    [121] 屈子梅.羰基镍的毒性与防护.粉末冶金工业,1998,8(2):43~45
    [122] Inco invests in its nickel future at Clydach. Metal powder report, April 1998, 24~27.
    [123] Norilsk nickel reveals its carbonyl nickel powders. Metal powder report, September 1998, 38, 40~42.
    [124] 高保军.高压羰化法镍精炼设计.有色冶炼,2002,(4):15~19
    [125] 屈子梅.我国羰基镍工业的技术进步.粉末冶金工业,2003,13(1):15~20
    [126] 柳学全,方建峰,黄乃红,等.国内外羰基镍技术进展及市场展望.粉末冶金工业,2003,13(3):10~13
    [127] R. M. Khall. Electrodeposition of catalytically active nickel powders from electrolytes of various anionic compositions. Journal of Applied Electrochemistry, 1988, 18:292~297
    [128] 李奇金,李日辉,赵德厚,等.低氯硫酸镍电解液生产镍粉.粉末冶金技术,1997,15(3):186~189
    [129] 王菊香,潘进,赵恂,等.超声电解法制备超细金属粉的研究.金属功能材料,1997,(3):115~118。
    [130] 姜力强,张晓忠,毛信表,等.超细镍粉电解制备工艺研究.材料科学与工艺,1999,7(1):87~92
    [131] 刘海飞,许根国,方淑媛.用氯化盐和硫酸盐电解液制备镍粉.有色金属:冶炼部分,1999,(4):36~38
    [132] 冯宁川,马志强,许红平.电化学法制备微米级镍粉条件初探.宁夏医学院学报,2001,23(2):94~95转102
    [133] 谭泽钧.加压氢还原法生产极细镍粉的研究.有色冶炼,1988,(10):47~53
    [134] Nakamichi Yamasaki, Liang Huanzhen. Reduction Kinetics of Ni(OH)_2 to Nickel Powder preparation Under Hydrothermal Conditions. Metallurgical Transactions B, 1993, 24B: 557~561
    [135] 俞克宁,胡嗣强,毛铭华,等.Ni(OH)_2水热氢还原制备超细Ni粉.材料研究学报.1995,9(3):223~227
    [136] 梁焕珍.Ni(OH)_2水浆蒽醌催化水热还原制备超细镍粉.化工冶金,1995,16(4):307~311
    [137] Thomas Saarinen, Sigrnund Fugleberg, Lars-Eric Lindfors. Pressure reduction of nickel by hydrogen from hydroxide slurry. Hydrometallurgy, 1996, 43:117~127
    [138] 徐菊,俞克宁,梁焕珍,等.用Ni(OH)_2浆化氢还原制备纳米金属镍粉的反应机制.材料研究学报,2002,16(2):158~163
    [139] S. Stopic, I. Ilic, D. Uskokovic. Structural and morphological transformations during NiO and Ni particles generation from chloride precursor by ultrasonic spray pyrolysis. Materials Letters, 1995, 24:369~376
    [140] S. Che, K. Takada, N. Mizutani. Formation of spherical dense nickel particles by pyrolyzing the aerosol of an ammine complex solution in nitrogen atmosphere, Journal of materials science letters, 1998, 17:1227~1230
    [141] B. Xia, I. W. Lenggoro, K.Okuyama. Preparation of Ni particles by ultrasonic spray pyrolysis of NiCl_2.6H_2O precursor containing ammonia. Journal of materials Science, 2001, 36:1701~12705
    [142] Bin Xia, I. Wuled Lenggoro, Kikuo Okuyarna. Preparation of Nickel powders by spray pyrolysis of nickel formate,. J. Am. Ceram. Soc., 2001, 84(7): 1425~1432
    [143] Kung Hyeun Kim, Valeri I. Babushok, Thomas A. Germer. Cosolvent-assisted spray pyrolysis for the generation of metal particles. J. Mater. Res., 2003, 18(7):1614~1622
    [144] Kyung Nam Kim. Sun-Geon Kim. Nickel psrticles prepared from nickel nitrate with and without urea by spray pyrolysis. Powder Technology, 2004, 145: 155~162
    [145] Wei-Ning Wang, Yoshifumi Itoh, I. Wuled Lengoro, et al. Nickel and nickel oxide nanoparticles prepared from nickel nitrate hexahydrate by a low pressure spray pyrolysis. Materials Science and Engineering B, 2004, 111:69~76
    [146] Dong-Jun Kang, Sun-Geon Kim. Morphologies and properties of nickel particles prepared by spray pyrolysis.Journal of Materials Science, 2004, (39):5718~5726
    [147] 沈勇,张宗涛,赵斌,等.高分子保护溶液还原法制备球形超细镍粉.化学通报,1996(1):41~42。
    [148] 沈勇,张宗涛,赵斌,等.溶液还原法制备球形超细镍粉.物理化学学报,1996,12(5):460~463
    [149] 沈勇,张宗涛,赵斌,等.明胶保护溶液还原法制备超细镍粉.华东理工大学学报,1997,23(4):452~456
    [150] 谢克难,游贤贵.超细镍粉的制备.四川有色金属,1998(2):11~15
    [151] 张楠,翟秀静,翟玉春.超细镍粉的溶液还原法制备研究.功能材料.1999,30(3):263~267
    [152] Y. D.Li, C.W. Li, H.R.Wang, et al. Preparation of nickel ultrafine powder and crystalline film by chemical control reduction. Materials Science and Physics, 1999, 59:88~90
    [153] 吴阳红.微细镍粉的研制.有色矿冶,2000,16(2):45~48
    [154] 方政秋.用于制备浆料的超细镍粉.电子元件与材料,2000,19(2):30~31
    [155] 廖戎,潘高峰,毛羽.高纯度超细镍粉的除杂研究.矿物岩石,2000,22(3):90~92
    [156] 张传福,湛菁,长谷川良佑,等.超声波喷雾液相还原法制备超细镍粉.矿冶工程,2001,21(2):48~51
    [157] Kan-Sen Chou, Kuo-Cheng Huang. Studies on the chemical synthesis of nanosized nickel powder and its stability. Journal of Nanoparticle Research 2001, 3:127~132
    [158] Jinzhang Gao, Fei Guan, Yanchun Zhao, et al. Preparation of ultrafine nickel powder and its catalytic dehydrogenation activity. Materials Chemistry and Physics, 2001, 71 : 215~219
    [159] 员江平.水合肼还原法制备超细镍粉.新疆有色金属,2002,20-21
    [160] 廖戎,周大利,张云,等.高振实密度球形镍粉研制.电子元件与材料,2003,22(3):28~31。
    [161] Eun Young Choi, Sang Geun Lee,Yoon Bok Lee, et al. Preparation of nickel fine powders from aqueous nickel chloride solution containing organic solvents. Journal of the Korean Ceramic Society, 2003, 40(5):488~493
    [162] 张庆堂,任山.一种具有特殊形貌的超细镍粉制备研究.中山大学学报(自然科学版),2003,42(6):24~26
    [163] Szu-Han Wu and Dong-Hwang Chen. Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. Journal of colloid and interface science, 2003, 259 : 282-286.
    [164] Eun Young Choi, Yoon Bok Lee, Suk Young yoon, et al.Preparation of nickel powders by the reduction of hydrazine from diethanolamene solutions.Journal of the Korean Ceramic Society, 2005,42(6):432~436
    [165] Jae-Young Choi,Yong-Kyun Lee, Seon-Mi Yoon, et al.A chemical route to large scale preparation of spherical and monodisperse Ni powders. J. Am. Ceram. Soc.,2005,88(11),3020~3023
    [166] Kwang Go Kim, Hee Chan Park, Sin Duk Lee, et al. Preparation of submicron nickel powders by microwave-assisted hydrothermal method. Materials Chemistry and Physics,2005, (92):234~239
    [167] Jung Woo Park, Eng H Choi, Sang H. Kim, et al. Preparation of fine Ni powders from nickel hydrozine complex. Materials Chemistry and Physics,2006,(97):371~378
    [168] 陈祖耀,陈文,朱英杰,等.γ-射线辐照从水溶液环境中制得金属镍超细粉的晶粒度和磁学性质.化学物理学报,1997,10(1):26~30
    [169] 殷亚东,徐相凌,葛学武,等.纤维状纳米镍粉的γ射线辐照合成.辐照研究与辐射工艺学报,1999,17(1):19-23
    [170] Xiao-min Ni, Xiao-bo Su, Zhi-ping Yang, et al. The preparation of nickel nanorods in water-in-oil microemulsion. Journal of Crystal growth, 2003, 252 : 612-617.
    [171] 高保娇,高建峰,周加其,等.超微镍粉的微乳液法制备研究.无机化学学报,2001,17(4):491~495
    [172] Andrej Degen, Jadran Macek. Preparation of submicrometer nickel powders by the reduction from nonaqueous media,. Nanostructured Materials, 1999, 12 : 225~228
    [173] C. Wang, X. M. Zhang, X. F. Qian, et al. Preparation of nanocrystalline nickel powders through hydrothermal-reduction method. Materials research bulletin, 1998, 33(12): 1747-1751
    [174] M. S. Hegde, D. Larcher, L. Dupont, B. Beaudoin, et al. Synthesis and chemical reactivity of polyol prepared monodisperse nickel powders. Solid state ionics, 1997, 93:33~50
    [175] A. Bianco, G. Gusmano, R. Montanari, et al. Microstructural characterization of Ni, Co and Ni-Co fine powders for physical sensors. Thermochemica Acta, 1995, 269/270:117~132
    [176] G. Viau, F. Fievet-Vincent, F. Fievet. Nuclation and growth of bimetallic CoNi and FeNi monodisperse particles prepared in polyols. Solid State Ionics, 1996, 84:259~270
    [177] Dong-Sik Bae, Won-Hoon Kim, Sang-Woo Kim, et al. Synthesis of fine nickel powders by glycothermal process. Journal of materials science letters, 2001, 20:1969~1970
    [178] F.Bonet, S. Grugeon, L.Dupont, et al. Synthesis and characterization of bimetallic Ni-Cu particles. Journal of solid state chemistry, 2003, 172:111-115
    [179] 李鹏,官建国,张清杰,等.1,2丙二醇液相还原法制备纳米镍粉的研究,材料科学与工艺,2001,9(3):259-262。
    [180] E.G. Baburaj, Kevin T. Hubert, F.H.(Sam) Froes. Preparation of Ni powder by mechanochemical process, Journal of Alloys and compounds 257(1997) 146~149.
    [181] 麻润海,李福燕.药芯焊丝用高质量球形Ni粉的研制,焊接,1999(4):11~13
    [182] 王金星.固态碳还原法真空制取金属镍粉的试验研究.铁合金,1998(2):27~30
    [183] 张楠,翟玉春,翟秀静.Ni(OH)_2氢还原法制备超细镍粉过程的反应动力学研究.有色矿冶,2000,16(2):35~37
    [184] G.Shanmugavelayutham, V Selvarajan. Plasma spheroidization of nickel powders in plasma reactor. Bull. Mater. Sci.,2004,27(5):453~457
    [185] 彭美勋,王零森,沈湘黔,等.球形氢氧化镍的电化学特性及其湿法制备技术研究进展.矿冶工程,2004,24(2):45~49
    [186] Y.L.Zhao, J.M.Wng,H.Chen, et al. Al-substituted α-nickel hydroxide prepared by homogeneous precipitation method with urea. International Journal of Hydrogen Energy,2004, (29):889~896
    [187] Y.L.Zhao, J.M.Wng,H.Chen, et al. Different aditives- substituted α-nickel hydroxide prepared by urea decomposition. Electrochimica Acta, 2004, (50):91~98
    [188] M.C. Bernard, R. Cortes, M. Keddam, et al. Structural defects and electrochemical reactivity of β-Ni(OH)_2 .Journal of Power Source, 1996, (63):247~254
    [189] Chang Zhaorong, Li Gongan, Zhao Yujuan, et al. Influence of preparation conditions of spherical nickel hydroxides on its electrochemical properties. Journal of Power Sources, 1998,(74):252~254
    [190] 万春荣,章金基,姜长应.氢氧化亚镍的性能与结构之间关系的研究.清华大学学报(自然科学版),1998,(5)95~98
    [191] 王超群,任小华,蒋文全,等.制备条件对Ni(OH)_2微观结构参数的影响.中国有色金属学报,1999,9(3):504~508
    [192] 王超群,任小华,蒋文全.氢氧化镍电极材料微结构特性的分析方法.电源技术,1999,33(增刊):94~98
    [193] 姜长印,张泉荣,杜晓华,等.高活性球形氢氧化镍的密度控制.电源技术,2000,24(4):207~208转213
    [194] Quansheng Song, Zhiyuan Tang, Hetong Guo, et al. Stuctural characteristics of nickel hydroxide synthesized by a chemical precipitation route under different pH values. Journal of Power Sources, 2002, (112):428~434
    [195] 王超群,王宁,李娜娜.氢氧化镍电极材料的错层结构表征.中国有色金属学报,2002,12(3):496~500
    [196] 田吉平,郭少斌,陈启斌.球形Ni(OH)_2XRD线谱与制备工艺的关系.电池,2002,32(2):81~82
    [197] 彭美勋,王零森,沈湘黔,等.球形氢氧化镍的微观结构及其形成机理.中国有色金属学报,2003,13(5):1130~1135
    [198] Shen Xiang-qian, Peng Mei-xun, Jing Mao-xiang, et al. Study on structural characteristics of spherical Ni(OH)_2 electrode active materials. 功能材料,2005,36 (11): 1798~1805
    [199] Shen Xiang-qian, Peng Mei-xun, Jing Mao-xiang, et al. Formation of microstructures for spherical Ni(OH)_2 particles,功能材料,2005, 36 (10): 1629~1633
    [200] 郭永全,尹鸽平,葛亮,等.反应体系pH值和氨用量对氢氧化镍性能的影响.电源技术,2006,30(2):112~116
    [201] Ken-ichi Watanabe, Mitsuru Koseki, Naoaki Kumagai. Effect of cobalt addtion to nickel hydroxide as a positive material for rechargeable alkaline batteries. Journal of Power Sources, 1996,23~28
    [202] Xianyou Wang, Jie Yuan, Huatang Yuan, et al. Surface modification and electrochemical studies of spherical nickel hydroxide. Journal of Power Sources, 1998, (72):221~225
    [203] Zhaorong Chang, Hongwei Tang, Jianguo Chen. Surface modification of pherical nickel hydroxide for nickel electrodes. Electrochemistry Communications, 1999, (1):513~516
    [204] M.S.Wu, C.M.Huang, Y.Y.Wang, et al. Effects of surface modification of nickel hydroxide powder on the electrode performance of nickel/metal hydrite batteries. Electrochimica Acta, 1999, (44):4007~4016
    [205] 孙全,劭中财,高景龙.NiO超细粉的制备及应用进展.有色矿冶,2006,22(4):40~46
    [206] S.RJiang,P.J.Callus,S.P. S.Badwal. Fabrication and performance of Ni/3 mol% Y_2O_3-ZrO_2 cermet anodes for solid oxide fuel cells.Solid State lonics,2000,(132): 1~14
    [207] Takehisa Fukui,Kenji Murata, Satoshi Ohara, et al. Morphology control of Ni-YSZ cermet anode for lower temperature of SOFCs. Journal of Power Sources,2004, (125) 17~21
    [208] Fei-bai Zhang, Ying-ke Zhou, Hu-lin Li. Nanocrystalline NiO as an electrode material for electrochemical capacitor. Materials Chemistry and Physics,2004,(83):260~264
    [209] 王晓峰、孔祥华.新型氧化镍超电容器电极材料的研究.无机材料学报,2001,16(5):815~820
    [210] Yan Wang, Jia-Jun Ke. Preparation of nickel oxide powder by decomposition of basic nickel carbonate in microwave field with nickel oxide seed as microwave absorbing additive. Materials Research Bulletin, 1996, 31(1):55~61
    [211] Li Yadong, Li Chengwei, Duan Xiangfeng, et al. Preparation of nanocrystalline NiO in mixed solvent,中国科学技术大学学报,1997, 27(3):346~349
    [212] Guo-Jun Li, Xiao-Xian Huang, Ying Shi, et al. Preparation and characteristics of nanocrystalline NiO by organic solvent method. Materials Letters,2001 ,(51)325~330
    [213] L. Xiang,X .Y.Deng,Y.Jin. Experimental study on the synthesis of NiO nano-particles. Scripta Materialia,2002,(47):219~224
    [214] J.Estelle, P.Saladre,Y.Cesteros,et al. Comparative study of the morphology and surface properties of nickel oxide prepared from different precursors. Solid State Ionics, 2003, (156):233~243
    [215] Dongliang Tao, Fei Wei. New procedure towards size-homogeneous and well-dispersed nickel oxide nanoparticles of 30 nm. Materials Letters,2004,(58 ):3226~3228
    [216] 刘光俊.硬质合金用的钴粉制取新方法介绍.硬质合金,1992,9(4):243~248
    [217] 张健.硬质合金用钴粉生产工艺比较.有色金属,1998,50(3):110~113
    [218] 王玉棉,李军强,张亮亮,等.超细钴粉制备工艺及研究进展.甘肃冶金,2004.26(3):60~62
    [219] Liu Sha, Xu Kai-hua, Wang Min. Preparation of Co powders for cemented carbides in China. International Journal of Refractory Metals & Hard Materials, 2006, (24):405~412
    [220] Hydrometallurgically processing fine cobalt. Metal Powder Report,December 1996,18~22
    [221] 谭泽钧.从硫酸铵钴溶液中沉淀超细钻粉的工艺研究,全国第一界镍钴学术会议论文集,131~137,查地点、年份。(1987年9月,金川)
    [222] Dong—Jin Kim, Hun—Saeng Chung, Kening Yu. Cobalt powder from Co(OH)_2 by hydrogen reduction. Materials Research Bulletin, 2002, (37):2067~2075
    [223] 俞克宁,毛铭华,梁焕珍,等.Co(OH)_2碱性浆化氢还原制备超细Co粉.过程工程学报,2001,1(1):62~65
    [224] M.Figlarz等,制备金属钴粉新工艺.刘金山译自((Second Congress Cobalt Metallurgy and Uses》Vinice,1985年10月,185~197
    [225] Guozhen Shen, Di Chen, Kaibin Tang,et al. A rapid route for the synthesis of submicron Se and Te rod-like crystals.Materials Research Bullitin,2004, (39):2077~2082
    [226] 潘泽强,杨声海,张多默.多元醇还原制取球形钴粉.硬质合金,2003,20(1):12~15
    [227] Zorica Cmjak Orel, Egon Matijevic, Dan V. Gonia. Conversion of uniform colloidal Cu_2O spheres to copper in polyols. Journal of Materials Research,2003,18(4): 1017~1022
    [228] C. Luna, M. P. Morales, C. J. Serna, et al. Effects of surfactants on the particle morphology and self-organization of Co nanocrystals. Materials Science and Engineering C,2003, (23):1129~1132
    [229] Xian-Ming Liu, Shao-yun Fu, Chuan-jun Huang. Fabrication and characterization of spherical Co/Ni alloy particles, Material Letters, 2005, (59): 3791~3794
    [230] G.Viau, P.Toneguzzo, A. Pierrard, et al. Heterogeneous Nucleation and Growth of Metal Nanoparticles in Polyols. Scripta Materials, 2001 (44):2263~2267
    [231] D.Larcher, R. Patrice. Preparation of metallic powders and alloy in polyol media: A thermodynamic approach. Journal of solid state chemistry, 2000, (154):405~411
    [232] G.Viau, F. Ravel, O. Acher, et al. Preparation and microwave characterization of spherical and monodisperse Co-Ni particles. Journal of Magnetism and Magnetic Materials, 1995, (140-144):377~378
    [233] Hee Dong Jang, Dae Won Hwang, Dong Pyo Kim, et al. Preparation of cobalt nanoparticles by hydrogen reduction of cobalt chloride in the gas phase. Materials Research Bullitin, 2004, (39):63~70
    [234] Roland S. Young. Cobalt Chemistry, Metallurgy and Uses. New York:The Science Press, 1960
    [235] 周健,宁顺明,习小明.电子级Co_3O_4制备方法及其进展.矿冶工程,2005,25(2):39~45
    [236] 李赣伟.中国锂离子电池正极材料产业化综述.江西冶金,2006,23(6):55~57
    [237] 闫时建,田文怀,其鲁.锂离子电池正极材料钴酸锂近期研制进展.兵器材料科学与工程,2005,28(5):56~61
    [238] 谭美军、王正祥.Co_3O_4对LiCoO_2微观形貌和性能的影响.电池,2005,35(1):25~26
    [239] 胡国荣,石迪辉,张新龙,等.Co_3O_4对LiCoO_2电化学性能的影响.电池,2006.36(4):286~287
    [240] 彭文杰,李新海,王云燕,等.固相合成条件对LiCoO_2结构形貌的影响.中南大学学报(自然科学版),2004,35(1):59~64
    [241] 胡国荣.制备高品质四氧化三钴的新方法.中国,发明专利申请公开说明书,CN 1715193A,2006年1月4日
    [242] 洪运涛,乔梁,刘新华.Ruthner-喷雾焙烧法废盐酸再生技术在冷扎中的应用.现代化工,2005,25(1):48~50
    [243] 李阳兴,姜长印,万春荣,等.β-Co(OH)_2粉末的制备及结构研究.电源技术,1999,23(6):325~327
    [244] 林宣精.当代废盐酸再生工艺的评析.化工环保,1998,(18):208~214
    [245] 王新喜,吕光烈,曾跃武,等.湿法制备纳米晶Co_3O_4及其微观结构研究.化学学报,2003,61(11):1849~1853
    [246] 张卫民,孙思修,俞海云,等.水热—固相热解法制备不同形貌的四氧化三钴纳米微粉.高等学校化学学报,2003,24(12):2151~2154
    [247] 张卫民,宋新宇,李大枝,等.水热条件对立方状Co_3O_4形貌的影响.高等学校化学学报,25(5):797~801
    [248] 王海北,王玉芳,蒋开喜,等.研究加压湿法直接合成四氧化三钴.科学技术与工程,2005,5(16):1184~1186
    [249] 廖春发,梁勇,陈辉煌.由草酸盐热分解制备Co_3O_4及其物性表征.中国有色金属学报,2004,14(12):2131~2136
    [250] 德荣.草酸钴和氧化钴.江西冶金,1997,17(5):55~57
    [251] 谢朋,翟玉春,翟秀静,等.蓄电池添加剂Co、CoO、Co(OH)_2的研究现状.Chinese Journal of Power Sources,1998,22(5):222~224
    [252] 林河成.论述氧化钴的生产及应用.有色矿冶,1999,(2):29~32转42
    [253] 谢朋,翟玉春,赵彦军.高纯CoO的制备研究.中国有色金属学报,8(Sppl2):129~132
    [254] 刘志宏,李启厚,李玉虎,等.一种草酸盐单分散超细粉末及其制备方法.中国,发明专利申请说明书,申请号:200610136864.1
    [255] 高晋,王洪军.前驱体颗粒的形貌对钴粉形貌的影响.稀有金属与硬质合金,2002,30(2):15~19
    [256] 卢寿慈.粉体技术手册.北京:化学工业出版社,2004.628~670
    [257] Mohamed A. Mohamed, Andrew K. Galwey, Samih A. Halawy. A comparative study of the thermal reactivities of some transition metal oxalates in selected atmospheres. Thermochimica Acta, 2005, (429):57~72
    [258] Dan Zhan, Changjie Cong, Kahirou Diakite, et al. Kinetics of thermal decomposition of nickel oxalate dihydrate in air. Thermochimica Acta, 2005, (430):101~105
    [259] Tadao Sugimoto, Fumiyuki Shiba. Spontaneous nucleation of monodisperse silver halide particles from homogeneous gelatin solution Ⅰ:silver chloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000,(164): 183~203
    [260] Tadao Sugimoto, Fumiyuki Shiba. Spontaneous nucleation of monodisperse silver halide particles from homogeneous gelatin solution Ⅱ:silver bromide. Colloids and Surfaces A: Physieoehemical and Engineering Aspects, 2000, (164): 205~215
    [261] A.P. Collier, C.J.D.Hetherington,M.J.Hounslow. Allignment mechanisms between particles in crystaline aggregates. Journal of Crystal Growth, 2000, (208): 513~519
    [262] 中本一雄.无机和配位化合物的红外和拉曼光谱(黄德如.汪仁庆).北京:化学工业出版社,1986,199~244
    [263] Baes C. F. Jr., Mesmer R. E.. The hydrolysis of cations. New york: Wlley-Interscience, 1976.
    [264] Sillen G.., Martell A. E.. Stability Constants of Metal-ion Complexes London: Chemistry Societry, 1964.
    [265] Sillen G.., Martell A. E.. Stability Constants of Metal-ion Complexes (Suppl. No. 1). London: Chemistry Societry, 1971.
    [266] Hogfeldt E.. Stability Constants of Metal-Ion Complexes: Oxford: Pregamon, 1982.
    [267] 李维,赵秦生.真空热分解制备硬质合金用钻粉.中国有色金属学报.1998,8(1):101~105
    [268] Cynthia L_Conner等,李学芳译.选择适合的WC和Co粉用于生产硬质合金.国外难熔金属与硬质材料,2001,17(1):1~7
    [269] Licai Mao, Zhongqiang Shan, Shuhai Yin, et al. Effect of cobalt powder on the inner pressure of Ni/MH batteries. Journal of Alloys and Compounds, (1999), (293-295): 825~828
    [270] Arvind Sinha, Swapan Kumar Das, B. Ravi Kumar, et al. Polymer-mediated synthesis of fine-sized cobalt particles. Journal of Materials Synthesis and Processing, 2000, 8(2): 109~113
    [271] Victor F. Puntes, Kannan M. Krishnan, A. Paul Alivisatos. Colloidal nanocrystal shape and size control: The case of cobalt. Science, 2001, 291:2115~2117
    [272] Yonghong Ni, Xuewu Ge, Zhicheng Zhang, et al. A simple reduction-oxidation route to prepare Co_3O_4 nanocrystals. Materials Research Bulletin, 2001, (36): 2383~2387
    [273] Congkang Xu, Yingkai Liu, Guoding Xu, et al. Fabrication of CoO Nanorods via thermal decompostion of CoC_2O_4 precursor. Chemical Physics Letters, 2002, (366): 567~571
    [274] Feng Wang, Hongzhou Gu, Zhicheng Zhang. Preparation of cobalt nanocrystals in the homogenous solution with the presence of a static magnetic field. Materials Research Bulletin, 2003, (38): 347~351
    [275] Rong Xu, Hua Chun Zeng. Mechanistic investigation on salt-mediated formation of free-standing Co_3O_4 nanocubes at 95℃. Journal of Physics and Chemistry B, 2003, (107): 926~930
    [276] Nassira Chakroune, Guillaume Viau, Christian Ricolleau, et al. Cobalt-based anisotropic particles prepared by the polyol process. Journal of Materials Chemistry, 2003, (13): 312~318
    [277] Wei-Wei Wang, Ying-Jie Zhu. Microwave-assisted synthesis of cobalt oxalate nanorods and their thermal conversion to Co_3O_4 rods. Materials Research Bulletin, 2005, (40) 1929~1935
    [278] 陈青林.我国钴粉的生产现状和技术进展.稀有金属与硬质合金,2001,(146):34~37
    [279] 陈青林.还原工艺对钴粉粒度的影响.稀有金属与硬质合金,2001,(147):21~24转35
    [280] 袁平.草酸钴沉淀工艺对钴粉粒度影响的研究.硬质合金,2001,18(1):12~15
    [281] 张传福,吴琳琳,黎昌俊,等.纤维状镍、钴合金粉的制备.中国有色金属学报,2002,12(1):182~186
    [282] Giridhar Madras, Nenjamin J. McCoy. Temperature effects on the transaction from nucleation and growth to Ostwald ripening. Chemical Engineering Science, 2004, (59): 2753~2765
    [283] S. P. Marsh, M. E. Glicksman. Ostwald ripening in non-spherical morphologies. Materials Science and Engineering A, 1997, (238):140~147

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700