用户名: 密码: 验证码:
荷电粒子束辐照作用下若干光学器件及半导体材料的微观结构和性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对空间EUV望远镜中光学器件及半导体材料进行了荷电粒子束辐照效应研究,利用光学显微镜(OM),扫描电子显微镜(SEM),原子力显微镜(AFM),透射电子显微镜(TEM),极紫外反射率计(EXRR)和光致发光光谱仪(PL)等多种表征及测试手段重点考察了辐照效应对材料微观结构与物理性能的影响。
     在不同本底真空度下(6×105Torr,3×10-5Torr, and3×10-6Torr)制备“嫦娥三号”卫星着陆器所携带的EUV相机中Mo/Si多层膜反射镜,并对多层膜的微观结构和物理性能进行检测和分析。小角XRD结果显示,本底真空度越高,制备出的多层膜周期性越好;EXRR测量结果显示:多层膜的反射率随着本底真空度的升高,从1.93%升高到16.63%。这主要是因为镀膜机的本底真空度不够高会引入杂质气体,02、N2等杂质气体会进入到膜层内部,TEM照片显示样品出现断开、弯曲等形貌,同时会导致Mo层和Si层相互扩散严重,增加了膜层界面粗糙度,从而导致反射率降低。Mo/Si多层膜高反射率的高低主要取决于Mo在(110)晶面上择优取向以及较低的界面粗糙度。过渡层是由于Mo层和Si层相互扩散引起的,Mo-on-Si层总是比Si-on-Mo层厚。
     在空间环境模拟装置中对Mo/Si多层膜反射镜进行能量为100keV,剂量为6×1011/cm2和6×1013/cm2的质子辐照实验;利用蒙特-卡洛随机统计法模拟100keV质子及其辐照诱发的缺陷在多层膜内的浓度分布;系统地分析了辐照诱发的各种微观结构缺陷的类型、尺寸、密度、分布等特征及演化规律;分析微观缺陷对Mo/Si多层膜界面的元素扩散行为以及界面过渡层结构的影响规律,总结和建立微观结构与材料物理性能之间的关系。模拟辐照结果显示,质子辐照的过程中的能量损失贯穿整个样品,但是主要集中在Mo/Si多层膜的末段,入射质子在轨迹末端将其绝大部分能量传递给靶材原子(Mo原子和Si原子),造成大量离位原子和空位,产生晶格缺陷,在轨迹末端附近产生最大损伤,而Mo层中的缺陷明显多于Si层;辐照后EXRR测试结果表明:质子辐照导致Mo/Si多层膜反射镜光学性能退化,反射率降低,中心波长红移;质子辐照对Mo/Si多层膜微观结构的影响是原子级的,通过辐照加剧了原子间的扩散导致纳米厚度的膜层分布不均匀,在过渡层中形成了MoSi2(101)和Mo5S13(310)的织构,使得本身就存在的过渡层微结构发生巨大变化,最终导致光学性能的严重下降。
     采用强流脉冲电子束(HCPEB)装置辐照单晶Si和单晶Ge。HCPEB辐照单晶Si后表面形成大量弥散的火山坑状的熔坑形貌,熔坑的数量密度随辐照次数的增加而减小;OM观察结果显示HCPEB轰击处理还能在单晶硅表面诱发强烈的塑性变形,产生幅值极大及高应变速率的准静态热应力,形成整齐排布的微裂纹,其中[100]取向的形成矩形网络,[111]取向的形成正三角形网络;TEM显示HCPEB辐照在Si表面诱发了丰富的位错组态,包括螺型位错,位错偶极子、位错缠结,和位错网络,这些都位错的分解和拓展有关。除了各种位错之外,还观察到层错、弗兰克位错圈、偏位错圈和SFT结构,这些缺陷不仅包括过饱和空位和由空位凝聚而成的各种空位型结构缺陷,也包括丰富的位错、堆垛层错等线、面晶体缺陷;而过饱和空位(或许包括空位簇缺陷)在HCPEB辐照造成的温度梯度作用下会沿着位错、堆垛层错等择优地向表面快速迁移,在Si表面局部区域形成密集的多孔结构,而孔的密度和尺寸会随着辐照次数的增加而增大;TEM观察结果显示,HCPEB辐照还在Si表面产生改性效果,由于脉冲电子在Si表面的快速加热和冷却过程,使得Si晶核来不及长大,形成了Si纳米晶,PL光谱显示辐照后Si样品具有还410nm(3.01eV)左右的蓝光发射现象,其光致发光机理可以由镶嵌在轻微氧化或氮化的非晶结构中的Si纳米晶的量子限制效应来解释;AFM观察显示,HCPEB辐照在Si表面形成了网格型和六边形白组装纳米阵列,与TEM中的位错网络保持非常一致的几何形状,辐照诱发的位错等缺陷结构对沉积过程中的Si颗粒(原子)更具吸附力,即位错等缺陷结构为自组装纳米网格结构的形成提供了驱动力。
     HCPEB辐照单晶Ge在表面诱发了大量熔坑,局部裂纹,其形貌特征、演化规律与单晶Si的实验结果大致相同;TEM观察结果显示,Ge中的微观缺陷以空位簇缺陷以及位错圈为主,Ge纳米晶的尺寸在4nm左右,比Si纳米晶的尺寸稍大,而且尺寸分布较均匀,其原因是Ge的熔点比Si的熔点低,相同辐照参数下Ge纳米晶有更长的生长时间:PL结果显示辐照后单晶Ge样品仍然具有蓝光发射特性,发光机理为镶嵌在轻微氧化或氮化的非晶结构中的Ge纳米晶的量子限制效应。HCPEB辐照在Ge表面也形成了自组装纳米结构,截面TEM显示量子点下方存在250nm深的缺陷通道,证实了Si表面的自组装纳米阵列形成机理,因此本文中HCPEB辐照诱发自组装纳米结构机制为:辐照时表面被迅速加热,熔化、蒸发、气化并形成等离子体,而Si, Ge是半导体材料,导电能力弱,电子辐照后表面滞留了大量的负电荷。同时,电子辐照在材料中同时引入点缺陷、位错、空位簇缺陷等具有电荷性的大量缺陷,使得表面电荷分布不均匀,而缺陷处成为负电荷的富集区域,在库仑力的作用下,表面等离子体中带正电荷的Si/Ge离子被吸引到样品表面负电荷富集位置,即缺陷处。而Si2+/Ge2+含有大量的Si/Ge原子和原子团簇,导致Si/Ge原子在表面缺陷附近沉积,在经历四个生长阶段后,最终形成了自组装纳米结构。HCPEB辐照效应说明其具备制备自组装纳米结构和半导体发光器件的潜质。
The irradiation effect of optical device in EUV imager and semiconducting materials which irradiated by charge particle beams have been investigated in this study. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Atomic force microscopy (AFM), scanning electron microscope (SEM), EUV/soft X-ray reflectometer (EXRR) and photoluminescence (PL). The relationship between microstructrue and physical properties were investigated in this paper.
     Mo/Si multilayers mirror for Extreme-ultraviolet imager in Chang'e3lander are fabricated by using magnetron sputtering method at different background pressures:6×10-5Torr,3×10-5Torr, and3×10-6Torr. The microstructure and optical performance of Mo/Si multilayers mirror have been investigated. XRD indicated that multilayers fabricated at high background pressure possessed better periodic structure and thinner Mo-on-Si interlayers. The reflectivity of the Mo/Si multilayers increased from1.93%to16.63%, and the center wavelength revealed a blue shift with the decrease of background pressure. Impurity gas (O2, N2) could seemingly influence the growth and nucleation behavior of Mo/Si multilayers. Low crystallization degree in (110) preferred the orientation of Mo layers and serious interdiffusion in the Mo/Si multilayers fabricated at low background pressure were observed by TEM. In addition, the thicknesses of Mo-on-Si are always thicker than Si-on-Mo interlayers. It is suggested that the influence of background pressures on the microstructure has a critical role in determining the optical properties of Mo/Si multilayers.
     The microstructure and optical properties of Mo/Si multilayers mirror before and after100keV proton irradiation have been investigated. The concentration distributions of the protons and defects in the multilayer after irradiation of protons with energy of100keV were simulated by the Monte-Carlo method. Type, size, density, distribution and evolution of defect which induced by proton irradiation were systematically investigate. The relationship between microstructure and properties of Mo/Si multilayers have been built. Results of simulated irradiation experiment show that the energy loss in the process of radiation running through the whole sample, but mainly left in the substrate of Mo/Si multilayers. Most energy of incident protons transfer to the target atom (Mo and Si atoms), which caused a large number of displaced atom and vacancies.The defects in the Mo layer significantly more than the Si layer. The results of EXRR show that, after proton irradiation, the reflectivity of the Mo/Si multilayer decreased and the center wavelength shift red, compared with those before proton irradiation. HRTEM observations revealed that the presence of MoSi2, MosSi and MosSi3in Mo-on-Si interlayers before irradiation. However, the preferred orientation such as MoSi12with (101) texture and Mo5Si3with (310) texture were formed in Mo-on-Si interlayers after proton irradiation, which lead to the increase of the interlayers thickness. It is suggested that the changes of microstructures in Mo/Si multilayers under proton irradiation could cause the optical performance degradation.
     Single crystal silicon and single crystal germanium were irradiated by high current pulsed electron beam (HCPEB) in this paper. A large number of craters and microcrack formed on Si surface after irradiation. The density of crater decreased with the increase of pulse times. OM observation reveals that HCPEB treatment induce intense plastic deformation which generate the maximum amplitude and high strain rate quasi-static thermal stress on the surface Si wafer, formed orderly arrangement microcracks. The microcracks in Si(100) oriented are rectangular network, in Si(111) are equilateral triangle network. TEM observations show that HCPEB irradiation induced abundant dislocation configuration which include screw dislocations, dislocation dipole, tangled dislocation, and dislocation network. All of these are connected with decomposition and extension of dislocation. In addition to all kinds of dislocations, we observed stacking faults, Frank dislocation loops, partial dislocation loops and SFT. These defect are not only include supersaturated vacancies and vacancy type defects by vacancy agglomerates, but also include abundant dislocations (line defects), stacking faults (surface defects). Under the effect of the temperature gradient caused by HCPEB irradiation, supersaturated vacancies (perhaps including the vacancy clusters) preferentially transfer to surface, then formed porous structure on the part area of Si surface. Si nanocrystallites (Si-ncs) formed during HCPEB irradiation. The reason is Si nucleus formed quickly with low growth velocity, which leads to the formed Si crystal nucleus on the top layer of Si wafer are too late to grow up. PL measurements show that single crystal Si wafer exhibit blue photoluminescence emission at room temperature after HCPEB irradiation. The luminescence mechanism is quantum confinement effect of Si-ncs embedded in amorphous silicon oxide or silicon nitride matrix. AFM observation results show the formation of grid type and hexagonal Si self-assembled nano-arrays after HCPEB irradiation, which consist with the geometry of dislocation network in TEM. Defect structures such as dislocations are more adsorption capacity for deposition process of Si particles (atomic). In the other words, defect structure provide driving force for the formation of self-assembled nanostructure
     A large number of craters and microcrack formed on Ge surface after HCPEB irradiation. Its morphology characteristics and evolution are in accord with the results of Si irradiated by HCPEB. TEM observation results show that the main defects in Ge are vacancy cluster defects and dislocation loop. The size of the uniform Ge-ncs is about4nm, more than the size of Si-ncs. The reason is that the melting point of Ge is lower than Si, under the same irradiation parameters, Ge-ncs have longer time to grow. PL measurements show that single crystal Ge wafer exhibit blue photoluminescence emission at room temperature after HCPEB irradiation. The luminescence mechanism is quantum confinement effect of Ge-ncs embedded in amorphous germanium oxide or germanium nitride matrix. Ge self-assembly nanostructures were prepared by HCPEB irradiation. Crosss-section TEM observe reveals the existence of defects channel with250nm deep below the quantum dot. It is confirmed that the formation reason of self-assembly nanoarray on the Si surface after HCPEB irradaition. Therefore, formation mechanism of self-assembly nanostructures induced by HCPEB irradiation could be defined. The irradiated surface was rapid heating, then melting, evaporating, gasifying and formed plasma finally. The conductive ability of Si and Ge are weak, and a large number of negative charges left on the surface after HCPEB irradiation. At the same time, the irradiation induced many charged defects, such as point defect, vacancy cluster defects and dislocation loop. These defects become the negative charge accumulation area which caused the charge distribution nonuniform on the surface. Then the positively charged Si/Ge ions in plasma were absorbed to the negative charge accumulation area under the action of coulomb attraction. Si/Ge ions contain a large number of Si/Ge atoms and atom clusters. The absorbed atoms formed self-assembled nanostructures after nucleating, island, merging and connecting. HCPEB irradiation effect shows that such a direct and fast treatment can be used as a potential surface modification method for fabricating self-assembled nanostructures semiconductor light-emitting devices.
引文
[1]陈波,何飞.月基地球等离子体层极紫外成像仪的光学设计[J].光学精密工程,2011,19(9):2057-2062.
    [2]王智,李朝辉.月基极紫外相机光机结构设计[J].光学精密工程,2011,19(10):2427-2433.
    [3]何飞,陈波,张效信.月基观测地球等离子体层极紫外辐射特性[J].光学精密工程,2010,18(12):2564-2573.
    [4]濮祖荫.空间物理前言进展[J].气象出版社,1998:22-39.
    [5]刘振兴.太空物理学[J].哈尔滨工业大学出版社,2005:3-12.
    [6]黄本诚,马有礼.航天器空间环境试验技术[D].国防工业出版社,2002.
    [7]李春来,欧阳自远,都亨.空间碎片与空间环境3[J].第四纪研究,2002,22(6).
    [8]Spurny F. Radiation doses at high altitudes and during space flights[J]. Radiat. Phys. Chem., 2001,61(3):301-307.
    [9]Denkins P, Badhwar G, Obot V, et al. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights[J]. Acta Astronaut.,2001,49(3):313-319.
    [10]Kearsley A, Graham G. Multi-layered foil capture of micrometeoroids and orbital debris in low Earth orbit[J]. Adv. Space Res.,2004,34(5):939-943.
    [11]Kiefer J. Radiation risk in manned space flights[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,1999,430(2):307-313.
    [12]Lauriente M, Vampola A, Koga R, et al. Analysis of spacecraft anomalies due to the radiation enviromnent[J]. J. spacecraft and Rockets,1999,36(6):902-906.
    [13]Badhwar G The radiation environment in low-Earth orbit[J]. Radiat. Res.,1997,148(5): 3-10.
    [14]叶宗海,陈贵福,朱光武,等.在”风云一号(B)”卫星上空间粒子环境的探测结果[J].中国科学(A辑数学物理学天文学技术科学),1993,5:011.
    [15]朱光武,李保权.空间环境对航天器的影响及其对策研究(续)[J].上海航天,2002,19(5):9-16.
    [16]王丽君.实践四号卫星静态单粒子事件监测器探测结果初步分析[J].航天器工程,1995, 4(3):20-24.
    [17]王世金,叶宗海.实践四号卫星高能质子重离子探测器探测数据初步分析[J].航天器工程,1995,4(3):1-7.
    [18]Schwenn R. Space weather:The solar perspective[J]. Living Rev. Sol. Phys.,2006,3(2): 1-72.
    [19]Gloeckler G, Fisk L, Hefti S, et al. Unusual composition of the solar wind in the 2-3 May 1998 CME observed with SWICS on ACE[J]. Geophys. Res. Lett.,1999,26(2):157-160.
    [20]Ichikawa R, Sekido M, Osaki H, et al. An Evaluation of VLBI Observations for the Deep Space Tracking of the Interplanetary Spacecrafts[J]. Int. VLBI Service for Geodesy Astr., 2004:253-257.
    [21]Odenwald S, Green J, Taylor W. Forecasting the impact of an 1859-calibre superstorm on satellite resources[J]. Adv. Space Res.,2006,38(2):280-297.
    [22]Saunders R, Arvidson R, Badhwar G, et al. (2004),2001 Mars Odyssey mission summary, in 2001 Mars Odyssey, edited, pp.1-36, Springer.
    [23]Atwell W, Saganti P, Cucinotta F A, et al. A space radiation shielding model of the Martian radiation environment experiment (MARIE)[J]. Adv. Space Res.,2004,33(12):2219-2221.
    [24]王馨悦,荆涛,张坤毅,等.“嫦娥一号”卫星太阳高能粒子探测器的首次观测结果[J].地球物理学进展,2013,27(6):2289-2295.
    [25]Baker D, Allen J, Kanekal S, et al. Disturbed space environment may have been related to pager satellite failure[J]. Eos, Transactions American Geophysical Union,1998,79(40): 477-483.
    [26]Silverman E M. Space environmental effects on spacecraft:LEO materials selection guide, part 2[J]. Progress Report, Apr.1993-Mar.1995 TRW, Inc., Redondo Beach, CA. Space and Electronics Group.,1995,1.
    [27]Badhwar G, Shurshakov V, Tstelin V. Solar modulation of dose rate onboard the Mir station[J]., IEEE Trans. Nucl. Sci.,1997,44(6):2529-2541.
    [28]Ravet MF, Bridou F, Zhang SX, et al. Ion beam deposited Mo/Si multilayers for EUV imaging applications in astrophysics,2004,99-108, Proc. SPIE Int. Soc. Opt. Eng..
    [29]陈波,尼启良,曹继红,等.空间软X射线/极紫外波段正入射望远镜研究[J].光学精密工程,2003,11(4):315-319.
    [30]陈波,尼启良,王君林.长春光机所软X射线-极紫外波段光学研究[J].光学精密工程,2007,12:007.
    [31]侯增祺,胡金刚.航天器热控制技术原理及其应用[J].北京:科学出版社,2007.
    [32]贾乃华.宇航物理,1990,北京:科学出版社.
    [33]Vette J I, Models of the Trapped Radiation Environment. Volume I. Inner Zone Protons and Electrons,1966, DTIC Document.
    [34]King J H, Models of the Trapped Radiation Environment. Volume IV. Low Eneryg Protons, 1967, DTIC Document.
    [35]王同权,沈永平,王尚武,等.空间辐射环境中的辐射效应[J].国防科技大学学报,1999,21(4):36-39.
    [36]大林辰藏,春嘉.日地空间物理[D].北京师范大学出版社,1984.
    [37]Van Allen J, Frank L. Radiation around the Earth to a radial distance of 107,400 km[J]. Nature,1959,183.
    [38]方美华.深空辐射粒子在介质材料中的输运及损伤研究[D].南京航空航天大学,2011.
    [39]Minow J I. Development and implementation of an empirical ionosphere variability model[J]. Adv. Space Res.,2004,33(6):887-892.
    [40]Baker D, Kanekal S, Hoxie V, et al. A long-lived relativistic electron storage ring embedded in Earth's outer Van Allen belt[J]. Science,2013,340(6129):186-190.
    [41]Reeves G, Spence H E, Henderson M, et al. Electron acceleration in the heart of the Van Allen radiation belts[J]. Science,2013,341(6149):991-994.
    [42]薛丙森,叶宗海.近地轨道宇宙线的强度分布[J].宇航学报,1998,19(12):99-104.
    [43]James B F, Norton O, Alexander M B. The natural space environment:Effects on spacecraft[J]. NASA STI/Recon Technical Report N,1994,95:25875.
    [44]Barth J L, Dyer C, Stassinopoulos E. Space, atmospheric, and terrestrial radiation environments[J]. IEEE Trans. Nucl. Sci.,2003,50(3):466-482.
    [45]Ma TP, Dressendorfer P V. Ionizing radiation effects in MOS devices and circuits[M]. OSTI, 1989.
    [46]Kinchin G, Pease R. The displacement of atoms in solids by radiation[J]. Rep. Prog. Phys, 1955,18(1):1.
    [47]程秀围.质子辐照对空间太阳望远镜光学性能的影响[D].江苏大学,2010.
    [48]丁义刚.空间辐射环境单粒子效应研究[J].航天器环境工程,2012(5).
    [49]范鲜红,陈波,关庆丰.质子辐照对纯铝薄膜微观结构的影响[J].物理学报,2008,57(3):1829-1833.
    [50]王庆艳.国产铷光谱灯用GG17玻璃辐照损伤及铷消耗机理研究[D].哈尔滨工业大学, 2010.
    [51]Guan Q, Zhang Q, Dong C, et al. Deformation twining in single-crystal aluminum induced by high-current pulsed electron beam[J]. J. Mater. Sci.,2005,40(18):5049-5052.
    [52]Gilman J, Johnston W. Dislocations, Point-Defect Clusters, and Cavities in Neutron Irradiated LiF Crystals[J]. J. Appl. Phys.,2004,29(6):877-888.
    [53]陈美艳.SiO-2玻璃中半导体纳米晶的制备和辐照效应研究[D].电子科技大学,2007.
    [54]Peng D, Guan Q, Chen B. Deformation twinning in pure nickel induced by a high-current pulsed electron beam[J]. Arabian J. Mater. Sci. Eng.,2011,36(4):663-669.
    [55]关庆丰,安春香,秦颖,等.强流脉冲电子束应力诱发的微观结构[J].物理学报,2005,54(8):3927-3934.
    [56]程笃庆,关庆丰,朱健,等.强流脉冲电子束诱发纯镍表层纳米结构的形成机制[J].物理学报,2009,58(10):7300-7306.
    [57]Zou Y, Cai J, Wan M, et al. Formation Mechanism of Micropores on the Surface of Pure Aluminum Induced by High-Current Pulsed Electron Beam Irradiation [J]. Chin. Phys. Lett., 2011,28(11):116102.
    [58]王雪涛,关庆丰,邱冬华,等.强流脉冲电子束作用下金属纯Cu的微观结构状态-空位簇缺陷及表面微孔结构[J].物理学报,2010,59(10):7252-7257.
    [59]Laakso H, Jarva M. Evolution of the plasmapause position[J]. J. Atmos. Sol. Terr. Phys., 2001,63(11):1171-1178.
    [60]Boyd T J M, Sanderson J J. The physics of plasmas[D]. Cambridge University Press,2003.
    [61]Horwitz J, Brace L, Comfort R, et al. Dual-spacecraft measurements of plasmasphere-ionosphere coupling[J]. J. Geophys. Res.,1986,91(A10):11203-11216.
    [62]Singh N, Horwitz J. Plasmasphere refilling:Recent observations and modeling[J]. J. Geophys. Res.,1992,97(A2):1049-1079.
    [63]Thompson B, Plunkett S, Gurman J, et al. SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12,1997[J]. Geophys. Res. Lett.,1998,25(14):2465-2468.
    [64]Delaboudiniere JP, Artzner G, Brunaud J, et al. EIT:Extreme-ultraviolet imaging telescope for the SOHO mission[D]. Springer,1995.
    [65]Burch J. IMAGE mission overview[J]. Space Sci. Rev.,2000,91(1-2):1-14.
    [66]Sandel B, Broadfoot A, Curtis C, et al. The extreme ultraviolet imager investigation for the IMAGE mission, in The Image Mission,2000,197-242, Springer.
    [67]Krijger J, Rutten R, Lites B, et al. Dynamics of the solar chromosphere. Ⅲ. Ultraviolet brightness oscillations from TRACE[J]. Astron. Astrophys.,2001,379:1052-1082.
    [68]Del ZG, Mason H. Solar active regions:SOHO/CDS and TRACE observations of quiescent coronal loops[J]. Astron. Astrophys.,2003,406:1089-?
    [69]Marti DS, Walker AB, Gore D B, et al. High resolution imaging with multilayer telescopes: resolution performance of the MSSTAⅡ telescopes[J]. Opt. Eng.,2000,39(4):1063-1079.
    [70]Wuelser JP, Lemen J R, Tarbell T D, et al., EUVI:the STEREO-SECCHI extreme ultraviolet imager, Proc. SPIE Int. Soc. Opt. Eng.,2004,111-122
    [71]O'dwyer B, Del ZG, Mason H, et al. SDO/AIA response to coronal hole, quiet Sun, active region, and flare plasma[J]. Astron. Astrophys.,2010,521:21.
    [72]欧阳白远.我国月球探测的总体科学目标与发展战略[J].地球科学进展,2004,19(3):351-358.
    [73]Walker AB, Lindblom JF, Barbee TW, et al. Soft x-ray images of the solar corona with a normal-incidence Cassegrain multilayer telescope[J]. Science,1988,241(4874):1781-1787.
    [74]Windt D L, Donguy S, Seely J F, et al., EUV multilayers for solar physics, Proc. SPIE Int. Soc. Opt. Eng.,2004,1-11.
    [75]Thompson B, Gurman J, Neupert W, et al. SOHO/EIT observations of the 1997 April 7 coronal transient:Possible evidence of coronal Moreton waves[J]. Astrophys. J. Lett,1999, 517(2):L151.
    [76]Fineschi S, Nardello M, Polito V, et al. Solar alpha particles damage effects on UV and EUV optical coatings[J]. Proc. SPIE, Int. Soc. Opt. Eng.2013,886207-6.
    [77]Nardello M, Zuppella P, Polito V, et al. Stability of EUV multilayer coatings to low energy alpha particles bombardment[J]. Opt Express,2013,21(23):28334-28343.
    [78]Fedorenko A I, Kondratenko V, Palatnik L, et al. Space test of Mo-Si, MoSi2-Si, W-Si, and WSi2-Si x-ray multilayer mirrors on the Russian orbital station Mir, Proc. SPIE Int. Soc. Opt. Eng.,1995,11-14.
    [79]Pelizzo M, Corso A J, Zuppella P, et al. Stability of extreme ultraviolet multilayer coatings to low energy proton bombardment[J]. Opt. Express,2011,19(16):14838-14844.
    [80]Bajt S, Edwards N, Madey T. Properties of ultrathin films appropriate for optics capping layers exposed to high energy photon irradiation[J]. Surf. Sci. Rep.,2008,63(2):73-99.
    [81]Khorsand A, Sobierajski R, Louis E, et al. Single shot damage mechanism of Mo/Si multilayer optics under intense pulsed XUV-exposure[J]. Opt. Express,2010,18(2):700-712.
    [82]Nelson A, Toleikis S, Chapman H, et al. Soft x-ray free electron laser microfocus for exploring matter under extreme conditions[J]. Opt. Express,2009,17(20):18271-18278.
    [83]Louis E, Khorsand A, Sobierajski R, et al. Damage studies of multilayer optics for XUV free electron lasers[J]. Proc. SPIE Int. Soc. Opt. Eng.,2009,736101-6.
    [84]Rousseau A, Windt D, Winter B, et al. Stability of EUV multilayers to long-term heating, and to energetic protons and neutrons, for extreme solar missions[J]. Proc. SPIE Int. Soc. Opt. Eng.,2005,590004-9.
    [85]关庆丰,吕鹏,王孝东,等.质子辐照下Mo/Si多层膜反射镜的微观结构状态[J].物理学报,2012,61(1):16107-016107.
    [86]范鲜红,李敏,尼启良,等Mo/Si多层膜在质子辐照下反射率的变化[J].物理学报,2008,57(10):6494-6499.
    [87]Lv P, Wang X, Iiu H, et al. Microstructures of the interlayer in Mo/Si multilayers induced by proton irradiation[J]. Science China Physics, Mechanics and Astronomy,2012,55(11): 2194-2198.
    [88]秦俊岭,邵建达,易葵,等.研究扩散屏障层对Mo/Si多层膜软X射线反射率影响的模拟[J].光子学报,2007,36(2):300-303.
    [89]冯仕猛,赵海鹰,窦晓鸣,等.溅射功率对多层膜质量的影响[J].2002.
    [90]冯仕猛,赵海鹰,窦晓鸣,等.多层膜周期厚度的精确计算[J].2002.
    [91]秦俊岭,邵建达,易葵,等Mo/Si软X射线多层膜的界面粗糙度研究[J].强激光与粒子束,2007,19(5):763-766.
    [92]Loferski J, Rappaport P. Radiation damage in Ge and Si detected by carrier lifetime changes: Damage thresholds[J]. Phys. Rev.,1958,111(2):432.
    [93]Holland O, White C. Ion-induced damage and amorphization in Si[J]. Nucl. Instrum. Methods Phys. Res., Sect. B,1991,59:353-362.
    [94]Holland O, Pennycook S, Albert G L. New model for damage accumulation in Si during self-ion irradiation[J]. Appl. Phys. Lett.,1989,55(24):2503-2505.
    [95]Ascheron C, Schindler A, Flagmeyer R, et al. A comparative study of swelling, strain and radiation damage of high-energy proton-bombarded GaAs, GaP, InP, Si and Ge single crystals[J]. Nucl. Instrum. Methods Phys. Res., Sect. B,1989,36(2):163-172.
    [96]Zhong Y, Bailat C, Averback R S, et al. Damage accumulation in Si during high-dose self-ion implantation[J]. J. Appl. Phys.,2004,96(3):1328.
    [97]Bonse J, Baudach S, Kruger J, et al. Femtosecond laser ablation of silicon-modification thresholds and morphology[J]. Appl. Phys. A,2014,74(1):19-25.
    [98]Bonse J, Rosenfeld A, Krtiger J. Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures [J]. Appl. Surf. Sci.,2011,257(12):5420-5423.
    [99]Chen G, Yan W, Chen H, et al. The effects of fast neutron irradiation on oxygen in Czochralski silicon[J]. Chin. Phys. B,2009,18:293-297.
    [100]Gui FC, Wen BY, Hong JC, et al. The effects of fast neutron irradiation on oxygen in Czochralski silicon[J]. Chin. Phys. B,2009,18(1):293.
    [101]Impellizzeri G, Mirabella S, Grimaldi M G. Ion implantation damage and crystalline-amorphous transition in Ge[J]. Appl. Phys. A,2010,103(2):323-328.
    [102]Zhu X, Williams J, Conway M, et al. Direct observation of irradiation-induced nanocavity shrinkage in Si[J]. Appl. Phys. Lett.,2001,79(21):3416-3418.
    [103]Zhu X, Wang Z. Nanoinstabilities as revealed by shrinkage of nanocavities in silicon during irradiation[J]. Int. J. Nanotechnol.,2006,3(4):492-516.
    [104]Zhu X. Evidence of an antisymmetry relation between a nanocavity and a nanoparticle:a novel nanosize effect[J]. J. Phys.:Condens. Matter,2003,15(17):L253.
    [105]Zhu X. Shrinkage of nanocavities in silicon during electron beam irradiation[J]. J. Appl. Phys.,2006,100(3):034304.
    [106]Swanson M, Parsons J, Hoelke C. Damaged regions in neutron-irradiated and ion-bombarded Ge and Si[J]. Radiat. Eff.,1971,9(3-4):249-256.
    [107]Cai L, Chen H, Li Y, et al. Infrared studies of vacancy-oxygen-related complexes in electron-irradiated Czochralski-silicon[J]. Rare Metals,2006,25(6):55-58.
    [108]李养贤,杨德仁.中子辐照直拉硅中的本征吸除效应[J].物理学报,2002,51(10):2407-2410.
    [109]杜会静.激光烧蚀沉积硅基纳米材料及其特性研究[D].河北大学,2001.
    [110]Canham L. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers[J]. Appl. Phys. Lett.,1990,57(10):1046-1048.
    [111]Cullis A, Canham L. Visible light emission due to quantum size effects in highly porous crystalline silicon[J]. Nature,1991,353,335-338
    [112]Cullis A, Canham L T, Calcott P. The structural and luminescence properties of porous silicon[J]. J. Appl. Phys,1997,82(3):909-965.
    [113]胡海龙.Si基纳米晶阵列的制备及特性研究[D].兰州大学,2006.
    [114]Werwa E, Seraphin A, Chiu L, et al. Synthesis and processing of silicon nanocrystallites using a pulsed laser ablation supersonic expansion method[J]. Appl. Phys. Lett.,1994,64(14): 1821-1823.
    [115]Werwa E, Seraphin A, Kolenbrander K, Excitation Intensity and Temperature Dependent Photoluminescence Behavior of Silicon Nanoparticles[J]. Cambridge Univ. Press.,1996,129.
    [116]Burr T, Seraphin A, Werwa E, et al. Carrier transport in thin films of silicon nanoparticles[J]. Phys. Rev.,1997,56(8):4818.
    [117]Seraphin A, Werwa E, Kolenbrander K. Influence of nanostructure size on the luminescence behavior of silicon nanoparticle thin films[J]. J. Mater. Res.,1997,12(12):3386-3392.
    [118]Kabashin A V, Meunier M. Visible photoluminescence from nanostructured Si-based layers produced by air optical breakdown on silicon[J]. Appl. Phys. Lett.,2003,82(10):1619.
    [119]Kabashin A, Meunier M, Leonelli R. Photoluminescence characterization of Si-based nanostructured films produced by pulsed laser ablation[J]. J. Vac. Sci. Technol., B,2001, 19(6):2217.
    [120]Yang D Q. Optical breakdown processing:Influence of the ambient gas on the properties of the nanostructured Si-based layers formed[J]. J. Appl. Phys.,2004,95(10):5722.
    [121]Yoshida T, Takeyama S, Yamada Y, et al. Nanometer-sized silicon crystallites prepared by excimer laser ablation in constant pressure inert gas[J]. Appl. Phys. Lett.,1996,68(13): 1772-1774.
    [122]Yamada Y, Orii T, Umezu I, et al. Optical properties of silicon nanocrystallites prepared by excimer laser ablation in inert gas[J]. Jpn. J. Appl. Phys., Part 1,1996,35(part 1):1361-1365.
    [123]Yoshida T, Yamada Y, Orii T. Electroluminescence of silicon nanocrystallites prepared by pulsed laser ablation in reduced pressure inert gas[J]. J. Appl. Phys.,1998,83(10): 5427-5432.
    [124]Suzuki N, Makino T, Yamada Y, et al. Structures and optical properties of silicon nanocrystallites prepared by pulsed-laser ablation in inert background gas[J]. Appl. Phys. Lett.,2000,76(11):1389-1391.
    [125]Svrcek V, Sasaki T, Shimizu Y, et al. Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water[J]. Appl. Phys. Lett.,2006,89(21):213113.
    [126]Svrcek V, Mariotti D, Kondo M. Ambient-stable blue luminescent silicon nanocrystals prepared by nanosecond-pulsed laser ablation in water[J]. Opt. Express,2009,17(2): 520-527.
    [127]Svrcek V, Sasaki T, Katoh R, et al. Aging effect on blue luminescent silicon nanocrystals prepared by pulsed laser ablation of silicon wafer in de-ionized water[J]. Appl. Phys. B,2009, 94(1):133-139.
    [128]向霞.离子注入对YSZ和Al2O3单晶光学性能的影响[D].四川大学,2003.
    [129]Townsend P D, Chandler P, Zhang L. Optical effects of ion implantation[D]. Cambridge University Press,2006.
    [130]Barth J, Costantini G, Kern K. Engineering atomic and molecular nanostructures at surfaces[J]. Nature,2005,437(7059):671-679.
    [131]Ziberi B, Frost F, Hoche T, et al. Ripple pattern formation on silicon surfaces by low-energy ion-beam erosion:Experiment and theory[J]. Phys. Rev.,2005,72(23):235310.
    [132]Frost F, Fechner R, Ziberi B, et al. Large area smoothing of optical surfaces by low-energy ion beams[J]. Thin Solid Films,2004,459(1):100-105.
    [133]Frost F, Fechner R, Flamm D, et al. Ion beam assisted smoothing of optical surfaces[J]. Appl. Phys. A,2004,78(5):651-654.
    [134]Ziberi B, Frost F, Tartz M, et al. Importance of ion beam parameters on self-organized pattern formation on semiconductor surfaces by ion beam erosion[J]. Thin Solid Films,2004,459(1): 106-110.
    [135]Frost F, Ziberi B, Hoche T, et al. The shape and ordering of self-organized nanostructures by ion sputtering[J]. Nucl. Instrum. Methods Phys. Res., Sect. B,2004,216:9-19.
    [136]Ziberi B, Frost F, Rauschenbach B. Self-organized dot patterns on Si surfaces during noble gas ion beam erosion[J]. Surf. Sci.,2006,600(18):3757-3761.
    [137]Ziberi B, Frost F, Rauschenbach B, et al. Highly ordered self-organized dot patterns on Si surfaces by low-energy ion-beam erosion[J]. Appl. Phys. Lett.,2005,87(3):033113.
    [138]Ziberi B, Frost F, Tartz M, et al. Ripple rotation, pattern transitions, and long range ordered dots on silicon by ion beam erosion[J]. Appl. Phys. Lett,2008,92(6):063102.
    [139]Ziberi B, Frost F, Rauschenbach B. Formation of large-area nanostructures on Si and Ge surfaces during low energy ion beam erosion[J]. J. Vac. Sci. Technol., A,2006,24(4): 1344-1348.
    [140]Ziberi B, Cornejo M, Frost F, et al. Highly ordered nanopatterns on Ge and Si surfaces by ion beam sputtering[J]. J. Phys.:Condens. Matter,2009,21(22):224003.
    [141]Ziberi B, Frost F, Rauschenbach B. Pattern transitions on Ge surfaces during low-energy ion beam erosion[J]. Appl. Phys. Lett.,2006,88(17):173115-173115-173113.
    [142]Gago R, Vazquez L, Cuerno R, et al. Production of ordered silicon nanocrystals by low-energy ion sputtering[J]. Appl. Phys. Lett.,2001,78(21):3316-3318.
    [143]Gago R, Vazquez L, Cuerno R, et al. Nanopatterning of silicon surfaces by low-energy ion-beam sputtering:dependence on the angle of ion incidence[J]. Nanotechnology,2002, 13(3):304.
    [144]Kim S, Shin D H, Choi S-H. Ultrafast photoluminescence from freestanding Si nanocrystals[J]. Appl. Phys. Lett.,2012,100(25):253103.
    [145]Steinbach T, Wernecke J, Kluth P, et al. Structural modifications of low-energy heavy-ion irradiated germanium[J]. Phys. Rev.,2011,84(10):104108.
    [146]Gartner K, Johrens J, Steinbach T, et al. Void formation in amorphous germanium due to high electronic energy deposition[J]. Phys. Rev.,2011,83(22):224106.
    [147]Steinbach T, Schnohr C, Kluth P, et al. Influence of electronic energy deposition on the structural modification of swift heavy-ion-irradiated amorphous germanium layers[J]. Phys. Rev.,2011,83(5):054113.
    [148]Wei Q, Zhou X, Joshi B, et al. Self-Assembly of Ordered Semiconductor Nanoholes by Ion Beam Sputtering[J]. Adv. Mater.,2009,21(28):2865-2869.
    [149]刘震.空间极紫外成像仪器多层膜反射镜研究[D].中国科学院研究生院(长春光学精密机械与物理研究所),2011.
    [150]林炳.软X射线多层膜膜厚分布均匀性控制研究[D].中国科学院研究生院(长春光学精密机械与物理研究所),2002.
    [151]李瑞琦. Kapton/Al二次表面镜带电粒子辐照损伤效应及机理[D].哈尔滨工业大学,2007.
    [152]胡杰.四种光学镀膜材料的辐照着色效应研究[D].哈尔滨工业大学,2009.
    [153]Ozur G, Proskurovsky D, Rotshtein V, et al. Production and application of low-energy, high-current electron beams[J]. Laser Part. Beams,2003,21(02):157-174.
    [154]Proskurovsky D, Rotshtein V, Ozur G, et al. Physical foundations for surface treatment of materials with low energy, high current electron beams[J]. Surf. Coat. Technol.,2000,125(1): 49-56.
    [155]陈波,尼启良,王君林.长春光机所软X射线-极紫外波段光学研究[J].光学精密工程,2007,15(12):1862-1868.
    [156]Warren B E. X-ray Diffraction[D]. Courier Dover Publications,1969.
    [157]Suryanarayana C, Norton M. X-ray diffraction:a practical approach[J]. New York and London,1998.
    [158]Joy D. Scanning electron microscopy[J]. Mater. Sci. Technol.,1971.
    [159]Williams D B, Carter C B. The Transmission Electron Microscope[D]. Springer,1996.
    [160]Binnig G, Quate C, Gerber C. Atomic force microscope[J]. Phys. Rev. Lett.,1986,56(9):930.
    [161]张立超.极紫外多层膜技术研究进展[J].Chinese Journal of Optics and Applied Optics, 2010,3(6).
    [162]Spiller E. Soft X-ray optics[D]. SPIE Press,1994.
    [163]Decher G, Hong J, Schmitt J. Buildup of ultrathin multilayer films by a self-assembly process: Ⅲ. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces[J]. Thin Solid Films,1992,210:831-835.
    [164]Braun S, Dietsch R, Haidl M, et al. Mo/Si-multilayers for EUV applications prepared by Pulsed leaser Deposition (PLD)[J]. Microelectron. Eng.,2001,57:9-15.
    [165]Fullerton E E, Pearson J, Sowers C, et al. Interfacial roughness of sputtered multilayers: Nb/Si[J]. Phys. Rev.,1993,48(23):17432.
    [166]Yakshin A, Louis E, Gorts P, et al. Determination of the layered structure in Mo/Si multilayers by grazing incidence X-ray reflectometry[J]. Physica B,2000,283(1):143-148.
    [167]Van de Kruijs R, Zoethout E, Yakshin A, et al. Nano-size crystallites in Mo/Si multilayer optics[J]. Thin Solid Films,2006,515(2):430-433.
    [168]Nedelcu I, Van De Kruijs R, Yakshin A, et al. Temperature-dependent nanocrystal formation in Mo/Si multilayers[J]. Phys. Rev.,2007,76(24):245404.
    [169]Bottger T, Meyer D, Paufler P, et al. Thermal stability of Mo/Si multilayers with boron carbide interlayers[J]. Thin Solid Films,2003,444(1):165-173.
    [170]Pinegyn V, Zubarev E, Kondratenko V, et al. Structure and stressed state of molybdenum layers in Mo/Si multilayers[J]. Thin Solid Films,2008,516(10):2973-2980.
    [171]邵淑英,范正修,邵建达.多层膜中膜厚组合周期数及基底材料对残余应力的影响[J].物理学报,2005,54(7):3312-3316.
    [172]Abdali S, Gerward h, Yakshin A, et al. Determination of crystallization as a function of Mo layer thickness in Mo/Si multilayers[J]. Mater. Res. Bull.,2002,37(2):279-289.
    [173]Bhattacharya D, Principi G, Gupta A, et al. Swift heavy ion beam mixing in Mo/Si system[J]. Nucl. Instrum. Methods Phys. Res., Sect. B,2006,244(1):198-201.
    [174]Cullity B. Elements of X-ray Diffraction[J]. Am. J. phys.,1957,25:394-395.
    [175]Modi M, Lodha G, Nayak M, et al. Determination of layer structure in Mo/Si multilayers using soft X-ray reflectivity[J]. Physica B,2003,325:272-280.
    [176]Bruijn S, Van de Kruijs R, Yakshin A, et al. The effect of Mo crystallinity on diffusion through the Si-on-Mo interface in EUV multilayer systems. Trans. Tech. Publ.,2009, 657-661.
    [177]Zubarev E, Zhurba A, Kondratenko V, et al. The structure, diffusion and phase formation in Mo/Si multilayers with stressed Mo layers[J]. Thin Solid Films,2007,515(17):7011-7019.
    [178]Bajt S, Stearns D G, Kearney P A. Investigation of the amorphous-to-crystalline transition in Mo/Si multilayers[J]. J. Appl. Phys.,2001,90(2):1017-1025.
    [179]Stearns M B, Chang C H, Stearns D G. Optimization of growth conditions of vapor deposited Mo/Si multilayers[J]. J. Appl. Phys.,1992,71(1):187-195.
    [180]Yulin S, Feigl T, Kuhlmann T, et al. Interlayer transition zones in Mo/Si superlattices[J]. J. Appl. Phys.,2002,92(3):1216-1220.
    [181]Miyata N, Ishikawa S, Yanagihara M, et al. Buried interfaces in Mo/Si multilayers studied by soft-X-ray emission spectroscopy[J]. Jpn. J. Appl. Phys., Part 1,1999,38(11R):6476.
    [182]Rosen R, Vernon D S, Stearns G, et al. Silicide layer growth rates in Mo/Si multilayers[J]. Appl. Opt.,1993,32(34):6975-6980.
    [183]Bajt S, Alameda J B, Barbee T W, et al. (2001), Improved reflectance and stability of Mo/Si multilayers, Opt. Eng.,2002,41(8):1797-1804.
    [184]Ziegler J F, Biersack J, Littmark U. The stopping and range of ions in solids[D]. New York, 1985.
    [185]Ziegler J F, Ziegler M, Biersack J. SRIM-The stopping and range of ions in matter (2010)[J]. Nucl. Instrum. Methods Phys. Res., Sect. B,2010,268(11):1818-1823.
    [186]赵慧杰.低能质子和电子辐照GaAs/Ge太阳电池性能演化及损伤机理[D].哈尔滨工业大学,2008.
    [187]冯端.金属物理学:相变.第二卷[D].科学出版社,1990.
    [188]刘海,王怀义.质子和电子对光学反射镜辐射效应的研究[J].航天返回与遥感,2002,23(1):13-17.
    [189]Xiu-Wei C, Qing-Feng G, Xian-Hong F, et al. Effect of vacancy defect clusters on the optical property of the aluminium filter used for the space solar telescope[J]. Chin. Phys. B,2010, 19(1):016103.
    [190]关庆丰,邹广田.强流脉冲电子束作用下金属材料的微观结构状态[D].吉林大学,2005.
    [191]关庆丰,安春香,张庆瑜,等.结构缺陷对电子束诱发纯铝表面熔坑的影响[J].材料研 究学报,2009,19(5):496-498.
    [192]王雪涛,关庆丰,顾倩倩,等.强流脉冲电子束作用下单晶硅表层缺陷与结构变化[J].无机材料学报,2010,25(12):1313-1317.
    [193]朱健,储金宇,王雪涛,等.强流脉冲电子束轰击对单晶Si表面形貌的影响[J].核技术,2009(8):601-605.
    [194]关庆丰,顾倩倩,李艳,等.强流脉冲电子束作用下金属纯Cu的微观结构状态—变形结构[J].物理学报,2011,60(8):086106.
    [195]关庆丰,程笃庆,邱冬华,等.强流脉冲电子束辐照诱发多晶纯铝中的空位缺陷簇结构[J].物理学报,2009,58(7):4846-4852.
    [196]Pogrebnjak A, Mikhaliov A, Pogrebnjak Jr N, et al. Evolution of vacancy defects and dislocations in surface layers of iron as a result of pulsed electron beam treatment[J]. Phys. Lett. A,1998,241(6):357-363.
    [197]王雪涛.表面多孔材料的强流脉冲电子束快速制备及表征[D].江苏大学,2010.
    [198]邹建新.强流脉冲电子束材料表面改性基础研究:在金属及金属间化合物上的应用[D].大连理工大学,2007.
    [199]卡恩RW,哈森P,克雷默EJ.材料科学与技术丛书[J].中文版主编师昌绪,柯俊,卡恩RW.北京:科学出版社,1998.
    [200]Frank F, Read Jr W. Multiplication processes for slow moving dislocations[J]. Phys. Rev., 1950,79(4):722.
    [201]Delavignette P, Amelinckx S. Dislocation patterns in graphite[J]. J. Nucl. Mater.,1962,5(1): 17-66.
    [202]Aerts E. Dela vignette, P., Siems, R., and Amelinckx, S.,1962[J]. J. appl. Phys,33(10):3078.
    [203]赓祥.材料科学基础[D].上海交通大学出版社,2006.
    [204]Silcox J, Hirsch P. Direct observations of defects in quenched gold[J]. Philos. Mag.,1959, 4(37):72-89.
    [205]An W, Krasik Y, Fetzer R, et al. Characterization of high-current electron beam interaction with metal targets[J]. J. Appl. Phys.,2011,110(9):093304.
    [206]Zou J, Zhang K, Dong C, et al. Selective surface purification via crater eruption under pulsed electron beam irradiation[J]. Appl. Phys. Lett.,2006,89(4):041913.
    [207]Flemings M. Solidification processing[J]. Metall. Trans. A,1974,5(10):2121-2134.
    [208]刘世祥,朱美芳.发蓝绿光纳米硅薄膜的快速热处理制备[J].发光学报,1998,19(3):212-215.
    [209]胡林,朱隽,雷奕安.离化靶中多脉冲强流电子束的不稳定性[J].强激光与粒子束,2013,25(9):2443-2447.
    [210]Muhlberger F, Streibel T, Wieser J, et al. Single photon ionization time-of-flight mass spectrometry with a pulsed electron beam pumped excimer VUV lamp for on-line gas analysis:setup and first results on cigarette smoke and human breath[J]. Anal. Chem.,2005, 77(22):7408-7414.
    [211]Muhlberger F, Saraji-Bozorgzad M, Gonin M, et al. Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source[J]. Anal. Chem.,2007,79(21):8118-8124.
    [212]Shockley W, Last J. Statistics of the Charge Distribution for a Localized Flaw in a Semiconductor[J]. Phys. Rev.,1957,107(2):392.
    [213]Fahey P M, Griffin P, Plummer J. Point defects and dopant diffusion in silicon[J]. Rev. Mod. Phys.,1989,61(2):289.
    [214]Redfield D. Electric fields of defects in solids[J]. Physical Review,1963,130(3):914.
    [215]Lento J, Mozos J, Nieminen R. Charged point defects in semiconductors and the supercell approximation[J]. J. Phys.:Condens. Matter,2002,14(10):2637.
    [216]Prokes S. Light emission in thermally oxidized porous silicon:Evidence for oxide-related luminescence[J]. Appl. Phys. Lett.,1993,62(25):3244-3246.
    [217]Koch F, Petrova-Koch V, Muschik T. The luminescence of porous Si:the case for the surface state mechanism[J]. J. Lumin.,1993,57(1):271-281.
    [218]Rogozhina E, Belomoin G, Smith A, et al. Si-N linkage in ultrabright, ultrasmall Si nanoparticles[J]. Appl. Phys. Lett.,2001,78(23):3711-3713.
    [219]Kim J H, Jeon K A, Lee S Y. Formation mechanism and optical properties of nanocrystalline silicon in silicon oxide[J]. J. Appl. Phys.,2005,98(1):014303.
    [220]Wilcoxon J, Samara G. Tailorable, visible light emission from silicon nanocrystals[J]. Appl. Phys. Lett.,1999,74(21):3164-3166.
    [221]Chen Y, Pan B, Nie T, et al. Enhanced photoluminescence due to lateral ordering of GeSi quantum dots on patterned Si (001) substrales[J]. Nanotechnology,2010,21(17):175701.
    [222]Leutwyler W K, Biirgi S L, Burgl H. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science,1996,271(5251):933-937.
    [223]Lin J, Wu Y, Cui J, et al. Formation of planar defects over GeSi islands in Si capping layer grown at low temperature[J]. J. Appl. Phys.,2009,105(2):024307.
    [224]Wu Y, Zou J, Li F, et al. The stability of faceted SiGe quantum dots capped with a thin Si layer[J]. Nanotechnology,2007,18(2):025404.
    [225]Choi W, Chew H, Zheng F, et al. Stress development of germanium nanocrystals in silicon oxide matrix[J]. Appl. Phys. Lett.,2006,89(11):113126.
    [226]Zhu J G, White C, Budai J, et al. Growth of Ge, Si, and SiGe nanocrystals in SiO2 matrices[J]. J. Appl. Phys.,1995,78(7):4386-4389.
    [227]Mo Y, Lagally M. Kinetic pathway in Stranski-Krastanov growth of Ge on Si (001)[J]. Mod. Phys. Lett. B,1990,4(22):1379-1384.
    [228]赵亚凡.钛合金表面脉冲激光沉积生物玻璃薄膜的研究[D].山东大学,2007.
    [229]Barba D, Martin F, Ross G. Evidence of localized amorphous silicon clustering from Raman depth-probing of silicon nanocrystals in fused silica[J]. Nanotechnology,2008,19(11): 115707.
    [230]Fernandez B G, Lopez M, Garcia C, et al. Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2[J]. J. Appl. Phys.,2002,91(2): 798-807.
    [231]岳兰平,何怡贞.纳米锗颗粒镶嵌薄膜的吸收光谱研究[J].光学学报,1997,17(12):1693-1696.
    [232]Lu T, Dun S, Hu Q, et al. Ge nano-layer fabricated by high-fluence low-energy ion implantation[J]. Nucl. Instrum. Methods Phys. Res., Sect. B,2006,250(1):183-187

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700