用户名: 密码: 验证码:
钴基金属包覆锶铁氧体复合粉末的制备和吸波性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,具有吸收电磁波功能的材料成为研究和应用的热点。理想的吸波材料应该具有强吸收、宽频段、厚度薄、质量轻的特点。但迄今为止,还没有发现任何一种材料能够完全满足这些要求。因此对现有材料进行适当改性和设计就成为了研究的重点。六角晶M型锶铁氧体因其自然共振频率较高,在高频下不易产生趋肤电流,介电常数较小,可与其它吸波材料混合使用来对吸波涂层的电磁参数进行调节等优点而成为一类非常重要的电磁波吸收剂。其缺点是吸波性能对制备工艺十分敏感。要进一步提高单一铁氧体材料的磁导率μr很难。而铁磁性金属粉吸收剂具有良好的温度稳定性,具有最高的饱和磁化强度Ms,其微波磁导率较大,优点非常明显。但是铁磁性金属粉吸收剂在微波频段下因受限于“趋肤效应”而粒度不能太大,并且要分布均匀,体积分数不能过大。由此可见,铁氧体吸波材料和铁磁性金属粉吸波材料的电磁特性具有很强的互补性,把二者有效结合起来有可能创造出高效的吸波剂。本文致力于设计和制备一类新型铁磁性钴基金属包覆硬磁性锶铁氧体的“核壳型”电磁波吸收材料。设计和制备这类“核壳型”复合粒子的出发点就是不但要利用二者电磁性能的互补性,而且还希望能够发挥复合形式也就是“核壳型”结构以及“核”和“壳”的各种特殊界面效应的作用,使它们也能对电磁波吸收做出贡献。
     首先,利用溶胶-凝胶低温自蔓延燃烧法制备了锶铁氧体超细粉末。并系统地研究了乙二醇溶剂和常规的水溶剂、铁锶比和合成温度等工艺参数对锶铁氧体的制备过程和电磁波吸收性能的影响,制备出具有相对较佳吸波性能的锶铁氧体,并以其作为“核壳型”复合粉末的核心。研究结果表明:以乙二醇为溶剂时,所得锶铁氧体的吸波性能明显好于以水为溶剂时所得锶铁氧体的吸波性能;只有在合适的铁锶比和合成温度下得到的锶铁氧体才会具有较好的吸波性能。在以乙二醇为溶剂、铁锶比为11.2和合成温度为850℃的条件下合成的锶铁氧体超细粉末具有相对较佳的电磁波吸收性能,其反射损耗峰值可达-29.77dB,匹配厚度为2.5mm, 10dB带宽为4.32GHz。
     然后,以锶铁氧体为核,利用低温超声波化学镀方法制备出一类新型钴磷或钴镍磷软磁合金包覆硬磁锶铁氧体的磁性复合吸波粉末。研究结果表明钴磷合金和钴镍磷合金是以极细小的颗粒为单位沉积在锶铁氧体表面。钴磷合金镀层呈晶态,钴镍磷合金镀层随着镍含量的增加逐渐呈非晶态。镀态复合粉末与单纯锶铁氧体吸波粉末相比,其吸波性能的提高并不十分显著。镀态下,钴磷合金镀覆复合粉末的吸波性能相对较好,复合粉末的反射损耗最小值由单纯锶铁氧体的-29.77dB下降到-35.44dB,下降了5.67dB。钴镍磷合金镀覆复合粉末的吸波性能随镀覆量和镀层中镍含量的增加逐渐降低,直至低于纯锶铁氧体的吸波性能。当镀态复合粉末在400℃热处理后,钴镍磷非晶合金镀层变为晶态,复合粉末的电磁波吸收性能显著提高。热处理后样品SM3(钴镍磷合金镀覆量为20.4%,镀层理论厚度为12nm时的样品)的吸波能力最强,其反射损耗最小值由热处理前-31.03dB降低到热处理后的-43.46dB,降幅最大,达到12.43dB。其反射损耗最小值与单纯锶铁氧体吸波材料相比下降了13.69dB,下降幅度达到46%。钴磷合金镀覆复合粉末即样品SM1热处理前、后的反射损耗最小值的变化最小,为3.61dB,但是和锶铁氧体单组分吸波材料相比还是下降了9.28dB,下降了近31%。热处理后,随着镀覆量和镀层中的镍含量的增加,复合粉末的匹配厚变化不大;10dB带宽变化不规律,并且变化幅度也不大;复合粉末的匹配频率呈降低趋势,与热处理之前相比也略向低频移动。
     最后,采用水合肼为还原剂,利用低温超声波化学镀方法制备了纯钴金属包覆锶铁氧体复合粉末。研究结果表明,随着金属钴镀覆量的增加,复合粉末的电磁波吸收性能并不一直增加,而是有一最佳镀覆量。在本研究中这一最佳镀覆量为21.1%。在最佳镀覆量,复合粉末的反射损耗峰值可达-41.24dB,匹配厚度为2.2mm, 10dB带宽为4.12GHz。在2.0mm到3.0mm厚度范围内涂层对电磁波的反射损耗最小值都小于-29dB。利用化学还原法制备了钴金属粉末,对钴金属粉末与锶铁氧体粉末的混合粉末和钴金属包覆锶铁氧体复合粉末的电磁波吸收性能作了详细的对比研究。实验结果表明,混合粉末的吸波性能要比锶铁氧体粉末的略好,但是要比钴金属包覆锶铁氧体复合粉末的吸波性差很多。混合粉末在匹配厚度下的反射损耗峰值只有-33.07dB,与复合粉末的反射损耗峰值相差了8.17dB。并且混合粉末的10dB带宽也比复合粉末的窄了0.51GHz。两种粉末的匹配厚度相差不大,混合粉末的匹配频率更高一些。
     对复合粉末的吸波机理进行了分析研究,结果表明钴基金属包覆锶铁氧体“核壳型”复合粉末之所应具有优异吸波性能主要有下面几个原因:一、铁磁性金属与锶铁氧体的吸波性能确实具有互补性。二、复合方式对复合粉末吸波性能具有重要的影响。核壳型结构增加了电磁波在吸波介质中的波程长,增大了对电磁波的损耗。三、“核壳”之间界面处发生的界面极化和磁晶交换耦合作用均会增强复合粉末对电磁波的吸收。
Recently, the research of electromagnetic wave absorbent drew more and more attention. The ideal electromagnetic wave absorbent is expected to possess the following properties: strong absorption, wide bandwidth, thin coating thickness and light mass. However, there is no such kind of absorbent which could meet all the above-mentioned requirements. The composite of different absorbents is considered the best way to develop good microwave absorption materials. The M-type strontium ferrite is thought to be a very important magnetic absorbent for its special properties, such as high resonance frequency, high resistance, low permittivity and so on. But the microwave absorption properties of the strontium ferrite are sensitive to its synthesis technique. It is hard to improve the permeability of the strontium ferrite further. The microwave absorption properties of strontium ferrite are not as good as ferromagnetic metal at high frequency. The magnetic metal is another kind of very important microwave absorbent. It is widely used as microwave absorbent for its high specific saturation magnetization, high magnetic susceptibilty and stead properties to temperature changing. However, the microwave absorption properties of the magnetic metal are confined by the“skin effect”, its use must under the conditions of small particle size, low particle concentration and well-proportioned distribution in the electromagnetic wave absorption coating. The electromagnetic properties of the strontium ferrite and magnetic metal are complementary. The combination of them is expected to create good electromagnetic wave absorption composite. In this paper a new“core-shell”type cobalt-based metals coated strontium ferrite composite powder is fabricated by electroless plating with the aid of sonication. The complement of electromagnetic properties of the strontium ferrite and the magnetic cobalt-based metals, the special“core-shell”structure of the composite particle and the interactions of the core and shell are all expected to give rise to the electromagnetic wave absorption properties of the composite powder.
     First, the strontium ferrite was synthesized by sol-gel low temperature self-propagating method. The effects of solution such as water or glycol, Fe/Sr molar ratio and synthesis temperature were investigated carefully to get the strontium ferrite powder, which is aimed to be the core of the“core-shell”composite powder. The results indicated that the application of glycol, the suitable Fe/Sr molar ratio and synthesis temperature are all very important to fabricate the strontium ferrite powder with excellent microwave absorption properties. When glycol as solution, Fe/Sr molar ratio is 11.2 and synthesis temperature is 850℃, the strontium ferrite possesses the best microwave absorption properties. The minimum reflection loss and matching thickness and 10dB bandwidth of the strontium ferrite are -29.77dB and 2.5mm and 4.32GHz, respectively.
     Then, the strontium ferrite was plated with cobalt-based soft magnetic metals by electroless plating with the aid of sonication at room temperature. The results showed that the deposited cobalt-based metal on the surface of the strontium ferrite is in the form of very tiny particles. The Co-P coating is crystalline, but the Co-Ni-P is amorphous. The improvement in microwave absorption properties of as-plated composite powers is not obvious. The Co-P-coated strontium ferrite possesses the best microwave absorption properties. The minimum reflection loss decreases to -35.44 dB, compared with -29.77dB of strontium ferrite. The microwave absorption properties of Co-Ni-P-coated strontium ferrite decrease with the increase of plated layer content and nickel content in it, until even lower than that of the strontium ferrite. After heat-treated at 400℃for 1h, the amorphous Co-Ni-P coating crystallized. The microwave absorption properties of the composite powders are also improved very much in comparison with those of as-plated powder. After heat treatment, the sample SM3 possesses the best microwave absorption properties. The minimum reflection loss decreases from -31.03dB to -43.46dB after heat treatment. In comparison with the strontium ferrite, the decrease of minimum reflection loss of the heat treated sample SM3 is about 13.69dB. After heat treatment, the increase of the electromagnetic wave absorption properties of Co-P-coated strontium ferrite is not as abrupt as the Co-Ni-P-coated strontium ferrite. But the minimum of reflection loss of it is also decreased about 31% in comparison with strontium ferrite. The matching thickness and 10dB bandwidth of the heat treated powder are changed very much with the increase of plated layer content and nickel content in it. The matching frequency of the heat treated powder shifts to the lower frequency in comparison with that of before heat treatment. Finally, the Co-coated strontium ferrite composite powder was fabricated. The results indicated that there is an optimism cobalt content for the composite powder. In our study, it is 21.1%. With such a cobalt content, the Co-coated strontium ferrite composite powder possesses very excellent microwave absorption properties. The minimum of reflection loss, matching thickness and 10dB bandwidth of it are -41.24dB, 2.2mm and 4.12GHz, respectively. Its minimum reflection loss is always less than -29dB when the thickness of the microwave absorption coating is changed from 2mm to 3mm. The cobalt powder was fabricated by chemical reduction method. The microwave absorption properties of the Co-coated strontium ferrite composite powder and the mixture of the cobalt powder and strontium ferrite powder were studied carefully to discover the mechanism of microwave absorption of the cobalt-based metals coated strontium ferrite core-shell composite powder. The microwave absorption properties of the mixture of the cobalt powder and strontium ferrite powder is better than that of the strontium ferrite powder, but they are not as good as that of the Co-coated strontium ferrite composite powder. The minimum reflection loss, matching thickness and 10dB bandwidth are–33.07dB, 2.3mm and 3.61GHz, respectively.
     The electromagnetic wave absorption mechanisms of the core-shell composite powder are supposed to be as follows: (1) The electromagnetic properties of the strontium ferrite and magnetic metal are really complementary. (2) The“core-shell”structure of the composite powder increases the transmission course of the electromagnetic wave, enhancing the attenuation of the electromagnetic wave. (3) The interface polarization and magnetic crystalline exchange-coupling effect increase the microwave absorption properties of the composite powder too.
引文
[1] 刘顺华, 刘军民, 董星龙,电磁波屏蔽及吸波材料,化学工业出版社,2007.
    [2] 刘顺华,郭辉进,功能材料与器件学报,2002,8(3):213-217.
    [3] Tsaliovich A., Electromagnetic Shielding Handbook for Wired And Wireless EMC Applications, Kluwer Academic, New York, 1999.
    [4] 王贵芹,胡雅琴,段玉平,机械工程材料,2007,30(7):51-54.
    [5] Dishovsky N, Grigorova M, Materials Research Bulletin, 35(2000)403-409.
    [6] 朱正和,曾蓉,张明荣,化学研究与应用,1995,7(2):147-153.
    [7] Wen B, Zhao J.J, Duan Y.P, J. Phys.D: Appl. Phys., 39(2006)1960-1962.
    [8] 元岛栖二,高科技纤维与应用,1998,23(2):52-53.
    [9] 靳武刚,高科技纤维与应用,2003,28(4):9-13.
    [10] 黄汉生,高科技纤维与应用,1997,(1):37-40.
    [11] Dishovsky N, Grigorova M, Materials Research Bulletin, 35(2000)403-409.
    [12] Yang Y, Zhang B.S, Xu W.D, J. Magn. Magn. Mater., 256(2003)129-122.
    [13] Dishovisky N, Grigorova M, Materials Research Bulletin, 35(2000)403-409 .
    [14] Tryong V.T, Riddell S.Z, Muskat R.F, J. Mater. Sci., 33(1998)4971-4976 .
    [15] Chandrasekhar P, Naishadham K, Synthetic Metals, 105(1999)115-120 .
    [16] 李校远,韩爱军,刘勇峙,江苏化工,2003,31(6):5-7.
    [17] Courric S, Tran V.H, Polymers for Advanced Technologies, 11(2000)273-279.
    [18] Clinton R, Journal of Aviation Week and Space Technology, 128(1987)52-58.
    [19] 王少敏,高建平,于九皋,宇航材料工艺,2000,(2):51-54.
    [20] 王寿太,林凌,黄成,宇航材料工艺,1989,(4-5):24-27.
    [21] Choi S.H, Oh J.H, Ko T, J. Magn. Magn. Mater., 272-276(2004)2233-2235.
    [22] 陈晓东,王贵芹,段玉萍,硅酸盐学报,2006,34(12):1446-1451.
    [23] Cho S.B, Kang D.H, Oh J.H, Journal of Materials Science, 31(1996)4719-4722.
    [24] Kim S.S, Han D.H, Cho S.B, IEEE Trans. Magn., 30(1994)4554-4556.
    [25] Kim S.S, Jo S.B, IEEE Trans. Magn., 27(1991)5462-5464.
    [26] Kim D.Y, Chung Y.C, IEEE Trans. Magn., 32 (1996)555-558.
    [27] 周志刚,铁氧体磁性材料,科学出版社,1980.
    [28] Amin M.B, The Radio and Electronic Engineering, 5 (1983)209-218.
    [29] 都有为,罗河烈,磁记录材料,北京,电子工业出版社,1992.
    [30] 李荫远,李国栋,铁氧体物理学,北京,科学出版社,1978.
    [31] 李国栋,当代磁学,合肥,中国科学技术大学出版社,1999.
    [32] Verma A, Saxena A.K, Dube D.C, J. Magn. Magn. Mater., 263(2003)228-234.
    [33] Sugimoto S, Kondo S, Okayama K, IEEE Trans. Magn., 35(1999)3154-3156.
    [34] Dishovski N, Petkov A, Nedkov I, IEEE Trans. Magn., 30(1994)969-971.
    [35] Cho S.H, Kim S.S, IEEE Trans. Magn., 35(1999)3151-3153.
    [36] Amano M, Kotsuka Y, IEEE Transactions on Microwave Theory and Techniques, 51(2003)238-245.
    [37] Kim D.Y, Chung Y.C, IEEE Transactions on Electromagnetic Compatibility, 39(1997)356-361.
    [38] Zhang H.J, Yao X, Zhang L.Y, Mater. Sci. Eng. B, 84(2001)252-257.
    [39] Giannakopoulou T, Kompotiatis L, Kontogeorgakos A, J. Magn. Magn. Mater., 246(2002)360-365.
    [40] Pinho M.S, Gregori M.L, European Polymer Journal, 38(2002)2321-2327.
    [41] Nedkov I, Petrov A, Karpov V, IEEE Transaction on magnetic, 26(1990)1483-1484.
    [42] Meshram M.R, Agrawal N.K, Sinha B, J. Magn. Magn. Mater., 271(2004)207-214.
    [43] Singh P, Babbar V.K, Razdan A, Mater. Sci. Eng. B, 67(1999)132-138.
    [44] Singh P, Babbar V.K, Razdan A, Mater. Sci. Eng. B, 78(2000)70-74.
    [45] Sugimoto S, Haga K, Kagotani T, J. Magn. Magn. Mater., 290-291(2000)1188-1191.
    [46] Ruan S.P, Xu B.K, Suo H, J. Magn. Magn. Mater., 212(2000)175-177.
    [47] Shin J.Y, Oh J.H, IEEE Trans. Magn., 29(1993)3437-3439.
    [48] Dhawan S.K, Singh N, Venkatachalam S, Synthetic Metals, 129(2002)261-267.
    [49] 姚学标,胡国光,尹平,功能材料,2002,33(6):633-634,637.
    [50] 姚学标,胡国光,尹平,功能材料,1999,30(4):361-363.
    [51] 张永祥,李苏琦,硅酸盐学报,1998,26(3):275-280.
    [52] 阮圣平,吴凤清,王永为,物理化学报,19(2003)275-277.
    [53] 胡国光,姚学标,尹平,功能材料,3(2000)328-329.
    [54] Wartewig P, melzer K, Krause M, J. Magn. Magn. Mater., 140-144(1995)2101-2102.
    [55] Chou F.C, Feng X.F, Li J, J. Appl. Phys., 91(2002)8465-8467.
    [56] Samuel D.J, Thomas R.A.C, Robert O.S, J. Appl. Phys., 42(1972)1732-1733.
    [57] Chou F.C, Feng X.F, Li J, J. Appl. Phys., 61(1987)3881-3882.
    [58] Kagotani T, Fujiwara D, Sugimoto S, J. Magn. Magn. Mater., 1813 (2004)272-276.
    [59] Sun C, Sun K, Solid State Communications, 141(2007)258-261.
    [60] Choi D.H, Lee S.W, An Y.S, IEEE Trans. Magn., 39(2003)2884-2886.
    [61] Qiu J.X, Zhang Q.G, Gu M.Y, J. Appl. Phys., 98 (2005)103905.
    [62] Qiu J.X, Gu M.Y, Shen H.G, J. Magn. Magn. Mater., 295(2005)263-268.
    [63] Kim C.S, An S.Y, Son J.H, IEEE Trans. Magn., 9(1999)3160-3163.
    [64] Qiu J.X, Wang Y, Gu M.Y, Materials Letters, 60(2006)2728-2732.
    [65] 邓龙江,过壁君,宇航材料工艺,1991(5):46-50.
    [66] Deng L.J, Guo B.J, Proceedings of the 2nd International Symposium on Physics of Magnetic Materials, 1992, 232-233.
    [67] 王智勇,航空材料学报,1994,14(3):7-13.
    [68] 王自容,余大斌,孙晓泉,中国电子学会对抗分会第十二届学术年会论文集,440-444.
    [69] 何雄辉,杨剑瑜,西安科技学院学报,2000,20(3):257-259.
    [70] 徐则川,罗永祥,林更琪,等,华中理工大学学报,1997,25(4):80-82.
    [71] 傅晓玲,山西师大学报:自然科学版,1999,13(1):28-32.
    [72] 景茂祥,沈湘黔,材料导报,2005,19(12):13-16.
    [73] 王相元, 盛玉宝, 钱鉴,宇航材料工艺, 4-5(1989)47-50.
    [74] 葛副鼎,朱静,陈利民,宇航材料工艺,1996,26(5):42-49.
    [75] 葛副鼎,朱静,陈利民,电子学报,1996,24(6):82-86.
    [76] 张海军,贾晓林,王桂红,等,复合材料学报,2004,21(1):1-6.
    [77] 葛凯勇,王群,张晓宁,新技术工艺,2(2002)59-62.
    [78] 张雪峰,王威娜,李哲男,纳米科技,5(2005)23-26.
    [79] Viau G, Ravel F, J. Magn. Magn. Mater., 140-144(1995)377-378.
    [80] Olmedo L, Chateau G, Deleuze, C, Journal of Applied Physics, 73(1993)6992-6994.
    [81] 陈利民,超微粒子微波吸收材料及其制造工艺,ZL86104839,1987.
    [82] Zhou P.H, Deng L.J, Xie J.L, J. Magn. Magn. Mater., 292(2005)325-331.
    [83] 陈利民,毫米波吸波涂料,ZL88108670,1990.
    [84] 陈利民, 亓家钟, 朱雪琴, 兵器材料科学与工程, 1999, 22(04):1-6 .
    [85] 江治, 李疏芬, 固体火箭技术, 2001, 24(04):41-45 .
    [86] Yoshida S., Ando, S., ShimadaY, J. Appl. Phys., 93(2003)6659-6661.
    [87] Zhou P.H, Deng J.L, Xie D.F, J. Magn. Magn. Mater., 292(2005)325-331.
    [88] Zhang B.S, Lu G, Feng Y, J. Magn. Magn. Mater., 299(2006)205-210.
    [89] Ding J, Shi Y, Chen L.F, J. Magn. Magn. Mater., 247(2002)249-256.
    [90] 秦嵘,陈雷,宇航材料工艺,1997,27(4):17-19,23.
    [91] Yu X.L; Zhang X.C; Li H.H, Materials and Design, 23(2002)51-57.
    [92] Charfes B.E, Eric J.B, Microwave absorber emoloying acicular magnetic metallic filaments, US. Patent No.5085931, 1992.
    [93] Leland R.W, Electromagnetic radiation suppression cover, US Patent No.4814546, 1989.
    [94] Pular R.C, Journal of Materials Science, 1997, 28(11) :348-352.
    [95] Pular R.C, Journal of Materials Science, 2001, 36(19) :4805-4812.
    [96] Pular R.C, Journal of Materials Research ,2001, 16(11) :3162-3169.
    [97] Acher O, Malliavin M.J, J. Magn. Magn. Mater. 196(1999)420-422.
    [98] Acher O, Malliavin M.J, J. Magn. Magn. Mater. 215(2000)811-812.
    [99] Ciureanu P, Akyel, Asia-Pacific Microwave Conference Proceedings, 3(1999)876-879.
    [100] Boyer C.E, US Patent No.5085931, 1992.
    [101] 赵振声, 张秀成, 聂彦 ,磁性材料与器件,2000,31(1):18-20,38.
    [102] 李小莉, 贾虎生, 材料工程,2007, 3: 14-17.
    [103] 周永江, 程海峰, 楚增勇, 高科技纤维与应用, 2006, 3(12): 32-36
    [104] 龚荣洲,李享成,功能材料,2005, 11(32): 1696-1697.
    [105] 刘爱祥, 茹淼焱, 孟凡君, 无机化学学报, 2004, 20(2): 359-362.
    [106] 赵振声, 聂彦, 张秀成, 磁性材料及器件, 2004, 35(3):32-34.
    [107] 李小莉, 闫翠芬, 张晓芸, 电子显微学报,2004, 23(04):456-457.
    [108] Jagadish C, Tan H.H, Jasinski J, Applied Physics Letters, 67(1995) 1724-1726.
    [109] Cavicchi R.E, Silsbee R.H, Physics Review Letters, 52(1984)1453-1456.
    [110] Ball P, Garwin L, Nature 355(1992)761.
    [111] Reed M.A, Applied Physics Letters, 54(1989)1034-1036.
    [112] Kubo R, Kawabats A, Kobayashi S, Annual Review Materials Science 14(1984)49-66.
    [113] 张立德,牟季美,纳米材料学,辽宁科学技术出版社,1994.
    [114] 何华辉, 邓联文, 功能材料, 2005, 2(2): 8-18.
    [115] 焦桓,罗发,周万城,宇航材料工艺,5(2001)9-11.
    [116] 赵东林,周万城,材料工程,5(1998)3-5.
    [117] Toneguzzo P.H, Journal of Materials Science ,35(2000)3767-3784.
    [118] 邓联文, 冯则坤,江建军, 金属学报,2006,42(3): 321-324.
    [119] Che R.C, Zhi X.Y, Liang C.Y, Applied Physics Letters, 88(2006)033105.
    [120] Wadhawan, Garret, Perez J.M, Applied Physics Letters, 83(2003)2683-2685.
    [121] 孙晓刚,人工晶体学报,2005, 34(1): 175-177.
    [122] 孙晓刚,余扬帆,刘用,机械工程材料,2006, 30(1): 66-67.
    [123] Shinde S.R, Lofland S.E, Ganpule C.S, J. Appl. Phys., 85(1999)7459-7466.
    [124] Feng J, Matsushita N, Murakoso T, J. Magn. Magn. Mater., 193(1999)152-154.
    [125] Kakizaki K, Taguchi H, Hiratsuka N, J. Magn. Magn. Mater., 272 (2004)2241-2243.
    [126] Liu Y.C, Furukawa K, Nakashima H, Appl. Sur. Sci., 121-122(1997)233-236.
    [127] Chamberlain, European Patent Application 0479438 A2, 1994.
    [128] Minoru Y, United States Patent 5310598, 1994.
    [129] 冯则坤,何华辉,磁性材料及器件,2001 (6):31-34.
    [130] 毕云飞,陶冶,刘培英,金属热处理,2004,29(10):21-24.
    [131] 毕云飞,陶冶,刘培英,金属热处理,2005,30(6):10-12.
    [132] 张升康,陈重,冯来,表面技术,2004,33(1):63-64.
    [133] DeMeis R, Aerospace America, 29 (1991)20-24.
    [134] 邓龙江,翁小龙,2005 年功能材料学术年会论文集,2005,2(4): 8-10.
    [135] 阮颖铮,雷达截面与隐身技术,北京,国防工业出版社,1998.
    [136] 陆红,飞航导弹,1999,(6):22-25.
    [137] 曾淳,常文蔚,袁建民,国防科技参考,1999,(4):46-48.
    [138] 曹金祥,刘万东,现代物理知识,1999,11(4):21-22.
    [139] Liao S.B, Yin G.J, Applied Physics Letters, 62(1993)2480-2482.
    [140] Varadan V.V, Ro R, Varadan V.K, Radio Science, 29(1994)9-22.
    [141] Cuerin F, Varadan V.K, Varadan V.V, J. Phys. D: Appl. Phys., 28(1995)194-201.
    [142] 葛副鼎,库万军,朱静,材料导报,1999,13(1):10-11.
    [143] Wang G. Q, Zhang P, Liu Z.L, Applied Surface Science, 225(2004)78-85.
    [144] Sun G.C, Yao K.L, Liu Z.L, J. Phys.D: Appl. Phys., 31(1998)2109-2111.
    [145] 科夫涅里斯特,微波吸收材料,北京,科学出版社,1985.
    
    [1] 张伟,李国栋,内蒙古大学学报,2005,36(3):313-315.
    [2] 胡国光,姚学标,尹平,功能材料,3(2000)328-329.
    [3] Singh P, Babbar V.K, Razdan A, Materials Science and Engineering B, 78(2000)70-74.
    [4] Sugimoto S, Haga K, Kagotani T, J. Magn. Magn. Mater., 290-291(2000)1188-1191.
    [5] Shin J.Y, Oh J.H, IEEE Trans. Magn., 29(1993)3437-3439.
    [6] Wartewig P, melzer K, Krause M, J. Magn. Magn. Mater., 140-144(1995)2101-2102.
    [7] Chou F.C, Feng X.F, Li J, Journal of Applied Physics, 91(2002)8465-8467.
    [8] Chou F.C, Feng X.F, Li J, Journal of Applied Physics, 61(1987)3881-3882.
    [9] Kagotani T, Fujiwara D, Sugimoto S, J. Magn. Magn. Mater., e1813-e1815(2004)272-276.
    [10] Sun C, Sun K, Solid State Communications, 141(2007)258-261.
    [11] Verma A, Saxena A.K, Dube D.C, J. Magn. Magn. Mater., 263(2003)228-234.
    [12] 张晏清,张雄,同济大学学报(自然科学版),2006,34(2):225-228.
    [13] 娄明连,阚涛,安徽大学学报(自然科学版),2001,25(1):37-41.
    [14] 冯全源,物理学报,2002,51(11):2612-2615.
    [15] Wu Y, Campbell S.J, Kaczmarek W.A, J. Magn. Magn. Mater., 177-181(1998)255-256.
    [16] Pankov V.V, Pernet M, Germi P, J. Magn. Magn. Mater., 120(1993)69-72.
    [17] Lin C.H, Shin Z.W, Chin T.S, IEEE Trans. Magn., 26(1990)15-17.
    [18] Oda K, Ido T, Yokoyama H, J. Mater. Sci. Lett., 3(1984)1007-1010.
    [19] Pilllai V, Kumar P, Shah D.O, J. Magn. Magn. Mater., 116(1999)299-304.
    [20] Haneda K, Miyakawa C, Goto K, IEEE Trans. Magn., 23(1987)3134-3136.
    [21] Parkin I.P, Elwin G.K, Kuznetsov M.V, J. Mater. Proce. Tech., 110(2001)239-243.
    [22] 阮圣平,吴凤清,王永为,物理化学报,19(2003)275-277.
    [23] 周文运,永磁铁氧体和磁性液体设计工艺, 成都:电子科技大学出版社,1991.
    [24] Qiu J.X, Gu M.Y, J. Alloy. Compd., 415 (2006) 209-212.
    [25] Mali A, Ataie A, Scripta Mater., 53 (2005) 1065.
    [26] Huang J.G, Zhuang H.R, Li W.L, Mater. Res. Bull., 38 (2003) 149.
    [27] Vijayalakshmi A, Gajbhiye N.S, J. Appl. Phys., 83(1998)400-406.
    [28] Alamolhoda A, Seyyed S.A, Badiei A, J. Magn. Magn. Mater., 303 (2006) 69-72.
    [29] Fu Y.P, Lin C.H, J. Alloy. Compd., 386 (2005) 222-227.
    [30] Gee S.H, Hong Y.K, IEEE Trans. Magn., 41 (2005) 4353-4355.
    [31] Garcia R.M, Ruiz E.R, Rams E.E, Materials Letters, 50 (2001) 183-187.
    [32] Sharma P, Verma A, Sidhu R.K, J. Magn. Magn. Mater., 307 (2006) 157-164.
    [33] Thomposon G.K, Evans B.J, J. Appl. Phys., 67(1990)4601-4603.
    [34] 张密林,周铭,辛艳凤,硅酸盐学报,1996,24(16):685-688.
    [35] 段红珍,李巧玲,蔺向阳,分析测试技术与仪器,2004,10(2):72-74.
    [36] 官建国,张清杰,李鹏,硅酸盐学报,2003,31(1):20-24.
    [37] 郭睿倩,(稀土掺杂)磁铅石型铁氧体纳米粉末的制备及其磁性研究,上海交通大学博士后研究工作报告,2003.
    [38] Guo R.Q, Chen Y.J, Gu M.Y, Journal of Rare Earths, 21(2003)543-547.
    [39] Guo R.Q, Gu M.Y, Li H.G, Journal of Materials Science, 39(2004)987-991.
    [40] Jacquart P, Acher O, IEEE Transactions on Microwave Theory and Techniques, 44(1996)2116-2120.
    [41] 董树义,微波测量技术,北京理工大学出版社,1990.
    [42] Barry W, IEEE Transactions on Microwave Theory and Techniques, 34(1996)80-83.
    [43] Queffelec P, Floch M.L, Gelin P, IEEE Trans. Magn., 47(1998)956-959.
    [44] Liu X.S, Zhong W, Gu B.X, J. Appl. Phys., 92(2002)1028-1032.
    [45] Srivastava A, Thermo Acta, 86(1985)77-84.
    [46] 内山晋(著),姜恩永(译),应用磁学,天津,天津科学技术出版社,1983.
    [47] Stoner E.C, Wohlfarth E.P, Philos. Trans. R. Soc. A, 244(1948)599-642.
    [1] Zhang X.F, Dong X.L, Huang H, Applied Physics Letters, 89(2006)053115.
    [2] Che R.C, Zhi C.Y, Liang C.Y, Applied Physics Letters, 88(2006)033105.
    [3] Che R.C, Peng L.M, Duan X.F, Advanced Materials, 16(2004)401-405.
    [4] 刘飙,官建国,王琦,电子元件与材料,2004,23(8):1-3.
    [5] 刘飙,官建国,王琦,功能材料,2005,1(36):133-135.
    [6] Choi S.H, Oh J.H, Ko T, J. Magn. Magn. Mater., 272-276(2004)2233-2235.
    [7] Park H.K, Choi S.H, Oh J.H, phys. Stat. sol., 241(2004)1693-1696.
    [8] Xiao H.M, Liu X.M, Fu S.Y, Composites Science and Technology, 66(2006)2003-2008.
    [9] 李宁,屠振密,化学镀实用技术,北京:化学工业出版社,2004.
    [10] 姜晓霞,沈伟,化学镀理论及实践,北京:国防工业出版社,2000.
    [11] Michalski J, Konopka K, Trzaska M, Mater. Chem. Phys., 81(2003)407-410.
    [12] Silvain J.F, Bobet J.L, Heintz, Composites Part A, 33(2002)1387-1390.
    [13] Wen G, Guo Z.X, Davies C.K.L, Scripta Mater., 43(2000)307-311.
    [14] Chang S.Y, Lin S.J, Scripta Mater., 35(1996)225-231.
    [15] Oh I.H, Lee J.Y, Han J.K, Surface and Coating Technology, 192(2005)39-42.
    [16] Shi G.M, Han J.K, Zhang Z.D, Surface and Coating Technology, 195(2005)333-337.
    [17] Xu H, Yang Z, Li M.K, Surface and Coating Technology, 191(2005)161-165.
    [18] Ling G.P, Li J, Wang S.J, Journal of Zhejiang University, 2001,2(4):376-378.
    [19] 黎德育,李宁,李柏松,材料科学与工艺,2003,11(4):414-418.
    [20] 凌国平,张超,岳远见,功能材料,2004,35(5):545-547.
    [21] 陈曙光,丁后福,郑治祥,表面技术,2001,30(4):3-5.
    [22] 魏美玲,任卫,程之强,现代技术陶瓷,2001,83(1):3-6.
    [23] 毛倩瑾, 于彩霞, 葛凯勇, 清华大学学报, 2005,45(12):1672-1675.
    [24] 毛倩瑾,于彩霞,王群,北京工业大学学报,2003,29(2):108-111.
    [25] 葛凯勇,王群,毛倩瑾,功能材料与器件学报,2003,9(1):67-70.
    [26] Jia Z.Y, Wang Q, Zhou M.L, 功能材料,2005,37(1):143-145.
    [27] 杜光旭,王旭辉,涂国荣,无机材料学报,2006,22(2):281-286.
    [28] Zeng A.S, Xiong W.H, Xu J, Materials Letters, 59(2005)524-528.
    [29] Kim S.S, Kim S.T, Ahn J.M, J. Magn. Magn.Mater., 271(2004)39-45.
    [30] 曾爱香, 何小川, 陈东初,长沙理工大学学报(自然科学版)2003,1(3):92-96.
    [31] 曾爱香,熊惟浩,徐坚,材料保护,2004,37(4):16-17.
    [32] 徐坚,熊惟皓,曾爱香,宇航材料工艺,2004,(5):49-52.
    [33] 吴渂, 张秋禹, 电镀与精饰,2004,26(1):5-8.
    [34] 杨丽,张玉梅,新技术新工艺,1997,(1):37-39.
    [35] Chen X.H, Xia J.T, Peng J.C, Composites and Technology, 60(2000)301-306.
    [36] Kim I.S, Lee S.K, Scripta Mater., 52(2005)1045-1049.
    [37] Ang L.M, Hor T.S.A, Xu G.Q, Carbon, 38(2000)363-372.
    [38]Ang L.M, Hor T.S.A, Xu G.Q, Chem. Mater., 11(1999)2115-2118.
    [39] Wang F, Arai S, Endo M, Carbon, 43(2005)1716-1721.
    [40] Li J, Moskovits M, Haslett T.L, Chem. Mater., 11(1999)2115-2118.
    [41] 胡小晔,吴玉程,刘家琴,电镀与涂饰,2006,25(4):46-49.
    [42] 易国军,陈小华,蒋文忠,中国有色金属学报,2004,14(3):479-483.
    [43] 陈小华,颜永红,张高明,微细加工技术,1999,2(2):17-21.
    [44] Xie G.W, Wang Z.B, Cui Z.L, Carbon, 43(2005)3181-3194
    [45] 赵东林,沈增民,无机材料学报,2006,20(3):608-612.
    [46] 赵东林,卢振明,沈增民,复合材料学报,2004,21(3):54-58.
    [47] 赵东林,沈增民,新型碳材料,2001,16(1):1-3.
    [48] Li B.W, Shen Y, Yue Z.X, Applied Physics Letters, 89(2006)132504-1-3.
    [49] 王翠平,方庆清,安徽大学学报,2006,30(6):57-60.
    [50] 沃尔夫冈·里德尔, 化学镀镍, 上海交通大学出版社, 1996.
    [51] 伍学高, 化学镀技术, 四川科学技术出版社, 1985.
    [52] Ling G.P, Li Y, Materials Letters, 58(2003)200-204.
    [53] Chiba A, Haijima H, Kobayashi K, Surf. Coat.Tech., 170(2003) 104-107.
    [54] Mallory, Glenn O, Plating and Surface Finishing, 72 (1985) 64-68.
    [55] Chiba A, Gotou T, Kobayashi K, Metal Finishing, 98 (2000) 66-69.
    [56] Kobayashi K, Chiba A, Minami N, Ultrasonics, 38 (2000) 676-681.
    [57] Tomlinson W.J, Sexton G, Journal of Materials Science Letters, 9 (1990) 420.
    [58] Prasad P.B, Vasudevan R, Seshadri S.K, J.Mater.Sci.Lett., 12 (1993) 902-903.
    [59] Matsuoka M, Hayashi T, Metal Finishing, 84(1986)38.
    [60] 陈国钧,金属软磁材料及其热处理,机械工业出版社,1986.
    [61] 王冰霞,金属功能材料,2007,14(2):32-35.
    [62] Osaka T, J.Electrochimica Acta, 44(1999)3885-3890.
    [63] 王玲玲,张邦维,张恒等,湖南大学学报,1996,23(2):25-28.
    [64] 王玲玲,欧阳义芳,张邦维等,中国有色金属学报,1997,24(4):15-20.
    [65] 王玲玲,周海萍,廖树帜等,湖南大学学报,1997,24(4):49-51.
    [66] Lee D.Y, Hur K.H, Scripta Materialia, 44(1999)3885-3890.
    
    [1] 李宁,屠振密,化学镀实用技术,北京:化学工业出版社,2004.
    [2] 沈宁一,表面处理工艺手册,上海:上海科学技术出版社,1992.
    [3] 姜晓霞,沈伟,化学镀理论及实践,北京:国防工业出版社,2000.
    [4] 熊晓东,翟玉春,田彦文,电镀与精饰,1996,18(5):21-25.
    [5] 熊晓东,田彦文,翟秀静,中国有色金属学报,1996,6(4):39-41.
    [6] 陈学定,李惠,陈自江,粉末冶金技术,2005,10(5):363-367.
    [7] 蔡克峰,李成红,袁润章,电镀与环保,1994,14(2):11-12.
    [8] Michalski J, Konopka K, Trzaska M, Mater. Chem. Phys., 81(2003)407-410.
    [9] Silvain J.F, Bobet J.L, Heintz, Composites Part A, 33(2002)1387-1390.
    [10] Wen G, Guo Z.X, Davies C.K.L, Scripta Mater., 43(2000)307-311.
    [11] Chang S.Y, Lin S.J, Scripta Mater., 35(1996)225-231.
    [12] Oh I.H, Lee J.Y, Han J.K, Surface and Coating Technology, 192(2005)39-42.
    [13] Shi G.M, Han J.K, Zhang Z.D, Surface and Coating Technology, 195(2005)333-337.
    [14] Xu H, Yang Z, Li M.K, Surface and Coating Technology, 191(2005)161-165.
    [15] Wang L.L, Zhao L.H, Zhang B.W, Materials Research and Advanced Techniques, 90 (1999)338-341.
    [16] Xue D, Deng J.F, Materials Letters, 47(2001) 271-275.
    [17] Wang L.L, Zhang B.W, Yi G, Journal of Alloys and Compounds, 255(1997)231-235.
    [18] Kim D, Matsuda H, Aoki K, Plating and Surface Finishing, 83(1996) 78-80.
    [19] Rohan J.F, Ahern B.M, Nagle L.C, ECS Transactions, 31(2006)1-9.
    [20] 李钒,张登君,李报厚,金属学报,2004,40(2):173-178.
    [21] 李钒,张登君,李报厚,过程工程学报,2002,2(5):425-430.
    [22] 李钒,张登君,李报厚,过程工程学报,2003,3(3):243-247.
    [23] 田彦文,邵忠财,翟玉春,腐蚀科学与防护技术,1998,10(6):355-357.
    [24] 邵忠财,翟玉春,田彦文,材料保护,1998,31(2):19-21.
    [25] 邵忠财,田彦文,翟玉春,无机材料学报,1999,14(3):397-401.
    [26] 邵忠财,田彦文,翟玉春,材料科学与工艺,1999,7(4):78-81.
    [27] 杜光旭,王旭辉,涂国荣,精细化工,2005,22(9):668-670.
    [28] 杜光旭,王旭辉,涂国荣,无机材料学报,2006,22(2):281-286.
    [29] 杜光旭,周晓华,王旭辉,电镀与涂饰,2006,25(7):10-14.
    [30] Yuan Z.Z, Chen X.D, Xu H, Journal of Alloys and Compounds,422 (2006) 109–115.
    [31] Saito T, J. APPL. PHYS., 99 (2006) 08E906-1-3.
    [32] Enio L. J, Valderes D, Ramon B, Solid State Communications, 125 (2003) 265–270.
    [33] Wu S.P , Meng S.Y, Materials Letters, 60 (2006) 2438–2442.
    [34] Kim K.H, Lee Y.B, Choi E.Y , Mater. Chem. Phys., 86 (2004) 420–424.
    [35] Yi G, Zhang B.W, Journal of Materials Processing and Technology, 117 (2001) 37–42.
    [36] Saito T, Igarashi M, Kobayashi M, J. Appl. Phys. 88 (2000) 109–115.
    [37] Lee C.C, Chen D.H, Applied Physics Letters, 90(2007)193102.
    [38] Zhang X.F, Dong X.L, Huang H, Applied Physics Letters, 89(2006)053115.
    [39] Peng C.H, Wang H.W, Kan S.W, J. Magn. Magn.Mater., 284 (2004)113-119.
    [40] Che R.C, Zhi C.Y, Liang C.Y, Applied Physics Letters, 88(2006)033105.
    [41] Che R.C, Peng L.M, Duan X.F, Advanced Materials, 16(2004)401-405.
    [42] 刘飙,官建国,王琦,电子元件与材料,2004,23(8):1-3.
    [43] 刘飙,官建国,王琦,功能材料,2005,1(36):133-135.
    [44] Choi S.H, Oh J.H, Ko T, J. Magn. Magn.Mater., 272-276(2004)2233-2235.
    [45] Park H.K, Choi S.H, Oh J.H, phys. Stat. sol., 241(2004)1693-1696.
    [46] Xiao H.M, Liu X.M, Fu S.Y, Comp. Sci. Tech., 66(2006)2003-2008.
    [47] Tang N.J, Zhong W, Jiang H.Y, Solid State Communications, 132(2004)71-74.
    [48] 葛副鼎,库万军,朱静,材料导报,1997,11(3):10-13.
    [49] 邵元智,林光明,蓝图,物理学报,2002,10(51):2362-2368.
    [50] Chen Q, Ma B.M, Lu B, J.Appl. Phys., 85 (1999) 5917–5919.
    [51] Emura M, Gonzàlez, Missell F.P, 81 (1997) 4983–4985.
    [52] 高汝伟,李卫,俞晓军,功能材料,1998,29(4):362-365.
    [53] 冯维存,高汝伟,韩广兵,物理学报,2004,9(53):3171-3176.
    [54] Han G.B, Gao R.W, Fu S, Journal of Rare Earth, 22(2004)790-793.
    [55] Kato H, Ishizone M, Miyazika T, J.Appl. Phys., 37(2001)2567–2569.
    [56] Maeda T, Sugimoto S, Kagotani T, J. Magn. Magn.Mater.,281(2004)195-205.
    [57] Lian L.X, Deng L.J, Han M, J.Appl. Phys., 101(2007)09M520.
    [58] Liu X.S, Zhong W, Gu B.X, J.Appl. Phys., 92(2002)1028-1032.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700